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Abstract: In this paper, we propose a convolutional neural network-based template architecture
that compensates for the disadvantages of existing watermarking techniques that are vulnerable to
geometric distortion. The proposed template consists of a template generation network, a template
extraction network, and a template matching network. The template generation network generates a
template in the form of noise and the template is inserted into certain pre-defined spatial locations
of the image. The extraction network detects spatial locations where the template is inserted in the
image. Finally, the template matching network estimates the parameters of the geometric distortion
by comparing the shape of spatial locations where the template was inserted with the locations where
the template was detected. It is possible to recover an image in its original geometrical form using the
estimated parameters, and as a result, watermarks applied using existing watermarking techniques
that are vulnerable to geometric distortion can be decoded normally.

Keywords: digital watermark; depth-image-based rendering; copyright protection; template
watermark; deep neural network

1. Introduction

Digital content has always been subject to copyright infringement due to its ease of duplication.
Recently, as the market for real-time content services such as web-comics (also called webtoons)
and video streaming services such as YouTube has grown very rapidly, the problem of copyright
infringement is increasing. These services, unlike traditional paid services, offer free content and earn
revenue by advertising to users. As a result, these services are more vulnerable to illegal copying
because they are easier to access than services that are provided for a fee. In addition, these services are
provided on Internet browsers or as smartphone applications, making it easier to replicate the content
with the Internet browsers’ or applications’ downloading or capturing functions.

Watermarking techniques have emerged to reduce the loss caused by piracy. These techniques
minimize loss through the insertion of invisible information in the content to enable tracking of
illegal distribution routes and copyright authentication. As mentioned above, in real-time content
provided by Internet browsers and applications, geometric distortion occurs very frequently due to
capturing. Figure 1 shows an illegal distribution scenario that occurs in a real-time content service and
a watermark extraction process suitable for such a scenario. The piracy process, such as the capturing
shown in this figure, makes it difficult to decode the watermark by breaking the synchronization of
the watermark. Correction of the geometric distortion must be performed to extract the watermark
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accurately. Therefore, there is a need for a method that can effectively recover the image after such
geometric distortion.

In this paper, we propose a convolutional neural network (CNN)-based template that can
effectively correct geometric distortion. The proposed method divides the image into blocks of a specific
size, inserts bit information into half of the blocks using the conventional watermarking technique,
and inserts a CNN-based template to correct the geometric distortion in the other half. By inserting
these block-based templates, it is possible to compensate for the disadvantages of geometric distortion
while preserving the advantages of existing watermarking techniques except for the bit capacity.

Figure 1. Illegal distribution scenario for real-time web-comics and watermark extraction process
suitable for this scenario. Illegal distribution is frequently caused by screen capturing on Internet
browsers and smartphone applications. Scaling and translation occur in this process and these
distortions must be corrected before watermark decoding.

The contributions of the proposed method are as follows:

(1) A learning-based template network that restores geometric distortion. Through learning, a robust
template against various attacks can be designed.

(2) Block-unit template. This makes it easy to design a multi-bit watermarking system and does not
interfere with the watermark signal because it can be inserted independently with the watermark.

(3) Due to the above two characteristics, the template can be easily applied to other watermarking
techniques. This complements the vulnerability to geometric distortion of new forms of
watermarks such as the DIBR watermarking method as well as existing watermarks.

The remainder of this paper is organized as follows. Section 2 summarizes related works of robust
watermarking and template-based watermarking. Section 3 presents the main concept of the proposed
method, and Section 4 discusses the proposed method. Section 5 presents experimental results and
Section 6 concludes the paper.

2. Related Work

To date, numerous watermarking techniques have been proposed to protect the copyright
of content. Methods of inserting watermarks into various transform domains such as discrete
cosine transform (DCT), discrete Fourier transform (DFT), radon transform, curvelet transform,
Dual-tree complex wavelet transform (DT-CWT), and contourlet transform have been proposed [1–6].
Various insertion methods such as spread-spectrum, quantization index modulation (QIM),
angle QIM, and absolute angle QIM have also been proposed [7–10]. However, these watermarking
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techniques often show weaknesses after geometric distortion. Because geometric distortion causes
synchronization errors, it is not easy to ensure robustness of these watermarks to geometric attacks.
In addition, the print-scan process, which is regarded as a watermark removal attack, is commonly used
for image reproduction and distribution. Print-scan resilient data hiding provides an authentication
method of an important document, which is becoming more significant issue because of the security
problems [11–13].

