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Abstract
Background: It is unclear whether clinical factors and immune microenvironment 
(IME) factors are associated with tumor mutation burden (TMB) in patients with 
nonsmall cell lung cancer (NSCLC).
Materials and methods: We assessed TMB in surgical tumor specimens by per-
forming whole exome sequencing. IME profiles, including PD-L1 tumor proportion 
score (TPS), stromal CD8 tumor-infiltrating lymphocyte (TIL) density, and stromal 
Foxp3 TIL density, were quantified by digital pathology using a machine learning 
algorithm. To detect factors associated with TMB, clinical data, and IME factors 
were assessed by means of a multiple regression model.
Results: We analyzed tumors from 200 of the 246 surgically resected NSCLC pa-
tients between September 2014 and September 2015. Patient background: median 
age (range) 70  years (39-87); male 37.5%; smoker 27.5%; pathological stage (p-
stage) I/II/III, 63.5/22.5/14.0%; histological type Ad/Sq, 77.0/23.0%; primary tumor 
location upper/lower, 58.5/41.5%; median PET SUV 7.5 (0.86-29.8); median serum 
CEA (sCEA) level 3.4 ng/mL (0.5-144.3); median serum CYFRA 21-1 (sCYFRA) 
level 1.2 ng/mL (1.0-38.0); median TMB 2.19/ Mb (0.12-64.38); median PD-L1 TPS 
15.1% (0.09-77.4); median stromal CD8 TIL density 582.1/mm2 (120.0-4967.6);, 
and median stromal Foxp3 TIL density 183.7/mm2 (6.3-544.0).
The multiple regression analysis identified three factors associated with higher TMB: 
smoking status: smoker, increase PET SUV, and sCEA level: >5 ng/mL (P < .001, 
P < .001, and P = .006, respectively).
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1  |   BACKGROUND

Somatic mutations are presumed to be distributed randomly.1 
Tobacco smoking has been associated with lung cancer and 
leads to increased mutation burden.2 Nonsmall cell lung 
cancer (NSCLC), including lung adenocarcinoma and lung 
squamous cell carcinoma, generally has one of the highest 
tumor mutation burdens across cancer types.3 The mutation 
burden in lung adenocarcinoma has been reported to be lower 
in driver-gene-alteration-positive cases than in pan-negative 
driver gene cases.4 However, smoking status or other clinical 
factors may have been confounding factors that influenced 
the association between driver gene alteration status and mu-
tation burden.

Moreover, since tumor mutation burden (TMB) is 
highly correlated with neoantigens that can be recognized 
by the immune system, TMB has been expected to serve as 
a predictive marker for treatment with immune checkpoint 
inhibitors.5

The existence of four different types of immune micro-
environment (IME), that is, Type I: TIL+/PD-L1+, Type 
II: TIL-/PD-L1-, Type III: TIL-/PD-L1+, and Type IV: 
TIL+/PD-L1-, has been proposed by Teng MW et al based 
on the presence or absence of tumor-infiltrating lympho-
cytes (TILs) and PD-L1.6 Assessment of IME factors in 
their study revealed that CD8-positive TILs (CD8+TILs) 
exerted effector T-cell function by recognizing neoantigens 
in both Type I and Type IV tumors, which are called “hot 
tumors,” and that PD-L1 and regulatory T cells exhibited 
immune resistance and immune tolerance mechanisms in 
Type I and Type IV tumors, respectively. Foxp3 is known 
to be a master regulatory gene of regulatory T cells.7 In this 
study we evaluated CD8+TILs, Foxp3+TILs, and PD-L1 as 
IME factors.

According to RNA-sequencing (RNAseq) data, Type 
II and Type IV predominate in the IME categories in the 
Japanese lung cancer population,8 whereas Type I and Type 
III predominate in The Cancer Genome Atlas (TGCA) lung 
cancer population.9 Genome-based immune cell characteriza-
tion, other than immunohistochemistry (IHC), is not widely 
performed, and RNAseq data from a mixture of cancer cells 

cannot be used to evaluate the local presence of TILs because 
of contamination by surrounding stromal tissues.

Although the results of a previous study showed no cor-
relation between TMB and PD-L1 expression level in biopsy 
samples,10 TMB is highly correlated with the number of neo-
antigens that can be recognized by the immune system, and 
we assume that some relationship exists between TMB and 
IME.