To reduce the vulnerability to geometric attacks, many studies have been carried out to
identify the transform domain and insertion methods with invariant characteristics against
geometric distortions [14–17]. However, these algorithms have drawbacks such as low invisibility,
lack of bit capacity such as zero-bit watermarking, vulnerability to specific geometric distortion
such as translation, or necessity of additional information.

Many template-based watermarking methods for decoding watermarks using template matching
techniques have been proposed [18–21], but these methods also have a drawback in that it is difficult
to insert sufficient copyright information because the bit capacity is low. In addition, since these
templates are additionally inserted over the watermarked image in which the copyright information is
embedded, the invisibility is further reduced, and the template and the watermark signal may interfere
with each other.

These watermarking techniques robust to geometric attacks have many disadvantages compared
to watermarking techniques that do not consider geometric attacks. In addition, if the synchronization
problem is solved from the geometrically distorted image, the watermark can be normally decoded.
For this reason, watermarking techniques that do not consider geometric attacks are used in many cases.
If a geometric attack occurs, watermark decoding is performed after the image is recovered into the
geometric characteristics of the original form. However, this approach requires a process for finding
the original image information, comparing the original image with the geometrically distorted image,
and then recovering the geometrical characteristics. This process is often inefficient because it is done
manually or using heuristic search.

Conventional template-based watermarking techniques usually use whole image-unit transform
rather than block-unit transform. This is because it is advantageous to use the image-unit transform
when searching for invariant domains and insertion methods against rotation, scaling and translation
(RST) attacks. When using the block-unit transform, it is necessary to solve the problem of correcting
the block synchronization after geometrical distortion, which is difficult. However, the image-unit
template has a problem in that the template cannot be inserted independently with the watermark
containing copyright information unless they use the same transform domain. Therefore, there is a
limitation that the template and watermark signal can interfere with each other. Also, it is difficult to
design a multi-bit watermarking system in comparison with the block-unit method.

3. Main Concept of Proposed Method

The proposed method consists of a preparation step, insertion step, and decoding step as shown
in Figure 2. In the preparation step, a random binary code is generated using the key, and this code is
used to generate a 2D binary template matrix K of M× N size. This matrix determines whether each
block is a template block or a watermark block in an image divided into blocks. It also serves as the
ground truth for estimating the RST parameters in the template matching step.

In the insertion step, the image is divided into blocks, and then watermark insertion and template
insertion are performed. First, the image is spatially divided into M× N blocks. The set of generated
blocks is defined as B. The following rules distinguish the roles of the blocks.

B(x, y) =

{
Template block, if K(x, y) = 1

Watermark block, if K(x, y) = 0
(1)

where x and y are the horizontal and vertical coordinates of B and K, 0 ≤ x < M, and 0 ≤ y <N.
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(a)

(b)

Figure 2. An overview of the proposed method. (a) insertion step, and (b) decoding step. A Stego
image is an image in which both a watermark and a template are inserted.

Then, a block-based watermark is inserted into all the watermark blocks through the watermark
embedder. The watermark embedder consists of an image transform, watermark insertion, and inverse
transform in the same manner as conventional watermarking techniques.

As the final step of the insertion, a template is inserted into the template blocks. Template insertion
is completed by simply adding the w× h sized noise output from the template generation network
to the image, where w and h are the width and height of the image. The template generation
network is responsible for generating a specific form of noise that can be detected in the template
extraction network.

The decoding step consists of extracting the template, estimating the distorted geometric
information of the image, recovering the image, and decoding the bits from the watermark. First, in the
template extraction step, the extraction network finds the location where the template is inserted
in the image. The template extraction network outputs a matrix Kr’ with a value of 1 where the
template is inserted and 0 where the watermark is inserted. Inputting the Kr’ and the original template
Kr, which can be obtained from the key, into the template matching network yields estimated RST
parameters. Kr is simply a resize of K, which is used to increase the resolution of the template.

The geometrically distorted image is recovered using the estimated RST parameters. This step
solves the problem of block synchronization, which is the biggest problem with block-based
watermarking techniques. Therefore, the block-based watermark can be extracted blindly by using the
block size and position information used in the watermark insertion step.

As the last step of decoding, the watermark extraction proceeds in the order of image transform
and watermark extraction in the transformed domain as in conventional techniques.

The template generation network, template extraction network, and template matching network,
which require a more detailed description, are described in Sections 4.1 and 4.2, and the watermark
embedder and decoder are described in Section 4.3.
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4. Proposed Method

In this section, the description of the template and the watermark are presented separately
without considering the insertion and extraction order. The insertion and extraction order is detailed
in Section 3.

In each step of template insertion and extraction, a resized K is used. Resizing is performed with
the nearest neighbor filter, and K resized into r× r is defined as Kr. For example, K64 means that the
K of size M× N is resized to 64 × 64. The reason for resizing K is to increase the resolution of the
template to increase the accuracy in the matching step.

4.1. Template Embedding and Extraction Network

Figure 3 presents a template insertion and extraction scheme. Template embedding is performed
as a simple sum as,

IT = I + Tn, (2)

where IT is the template inserted image, I is the original image, and Tn is the template noise generated
from the template generation network.

Figure 3. Template insertion and extraction overview. Networks are trained so that the extracted
template K′64 and the inserted template K64 have the same shape.

In the template extraction step, a template is extracted from IT . The goal is to learn the template
generation network and extraction network so that the extracted template K′64 becomes the same as
the template K64 used at the template insertion step.

The detailed template generation and extraction network structures are shown in Figure 4. We set
the kernel size of all convolutional layers in the network to (3, 3). The reason is to extract the local
features of the image similar to discrete wavelet transform rather than global features similar to DFT.
In order to estimate the RST parameters, the same geometric transformation as that occurring in the
image must occur in the extracted template. If the template is perfectly invariant and the template is
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extracted without coordinate distortion, the RST parameters cannot be estimated. Thus, by exploiting
local features, we induce the template to have semi-invariant properties. A semi-invariant template
preserves its value from geometric distortion, but the coordinates are transformed according to the
degree of geometric distortion.

Figure 4. Proposed template generation and extraction network architectures. All kernel sizes of
convolutional layers are set to (3, 3), d and s denote the depth and stride, respectively.

The template generation network is an inverse process to the template extraction network.
This template generation network generates a template noise (Tn) of size 512× 512 from a template (Kr)
of size 64 × 64 using a transposed convolutional layer. The process of expanding the dimension
is similar to the insertion method for conventional watermarking techniques. In conventional
watermarking techniques, when the watermark inserted in the middle frequency of the transformed
domain passing through the inverse transform, the watermark signal spreads to the entire image of
the spatial domain. The proposed template generation network also spreads the low-dimensional
signal to the high-dimensional spatial domain similar to the conventional technique. At the end of the
network, the generated template noise is masked so that the template noise does not interfere with the
watermark block. The loss of the template generation network is defined as,

Lg =
∑U

i,j=1(T
o
n(i, j))2

U2 , (3)

To
n is the template noise generated from the generation network, i and j denote the horizontal and

vertical coordinates of the generated template noise, respectively, U represents the width and height of
the network output and is set to 512, i.e., since Lg corresponds to the average energy of the template to
be inserted, the generation network is trained so as to improve the template invisibility. Lg is combined
with the loss of the extraction network described below, and the generation network and the extraction
network are trained together.

As in (2), simply adding the template noise generated from the template generation network to
the original image will complete the template embedding. The template embedded image is then sent
to the template extraction network after RST distortion.

The template extraction network extracts 64 × 64 templates that are the same size as the input
of the generation network from the attacked image. The loss of the template extraction network is
defined as,

Le =
1

V2

V

∑
i,j=1

[K′V(i, j)− GT(KV(i, j))]2, (4)
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where V is the size of the output of the extraction network and is set to 64. K′V denotes the output of the
network, i.e., the extracted template, and KV denotes the original template. i and j denote the horizontal
and vertical coordinates of the template, respectively. GT indicates a geometric transformation using
the ground-truth parameters. Since the geometric distortion that occurs in the image occurs equally in
the inserted template, we define the loss function so that the extracted template is also subjected to this
geometric distortion. This loss, Le, trains the extraction network to improve the extraction accuracy of
the template.