PD-L1 expression in tumors is heterogeneous, and the 
sample used for the assay may not be representative of the 
tumor as a whole.11 It is recommended that whole tissue 
sections, instead of “hot spots” defined as small areas with 
increased TILs, be used to evaluate TILs in heterogeneous 
tumors.12 Visual assessment of immunohistochemistry (IHC) 
findings by pathologists can be influenced by inherent cogni-
tive and visual biases.13

The development of whole-slide imaging (WSI), which 
allows entire slides to be imaged and permanently stored at 
high resolution, enables pathologists to navigate a virtual 
slide on WSI systems in the same way they navigate Google 
Maps. WSI systems have led to a number of new opportu-
nities not possible in conventional microscopic evaluation, 
including quantitative IHC analysis, and measurement of 
immune phenotypes and their relationship to the IME (eg, 
tumor vs stroma) using artificial intelligence (AI).14-16

It is unclear which IME factors, if any, quantified by digital 
pathology in surgical samples by means of a machine learn-
ing algorithm, are associated with mutation burden. In this 
study we investigated associations between clinical and IME 
factors and TMB and tried to identify practical predictors of 
TMB in patients with nonsmall cell lung cancer (NSCLC).

2  |   MATERIALS AND METHODS

2.1  |  Patients

Two hundred of the 246 NSCLC patients who underwent 
surgical resection of lung adenocarcinoma at the Shizuoka 
Cancer Center between September 2014 and September 
2015 were the subjects of this study. We also conducted 
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a retrospective review of the prospectively collected data 
of 154 patients with adenocarcinoma (Ad) and 46 patients 
with squamous cell carcinoma (Sq), using the database of 
patients enrolled in “Project HOPE” (High-Tech-Omics-
based Patient Evaluation). Our study is an additional study 
of project HOPE.17 The Shizuoka Cancer Center launched 
Project HOPE as a new clinical research program in January 
2014 to promote personalized medicine. The purpose of the 
Project HOPE research program is to identify the cancer 
characteristics of individual patients by using multiomics-
based analyses across all types of tumors, and in the pre-
sent study we analyzed cases of surgically resected primary 
NSCLC by using data obtained according to the Project 
HOPE protocol. Briefly, we assessed the somatic muta-
tion burden in surgical tumor specimens by performing 
WES with an Ion Torrent proton platform (Thermo Fisher 
Scientific). We sequenced the whole exome to an average 
effective coverage of  ×  123. We estimated tumor purity 
using whole exome sequencing (WES) data and the pre-
viously reported PurBayes method.18 Each patient's serum 
CEA and CYFRA21-1 concentrations were measured at 
the time of their first visit to our institution. Blood sam-
ples were obtained by venous puncture, and separated sera 
were stored at −40°C until analyzed. CEA concentrations 
were measured with an ARCHITECT® kit (Abbott Japan), 
and CYFRA21-1 concentrations were measured with a 
Lumipulse Presto® kit (FUJIREBIO Inc), which employs 
the chemiluminescent enzyme immunoassay (CLEIA) 
method. The upper limits of the normal (ULN) range of 
CEA values and CYFRA21-1 values were 5 and 3.5  ng/
mL, respectively. Project HOPE was conducted in accord-
ance with the “Ethical Guidelines for Human Genome and 
Genetic Analysis Research in Japan,” which were revised 
in 2013.19 We obtained consent from each of the patients 
prior to their participation in this study.

2.2  |  Pathologic procedures and 
immunohistochemistry

We selected formalin-fixed paraffin-embedded (FFPE) 
blocks from surgical specimens of the primary tumor con-
taining the tumor center and invasive margin in each case, 
which is considered suitable for evaluating TIL. We recog-
nize that there is an ongoing debate in the broader oncological 
community about whether assessment of the tumor invasive 
margin might be more relevant for evaluation of the tumor 
IME than evaluation of the tumor and stroma separately. In 
this study, we assessed the density of stromal TILs relative 
to density of tumor TILs, recommended by an International 
TILs Working Group12 as a factor representing the tumor 
IME. Representative samples were serially cut into 3-μm 
sections and mounted on glass slides. Staining of the sections 

was performed in the following order: hematoxylin and eosin 
(H&E), PD-L1, AE1/3, CD8, and Foxp3.

The sections were incubated at room temperature with pri-
mary antibodies against PD-L1 28-8 (Abcam[ab205921]) in 
a 1:200 dilution for 60 minutes, CD8 (Abcam[ab4055]) in a 
1:2000 dilution for 60 minutes, and Foxp3 (Abcam[ab20034]) 
in a 1:200 dilution for 60  minutes, then incubated with a 
postprimary antibody for 30  minutes and a polymer for 
30  minutes according to the manufacturer's recommenda-
tions. The sections stained for AE1/AE3 were incubated at 
room temperature with primary antibodies against AE1/AE3 
(DAKO[IR053]) in a 1× (ready to use) for 15 minutes, then 
incubated with a postprimary antibody for 8 minutes, and fi-
nally with a polymer for 8 minutes. All slides were processed 
on the Autostainer Bond-III platform (Leica Biosystems) and 
visualized with a Leica Bond Polymer Refine Detection Kit 
(DS9800). Deparaffinization, rehydration, and antigen re-
trieval were performed with Bond Epitope Retrieval Solution 
2 [BERS2] (prediluted; pH 9.0) antigen retrieval solution on 
a Bond-III Leica automated slide stainer for 20  minutes at 
100°C. The specimens were then counterstained with hema-
toxylin and coverslipped. Each IHC run contained a positive 
control (tonsil tissue for PD-L1(28-8), tonsil tissue for CD8, 
tonsil tissue for Foxp3, and colon tissue for AE1/AE3). Two 
PD-L1 (22C3)-positive (5%, 80%) specimens in the outsourc-
ing test were used as positive controls for PD-L1 (28-8).

2.3  |  IHC evaluation by digital 
image analysis

Workflow of quantitative evaluation by digital image 
analysis in WSI is shown in Figure 1A-F. All slides were 
scanned at high resolution on a NanoZoomer Digital 
Pathology slide scanner (Hamamatsu Photonics), and the 
digital image analysis was annotated by an experienced 
pathologist using HALOTM image analysis software v2.2 
(Indica Labs). HALOTM is a commercially available ma-
chine learning platform, that uses a Random Forest algo-
rithm as a research tool; it has not yet been validated as an 
in vitro diagnostic. Random Forest algorithms use a deci-
sion tree to determine how each pixel in an image should 
be classified. This algorithm needs to be validated in an 
independent cohort. In this study, we conducted the valida-
tion against manual assessment of the IME factors in a set 
of 20 randomly selected cases. Tumor regions, stroma re-
gions, and nontumor/nonstroma regions, for example, ne-
crotic regions, vessels, inflammation, mucus, anthracosis, 
or bronchial cartilage, were identified using the HALOTM 
tissue classifier algorithm (a random Forest classifier) 
based on the AE1/AE3 staining pattern. To compensate for 
nonlinear deformation between tissue sections as much as 
possible, we evaluated staining on overlaid virtual serial 
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section slides using the HALOTM multiplex IHC v 2.2 
machine learning algorithm (a random forest algorithm). 
Virtual serial section slides stained for PD-L1, CD8, and 
Foxp3 were then annotated and quantitatively analyzed 
using the HALOTM multiplex IHC v 2.2 on a set of 20 ran-
domly selected cases, as previously described by Koelzer 
VH, et al.20 Comparison between conventional and digital 
assessments of PD-L1 expression in their study showed a 
highly significant correlation between pathologist-based 
consensus readings and automated PD-L1 analyses per-
formed using the HALOTM platform (r = .97, P < .0001). 
All 20 randomly selected sections were evaluated by two 
independent pathologists blinded to clinical data. Cells 
with at least partial linear membranous PD-L1 staining that 
reached the threshold decided by the pathologist were an-
notated as positive. PD-L1 TPS was quantitatively evalu-
ated by calculating the percentage of positive cells (number 
of PD-L1-positive tumor cells/total number of tumor 
cells × 100) in the annotated region.

Cells with membranous CD8 staining that reached the 
threshold decided by the pathologist were annotated as 

positive. CD8 TILs were quantitatively evaluated by cal-
culating cell density (number of CD8 cells per mm2) and 
percentage (number of CD8 positive cells/total number of 
cells  ×  100) in the annotated region. Cells with nuclear 
Foxp3 staining that reached the threshold decided by pa-
thologist were annotated as positive. Foxp3 TILs were 
quantitatively evaluated by calculating cell density (number 
of Foxp3 positive cells per mm2) and percentage (number 
of Foxp3 positive cells/total number of cells × 100) in the 
annotated region.

2.4  |  Samples

Tumor tissue samples with weights ≧0.1  g were dissected 
from the surgical specimens together with samples of sur-
rounding normal tissue. The areas from which the tumor sam-
ples were dissected were visually assessed as having a tumor 
content ≧50%. For the DNA analyses, tumor tissue and nor-
mal tissue were immediately frozen in liquid nitrogen before 
DNA extraction. For the RNA analyses, tissue samples were 

F I G U R E  1   Workflow of quantitative evaluation by digital image analysis using CD8+TIL evaluation as an example. Whole-slide images 
of 3 μmol/L serially cut tissue sections were stained with AE1/AE3 (A), with H&E (B), and CD8 (D). NSCLC regions (circled in yellow) were 
annotated for analysis by a pathologist. C, Tissue Classifier: Tumor regions (red), stroma regions (green), and nontumor/nonstroma regions 
(yellow) were identified using the HALOTM tissue classifier algorithm (a random forest classifier). Pathologists trained the algorithm on AE1/
AE3 stained regions set to recognize tumor regions, stroma regions set to stroma regions, and necrotic regions, vessels, inflammation, mucus, 
anthracosis, and bronchial cartilage regions set to nontumor/nonstroma regions, using a machine learning algorithm. D, Serially cut tissue sections 
were stained for CD8 (CD8-positive cells in brown). E, Cell Segmentation: A digital image analysis mark-up at single-cell resolution (nuclei in the 
tumor area and stroma area in blue, CD8-positive cells in brown). F, HALOTM multiplex IHC v 2.2 machine learning algorithm (a random forest 
algorithm) can quantitatively evaluate IHC markers in the cytoplasm, nucleus, and/or membrane. This algorithm is run within the annotated region 
and performs cell segmentation and scoring the TPS of PD-L1, CD8 cell density in the stroma area, and Foxp3 cell density in the stroma area. 
Tissue classifier and multiplex IHC analysis can be performed in batch mode

A

B

C

D E
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submerged in RNAlater solution (Thermo Fisher Scientific), 
minced, and stored overnight at 4°C before RNA extrac-
tion. Whole blood was collected as a control for WES. We 
estimated tumor purity using WES data and the previously 
reported PurBayes method.17 Because of a possible correla-
tion between low tumor purity and the false-negative rate, we 
excluded from the analysis cases in which tumor purity was 
less than 20%.