The total loss using the losses of the template generation and extraction networks is defined as,

Lt = λLg + (1− λ)Le, (5)

where λ is the trade-off parameter between invisibility and template extraction accuracy. The larger
the λ, the higher the invisibility but the lower the extraction accuracy.

To use the middle frequency as the template noise similar to the existing watermarking
technique, the template generation network is pre-trained before the whole network training.
First, as in the spread-spectrum watermark [1], we generate a middle frequency noise with a size of
512 × 512. This noise is generated by substituting a pseudo-random sequence from 1/4 to 3/4 of the
zigzag-scanned DCT coefficients, and is defined as Tm. The pseudo-random sequence is set with an
average value of 0 and a variance of 1. Then the template generation network is pre-trained until
∑U

i,j=1(T
o
n(i, j)− Tm(i, j))2/U2 is less than 0.1. The template extraction network is initialized by the

Xavier uniform initializer [22].

4.2. Template Matching Network

The template matching network shown in Figure 5 compares the extracted template with the
original template and estimates the RST parameters. First, the feature extraction network extracts
features from the extracted template and the original template. The feature extraction network mimics
domain transformation methods such as DFT. Domain transforms, such as DFT, are the sum of all
pixels multiplied by different weights in the image. Similar to DFT, we use the kernel size as the
template size to compute the global features of the template. We compute 256 global features and
reshape it by 16 × 16. This is similar to calculating 16 × 16 DFT coefficients from an image. As we
can estimate the translation degree from the phase of the DFT, these global features will facilitate RST
parameter estimation.

The extracted features are then matched to estimate the RST parameters. These matching layers
refer to the structure in [23–25]. Feature extraction networks are Siamese networks that share weights
with each other. After the feature extraction network, a concatenation layer, which is fast and has
good matching accuracy, is used to combine features extracted from the feature extraction networks.
Later layers are identical to the structure in [25]. The final result is a five-dimensional matrix
[R, Sx, Sy, Tx, Ty], which indicates the rotation, scaling of x and y, and the translation of x and y
parameters. The loss of the matching network is defined as,

Ld =
1
S2

S

∑
i,j=1

d[Ge(xi, yj), GT(xi, yj)]
2, (6)

where d is the Euclidean distance between two points, Ge is the geometric transformation using
the estimated RST parameters, and GT is the geometric transformation using the ground-truth RST
parameters. xi and yi correspond to the S equally divided points of the image in the horizontal and
vertical directions, respectively, and S is set to 10, i.e., Ld corresponds to the mean squared error
between the estimated points and the true points. The reason for using the Euclidean distance as a
loss without using the RST parameters directly is that each RST parameter has different weights of
distortion on the image. For example, when a parameter of the same value is used, the distortion of
rotation is larger than the distortion of translation.
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Figure 5. Template matching network architecture. Two feature extraction networks share weights with
each other. k means kernel size, and zero-padding is not used in matching networks.

Although the template matching network has been described separately here, the template
generation and extraction network described above are attached to the template matching network,
and then end-to-end learning is performed. End-to-end loss is defined as,

Lend−to−end = λLg + (1− λ)Ld, (7)

where λ is the trade-off parameter between invisibility and matching accuracy. The template matching
network also uses a Xavier uniform initializer to initialize the network. Since Ld includes training
of the template extraction network, the template generation network, template extraction network,
and template matching network are trained all at once by Lend−to−end.

4.3. Watermark Embedder and Decoder

The watermark has the role of inserting and decoding bit information. Similar to conventional
techniques, the watermark is inserted/decoded in the transformed domain, and the curvelet is used as
the transform domain. The reason for using this domain is that it is easy to insert multiple bits into one
block through parameter adjustment while the watermark in this domain remains invisible and robust.