2.5  |  DNA extraction and WES

DNA was extracted from tissue samples using a QIAamp 
Kit (Qiagen) according to the manufacturer's instructions, 
and subjected to WES on the Ion Proton System (Thermo 
Fisher Scientific). WES and variant calling were performed 
using an Ion Proton AmpliSeq Exome kit and Ion Torrent 
server as previously reported.20 Briefly, 100  ng of DNA 
was amplified as follows: 99°C for 2  minutes, 95°C for 
15 seconds, 10 cycles of 60°C for 16 minutes, and a final 
hold at 10°C. Incorporated primer sequences were partially 
digested with FuPa reagent (Thermo Fisher Scientific). Ion 
Torrent Proton adapters were ligated to the amplicons at 
22°C for 30 minutes, then incubated at 72°C for 10 minutes, 
and the library was purified using Agencourt AMPure XT 
beads (Thermo Fisher Scientific). The library was quanti-
fied by using qPCR, and 7 PM library DNA was sequenced 
using the Ion Torrent Proton Sequencer with a PI chip V2 
according to the manufacturer's protocol (Thermo Fisher 
Scientific). Torrent Suite software (ver. 4.4) was used 
to convert raw binary data into sequence reads that were 
mapped to the reference human genome (hg19 assembly, 
University of California Santa Cruz Genomics Institute). 
Somatic mutations were identified by comparing data 
from the tumor and corresponding blood samples. Single-
nucleotide variants (SNVs) with quality scores < 30, fre-
quency < 10%, or depth of coverage < 20 were discarded. 
The SNVs of the total exonic mutations for each sequenced 
tumor included nonsynonymous, synonymous, and indel/
frameshift mutations.

2.6  |  RNA extraction and fusion analysis

Total RNA was extracted from approximately 10  mg of 
minced tissue samples by using the miRNeasy Mini Kit 
(Qiagen) according to the manufacturer's instructions. Total 
RNA was assessed using an Agilent 2100 Bioanalyzer 
(Agilent Technologies). Fusion gene data were analyzed 
using the Ion Reporter server. The Ion AmpliSeq RNA fu-
sion workflow (Thermo Fisher Scientific) was used to detect 
fusion transcripts targeted by the HOPE fusion panel.21

2.7  |  Statistical methods

To get normality in our TMB data, we used natural logarith-
mic transformation. The Wilcoxon test was used for compari-
sons between continuous variables. In correlation analysis, 
we used Pearson's correlation coefficient (r). We conducted 
univariate and multivariate linear regression analysis to de-
velop our prediction model. Multivariate linear regression 
was performed with a best subset approach in which vari-
ables that were significantly related to transformed TMB in 
univariate linear regression analysis were included. In this 
approach, we selected prediction model with minimum AIC. 
P values of less than two-sided .05 were considered to be in-
dicate statistically significance. Tenfold cross-validation was 
used for internal validation of the model. All analyses were 
implemented by R version 3.5.1 (R Foundation for Statistical 
Computing, Vienna, Austria).

3  |   RESULTS

A flow diagram of the patients whose data were included 
in the analysis is shown in Figure 2. The data of a total of 
200 patients who were diagnosed with lung adenocarcinoma 
or lung squamous carcinoma and underwent surgical resec-
tion between September 2014 and September 2015 at the 
Shizuoka Cancer Center were analyzed. We assessed the 
somatic mutation burden in fresh frozen tissue specimens 

F I G U R E  2   Flow diagram showing 
the patients included in the analysis

Fresh frozen tissue specimens of 246 patients with non-small cell lung cancer treated by surgical 
resection were assessed by WES to determine the tumor mutation burden in Project HOPE

• 32 patients with less than 20% tumor purity
• 14 patients for whom microarray data could not be collected

The tumor IME factors in the remaining 200 patients were assessed in this study using FFPE 
specimens prepared from the surgical specimens using a digital pathology platform with whole slide 
imaging and a machine learning algorithm.

The associations between the clinical and IME factors and the tumor mutation burden were 
assessed in the 200 patients.



      |  4869ONO et al.

T A B L E  1   Variables associated with mutation burden in univariate/multivariate regression model in log-transformed TMB scale

Variables N (%)

Univariate Multivariate

P value β-Coefficient (95% CI) P value

Age

<70 95 (47)

≥70  105 (53) .164

Gender

Female 75 (37)

Male 125 (63) <.001

Smoking status

Never 55 (27) Reference

Former/Current 145 (73) <.001 1.078 (0.759, 1.396) <.001

Pathological stage

I 127 (63)

II, III 73 (37) .347

Histological type

Adenocarcinoma 154 (77)

Squamous cell carcinoma 46 (23) <.001

Primary site

Right 115 (58)

Left  85 (42) .624

Upper or middle 117 (59)

Lower 83 (41) .256

PET SUV max <.001 0.056 (0.033, 0.080) <.001

CEA

≤5.0 ng/mL 135 (67) Reference

>5.0 ng/mL 65 (33) <.001 0.430 (0.129, 0.731) .006

CYFRA

≤3.5 ng/mL 172 (86)

>3.5 ng/mL 28 (14) <.001

Actionable gene alteration

Presence 77 (39)

Absence  123 (61) .004

CD8

The number of positive cells in 
stroma/stroma area (n/mm2)

.542

The number of positive cells in 
stroma/stroma cells (%)

.910

The number of positive cells in tumor/
tumor area (n/mm2)

.894

The number of positive cells in tumor/
tumor cells (%)

.921

Foxp3

The number of positive cells in 
stroma/stroma area (n/mm2)

.228

The number of positive cells in 
stroma/stroma cells (%)

.206

(Continues)
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by performing WES in project HOPE, and assessed the 
IME factors through IHC evaluation of FFPE specimens 
prepared from the same specimens by digital image analy-
sis in our study. The actual PET maximal standardized up-
take value (SUV-max) of seven patients was missing (one 
patient had not undergone a PET-CT examination, and six 
patients were unevaluable). The patient characteristics are 
listed in Table  1. Median patient age at the time of diag-
nosis was 70 years (range, 39-87 years). The patients were 
predominantly male (63%), smokers (73%), predominantly 
had adenocarcinoma (77%), right lung primary (58%), upper 
lobe primary (59%), without actionable mutation (61%) and 
had pathological stage I disease (63%). Six patients (2.4%) 
had both EML4-ALK gene rearrangements and BRAF mu-
tations, and 61 patients (31%) had mutations that conferred 
sensitivity to EGFR tyrosine kinase inhibitor. The median 
serum CEA level (range) was 3.4 (0.5-144.3) ng/mL, median 
serum CYFRA 21-1 level (range) 1.2 (1-38) ng/mL, median 
exonic mutation burden (range) 2.19 mt/Mb (0.1-64.3), and 
median tumor purity 27.2% (20-99.9).

Cell density and percentage were significantly correlated with 
CD8 and Foxp3 in the stroma region and tumor region, respec-
tively (CD8 in stroma: Pearson's r = 0.94, CD8 in tumor: r = .98; 
Foxp3 in stroma: r = .88, Foxp3 in tumor: r = .99), a finding that 
was consistent with the results of a previous study in melanoma 
using HALOTM platform.22 In this study we mainly assessed the 
cell density as a representative factor of the tumor IME.

The results of the quantitative evaluations of each IME fac-
tor are shown in Table 2 and Figure 3. CD8+TIL density and 

Foxp3+TIL density were significantly higher in the stroma 
area than in the tumor are (P < .0001). Median PD-L1 expres-
sion (range) was 15.2% (0.1-77.5). Although CD8+TIL den-
sity in the stroma area was strongly correlated with CD8+TIL 
density in the tumor area (r =  .790, P <  .001; Figure 3A), 
Foxp3+TIL density in the stroma area was not correlated with 
Foxp3+TIL density in the tumor area (r = −.048, P = .502; 
Figure 3B). The median tumor area (mm2)/stroma area (mm2) 
ratio was 1.02 (range: 0.11-8.70).

In the present study no correlation was found between 
TMB and PD-L1 expression levels in the surgical samples 
(r =  .020, P =  .783; Figure 3E), the same as reported in a 
previous study,10 and no correlation was found between 
TMB and either CD8 cell density in the stroma or Foxp3 cell 
density in the stroma (r =  .027 P =  .706, −.007 P =  .925; 
Figure  3C,D). However, moderate correlations were found 
between PD-L1 expression and CD8+TIL density, PD-L1 ex-
pression and Foxp3+TIL density, and CD8+TIL density and 
Foxp3+TIL density (r = 0.464 P < .001, r = .272 P < .001, 
and r = .394 P < .001, respectively; Figure 3F-H).

The exonic mutation burden was significantly higher in 
men (median: 3.3/Mb, range: 0.2-64.3, P < .0001, Wilcoxon 
test), patients with squamous histology (median: 5.1, range: 
0.6-18.4, P < .0001), smokers (median: 3.2, range: 0.2-64.3, 
P < .0001), patients without an actionable mutation (median: 
3.3, range: 0.1-50.4, P = .0001), patients with a serum CEA 
level above 5 ng/mL (median: 4.0, range: 0.3-50.4, P < .0001), 
and patients with a serum CYFRA21-1 level above 3.5  ng/
mL(median: 4.0, range: 0.6-50.4, P =  .0005). In a previous 

Variables N (%)

Univariate Multivariate

P value β-Coefficient (95% CI) P value

The number of positive cells in tumor/
tumor area (n/mm2)

.673

The number of positive cells in tumor/
tumor cells (%)

.644

PD-L1

The number of positive cells in tumor/
tumor cells (%)

.845

[Correction added on 28 May, after first online publication: In row 1, the value .164 has been moved to 3rd column in this current version.]

T A B L E  1   (Continued)

Median density (range)
Median percentage 
(range)

CD8 Stroma region 582.0 (119.9-4876.6) 12.6 (2.7-87.4)

Tumor region 336.5 (28.2-4636.5) 6.1 (0.51-78.7)

Foxp3 Stroma region 183.7 (6.3-543.9) 3.1 (0.1-74.0)

Tumor region 73.2 (6.4-5893.6) 1.03 (0.09-57.3)

PD-L1 Median TPS (range): 15.2% (0.09-77.4)

T A B L E  2   Results of the quantitative 
evaluation of IME factors and PD-L1
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study, lung squamous cell carcinomas were found to have a 
higher mutation burden than lung adenocarcinomas,23 and 
the results of the present study are consistent with that find-
ing (median value 5.1 mutations/Mb vs 1.6 mutations/Mb, 
P <  .0001; Wilcoxon's test). Interestingly, the range of mu-
tation burdens in the adenocarcinomas (0.1-64.4 mutations/
Mb) was wider than that in the squamous cell carcinomas 

(0.6-18.4 mutations/Mb). The CD8+TIL density in the tumor 
area was significantly higher in the adenocarcinomas, and 
the Foxp3+TIL density in the stromal area was significantly 
higher in the squamous cell carcinomas, (CD8+TIL density 
in the tumor: P =  .0018; Foxp3+TIL density in the stroma: 
P < .0001). On the other hand, there was no significant differ-
ence in the CD8+TIL density in the stromal area, Foxp3+TIL 

F I G U R E  3   Correlations between CD8+ T cell density in the stroma and CD8+ T cell density in the tumor (A), Foxp3+ T cell density in the 
stroma and Foxp3+ T cell density in the tumor (B), CD8+ T cell density in the stroma and PD-L1 TPS (C), Foxp3+ T cell density in the stroma and 
PD-L1 TPS (D), PD-L1 TPS and TMB (E), CD8+ T cell density in the stroma and PD-L1 TPS (F), Foxp3+ T cell density in the stroma and PD-L1 
TPS (G), and CD8+ T cell density in the stroma and Foxp3+ T cell density in the stroma (H). The black dotted line shows the correlation between 
the data on the horizontal axis and the data on the vertical axis as described by Pearson's correlation coefficient (r)

A B

C D E

F G H
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density in the tumor area, or PD-L1 expression in the tumor 
between the adenocarcinomas and squamous cell carcinomas 
(CD8+TIL density in the stromal area: P = .84; Foxp3+ TIL 
density in the tumor area: P = .09; tumor PD-L1 expression: 
P = .12). We enrolled 65 patients with NSCLC, including 56 
patients with nonsquamous carcinoma (non-Sq) and 9 patients 
with squamous cell carcinoma (Sq), who received adjuvant 
chemotherapy for this study. We assessed the associations of 
the TMB and IME factors with the postoperative disease-free 
survival in the patients with NSCLC who received adjuvant 
chemotherapy. Multivariate analysis did not reveal any sig-
nificant associations of the TMB and IME factors, with the 
disease-free survival in the NSCLC patients who received ad-
juvant chemotherapy (data not shown).

The clinical variables identified as being associated with 
exonic mutation burden in the univariate linear regression 
were: male gender (P < .001), smoker status (P < .001), PET 
SUV-max (P < .001), actionable mutation (P = .004), squa-
mous histology (P < .001), elevated CEA level (P < .001), 
and elevated CYFRA 21-1 level (P  <.001) (Table 1). On 
the other hand, no associations were found between the IME 
factors CD8-positive cell density in the stroma (P = .542), 
Foxp3-positive cell density in the stroma (P  =  .228), or 
PD-L1 expression (P = .845) and TMB. These seven clin-
ical variables were included in multivariate linear regres-
sion based on the backward stepwise approach (Table 1).  
It revealed smoking status (yes/no), PET SUV-max value 
(continuous), and CEA value (≥5.0  ng/mL) as predictive 
factors. The prediction model for TMB expresses the rele-
vance of TMB as a function of the three clinical variables as 
follows (Table  3): TMB  ~  0.581*2.938^(smoking status)* 
1.058^(SUV-max)*1.537^(CEA). We conducted repeated 
10-fold cross-validation to confirm the internal validity for 
our statistical model selection. We got the result that a model 
including smoking status, PET SUV-max, and serum CEA 
level were selected in 999 918 cases of 1 000 000 iterations. 
We think this result implied those three factors are definitely 
associated with TMB in our study data.

4  |   DISCUSSION

By using a digital pathology platform with WSI and a ma-
chine learning algorithm to analyze entire surgical specimens 

in this study, we were able to quantitatively evaluate IME 
factors that are difficult to evaluate visually. The results 
showed no associations between IME factors and TMB, but 
significant associations were found with some clinical fac-
tors. Several clinical factors were shown to be confounders 
that influenced the association between actionable mutations 
and mutation burden, whereas smoking status, PET SUV-
max, and elevated CEA level were found to be independently 
and significantly associated with mutation burden in patients 
with resected NSCLC. We believe that the findings in this 
study will be useful in building clinical scenarios in the im-
munotherapy era.

The development of targeted next-generation sequencing 
(NGS) and application of an NGS clinical sequencing system 
such as Foundation CDx could promote precision medicine. 
In evaluations of TMB, the total number of mutations identi-
fied using a targeted NGS has been shown to be strongly cor-
related with the total exome mutation number.24,25 However, 
WES remains a proven method for analyzing genetic alter-
ations in adequate specimens of NSCLC.26,27 Furthermore, 
since we analyzed TMB in fresh frozen specimens with less 
DNA damage than in studies that used FFPE blocks, we were 
able to make highly accurate mutation counts.

In current clinical practice PD-L1 is semiquantitatively 
evaluated macroscopically. However, there are difficulties 
in the quantitative evaluation of PD-L1 such as heterogene-
ity,28 subjectivity, visual traps (also called optical illusions) 
which is a limitation of macroscopic evaluation of intensity 
13,29 and cognitive traps. Also, H&E staining of TILs allows 
only crude, subjective semiquantitative evaluations.30 Tissue 
microarrays (TMAs) are generally used to semiquantitatively 
evaluate IME factors. Quantitative evaluations of tumor mi-
croenvironment in recent years have employed TMA-based 
methods because of the heterogeneity of PD-L1 expression.28 
Because evaluation of stroma-infiltrating lymphocytes in 
whole tissue sections is recommended when evaluating TILs 
in breast cancer, evaluation on platforms combining WSI and 
AI is expected to become a standard tool in the future.12 In 
this study, CD8+TIL density in the stroma area was strongly 
correlated with CD8+TIL density in the tumor area. CD8+TIL 
concentrations of the stroma area were significantly higher 
CD8+TIL concentrations of the tumor area. Thus, it is im-
portant to evaluate stromal CD8+TIL density in NSCLC. 
Recent advances in digital image analysis technology using a 
platform that combines WSI technology and AI have enabled 
quantitative evaluation of an entire tissue profile, which was a 
limit of evaluation by macroscopic evaluation without going 
through the process of TMA.14,15

Immune scores quantitatively evaluated by WSI have 
been shown to be prognostic factors even in colorectal 
cancer.30 Clinical phase III trials of immune checkpoint 
inhibitors as adjuvant chemotherapy for NSCLC are also 
being conducted (ANVIL; NCT02595944, PEARLS; 

T A B L E  3   Result of multivariate regression in original TMB scale

β-Coefficient 95% CI
P 
value

Intercept 0.581 0.433, 0.779 .000

Smoking Status (Yes) 2.938 2.136, 4.041 <.001

PET SUV-max 1.058 1.033, 1.084 <.001

CEA (≥5.0) 1.537 1.138, 2.077 .006
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NCT02504372, Impower010; NCT02486718, IFCT-1401; 
NCT02273375), and it is thought that objective, quanti-
tative evaluation of the IME in entire surgical specimens 
may be necessary as a factor to enable stratification of their 
effects.

A study in a Western country reported that the median 
mutation burden based on WES was 6.3 mutations/Mb in 
lung adenocarcinoma patients and 9.0 mutations/Mb in lung 
squamous cell carcinoma patients.23 An East-Asian study, 
however, reported a median of 25 mutations in lung adeno-
carcinoma patients who had undergone resections.31 Since 
the median mutation burden in NSCLC in the present study 
was 2.1 mutations/Mb. East-Asian patients seem to have a 
lower mutation burden than Western patients. The prevalence 
of more driver mutations in East-Asian populations compared 
with Western populations may be the reason for the ethnic 
differences in mutation burden, but actionable mutation sta-
tus was not found to be associated with mutation burden in 
the present study. PD-L1 expression in the present study was 
generally low. It is possible that clone 28-8 (Abcam) showed 
a generally lower expression than other PD-L1 antibodies in 
NSCLC tumor cells.32

Smoking was found to be independently associated with 
mutation burden in the present study, a finding that was 
consistent with the results of previous studies.2 PET SUV-
max value was also found to be independently associated 
with mutation burden in the present study. PET SUV-max 
in primary lung cancer is related to tumor cell proliferation, 
prognosis, tumor-related immunity, and histopathological 
features of aggressiveness.33-35 In a recent study, PET SUV-
max showed raw P values less than .05 in correlation with 
mutation burden in patients with lung adenocarcinoma,36 
although not all of the specimens were obtained by surgical 
resection (57%).

CEA (carcinoembryonic antigen) is an oncofetal anti-
gen produced during fetal life that disappears after birth. 
Oncofetal proteins reappear in some cancer patients, in-
dicating that certain genes are reactivated as a result of 
the cells’ malignant transformation. It is well known that 
smokers have higher serum CEA levels than nonsmokers 
do. CEA could serve as an ideal tumor-associated antigen 
(TAA), because immunizing cancer patients with TAA is 
expected to induce effective tumor immunity, not serious 
autoimmune diseases.37 This property of CEA may have 
influenced its association with mutation burden in this 
study. Moreover, some reports have mentioned serum CEA 
as a useful tumor burden marker for early prediction of a 
response to immune checkpoint inhibitors.38,39 The appli-
cations for the measurement of CEA levels might be can-
didates for surrogate markers for the serial assessment of 
mutation burden.

In a recent study, combination ICI treatment was found 
to provide a survival benefit, over chemotherapy regardless 

of patients’ tumor mutational burden.40 In the present 
study TMB was not associated with CD8+TIL targeting 
neoantigen. Therefore, it is possible that TMB based on 
whole exome sequencing was not correlated with neoan-
tigen load. This enigma needs to be addressed in future 
investigations that evaluate the degree of immunogenicity 
(eg, poorly immunogenic, highly immunogenic) of each 
gene mutation.

The present study had several limitations. First, it 
was performed as a retrospective review of prospectively 
collected data at a single institution, and the small sam-
ple size was relatively small. However, unlike in previ-
ous studies conducted at multiple institutions, we think 
color normalization by autostainer was achieved. Second, 
we did not define any cut-off value for mutation burden. 
Various TMB cut-off values for predicting the therapeutic 
effect of immune checkpoint inhibitors have been reported 
in recent years, but the cut-off values have not been stan-
dardized and are still controversial.5,10,41-43 Third, not all 
of the specimens were analyzed in a Clinical Laboratory 
Improvement Amendments (CLIA) facility, and we could 
not analyze degree of immunogenicity. Fourth, our study 
was that we did not compare the outcomes between fresh 
frozen tissue specimens and FFPE specimens in this 
study. Although the median insert size and uniformity 
of sequencing coverage are known to be lower for FFPE 
specimens than for fresh frozen specimens, use of opti-
mized FFPE samples are reported as a valid alternative 
source of DNA for whole-genome sequence cancer diag-
nostics if fresh frozen specimens are not available.44 Fifth, 
this algorithm needs to be validated in an independent co-
hort. In this study, we conducted the validation against 
manual assessment of the IME factors in a set of 20 ran-
domly selected cases. Sixth, WSI analysis algorithms en-
tail some potential artifacts, including segmentation and 
classification errors. To reduce such errors, pathologists 
review at each annotation step. Seventh, we have become 
aware of the following limitations of the machine learn-
ing method: (a) Numbers of training regions and training 
areas are limited; (b) It is hard to assess the size and the 
shape of the cell nuclei and identify their margins; (c) The 
training involved in identifying the border between lym-
phocyte and tumor is difficult; (d) The way of annota-
tion methods of training regions are confined. In order to 
overcome the above-mentioned limitations, deep learning 
methods may be applied to H&E stained WSI for tumor 
diagnosis, tumor classification, and prediction of action-
able gene alteration in NSCLC. WSI analysis using deep 
learning algorithms in the clinical setting is challenging. 
Recent studies have revealed the possibility of applying 
deep learning to imaging analysis.45-47 The application AI 
to WSI analysis may reduce turnaround time, lessen heavy 
workloads, develop more efficient workflows, increase 
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collaboration though multidisciplinary conferences, real-
ize cost savings, and become a tool for educating physi-
cians.16 The medical environment will change as we move 
into an era when physicians have to master AI. We think 
that the results of the present study shed light on how to 
evaluate TMB and IME by using deep learning algorithms 
in a more precise manner, although further validation in 
another cohort is needed. We propose to conduct a pro-
spective study to evaluate the IME factors quantitatively 
and predict the genotype (ie, the presence or absence of 
other actionable mutations) from the phenotype (ie, his-
tological observations) using deep learning algorithms 
based on training and validation test sets.

In conclusion, no association between IME factors eval-
uated by WSI analysis using a machine learning method 
and TMB were found in this study. However, in addition to 
smoking, serum CEA levels and PET SUV-max values may 
be independent predictors of TMB. TMB and IME factors 
were found to be independent factors in resected NSCLC. 
This issue should be evaluated and validated in a future pro-
spective study.
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