The curvelet transform is a multi-scale decomposition-like wavelet transform, and the curvelet
represents the curve shape for various directions in the spatial domain [26–29]. In the image,
the frequency domains are decomposed into various scales and directions by the curvelet transform as
shown in Figure 6, and the curvelet coefficients are expressed as Cs,l(i, j), where s means scale and l
means direction. i and j represent the horizontal and vertical coordinates of the coefficients in each
scale and direction, respectively.
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Figure 6. Frequency spectrum coverage of curvelet transform. The curvelet decomposes the frequency
domain into various scales and directions.

In this paper, we divide the watermark block into 5 scales and 8 directions in total. The watermark
is inserted using the QIM method as in Algorithm 1 on a scale of 3 levels.

Algorithm 1 QIM-based watermark embedding procedure.

1: Input: curvelet coefficients Cs,l(i, j) over scale s and direction l
2: Output: modified curvelet coefficients Cs,l

m (i, j)
3: q : quantization step
4: b : bit to be inserted
5:

6: As,l = 1
mn ∑m

i=1 ∑n
j=1 abs(Cs,l(i, j))

7: if mod[round(As,l/q), 2] = b then
8: c = 0
9: else

10: if mod(abs(As,l)/q, 1) ≤ 0.5 then
11: c = 0.5
12: else if mod(abs(As,l)/q, 1) > 0.5 then
13: c = −0.5
14: end if
15: end if
16: Qs,l = (round(abs(As,l)/q + c) · q)/As,l

17: Cs,l
m (i, j) = Cs,l(i, j) ·Qs,l

In Algorithm 1, m and n denote the horizontal and vertical sizes of the curvelet coeffcient,
respectively, and i and j denote the horizontal and vertical coordinates of the curvelet coefficient. Q is
a quantization operation, q is a quantization step, and b is the bit to be inserted. This algorithm is the
same as in other QIM techniques and is designed to find the nearest quantization level corresponding
to the bit to be inserted.

Because the curvelet coefficient expresses a curved shape with directionality, it is related to the
surrounding coefficients. As a result, when one coefficient is modified, the modification spreads to the
surrounding coefficients [30]. Therefore, when quantization is performed, the entire Cs,l(i, j) should be
adjusted by a multiplication operation as,

Cs,l
m (i, j) = Cs,l(i, j) ·Qs,l , (8)

where Cm denotes the modified curvelet coefficients. As,l is adjusted by applying (8) to all coefficients.
The curvelet has a symmetry property similar to DFT. Therefore, the same modification should be

applied in opposite directions. Since scale 3 has a total of 16 directions, a total of 8 bits can be inserted
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into one block considering the symmetry property. If this process is applied to all watermark blocks,
the total bit capacity becomes the number of ‘watermark blocks’ × 8.

The watermark decode proceeds as shown in Algorithm 2. Cd denotes the curvelet coefficient of
the image to be decoded, and bd denotes the decoded bit. This process is repeated for all watermark
blocks to decode all the bits.

Algorithm 2 Watermark decoding procedure.

1: Input: watermarked curvelet coefficients Cs,l(i, j)
2: Output: decoded bit pattern bd
3: As,l

d = 1
mn ∑m

i=1 ∑n
j=1 abs(Cs,l

d (i, j))
4: bd = mod[round(As,l

d /q),2]

4.4. Application Method for Images of Various Sizes

Because the input size is fixed in CNN, all descriptions are based on 512 × 512 images according
to the network input size. In the real world, however, there are images of various sizes, so all images
must be resized to 512 × 512 to insert and extract the template and watermark. However, if the image
is resized for watermark and template insertion, image quality degradation caused by the resizing
cannot be avoided.

To avoid image degradation due to resizing, the embedding process is performed as shown in
Figure 7. First, the image is resized to 512 × 512 and a template and watermark are inserted into the
resized image to create a stego image. Subtracting the 512 × 512 image before the embedding step will
leave only the stego signal, which contains the template and watermark signals. By resizing the stego
signal into the original image size and adding it to the original image, the template and watermark can
be inserted into the image without image quality degradation.

Figure 7. The process of inserting a template and watermark into images of various sizes.

5. Experimental Results

This section reports the performance of the proposed method in terms of invisibility and
robustness. A comparison experiment is also conducted using the method described by Zhang [4],
which uses the same domain and insertion method as the proposed method. Unlike the proposed
watermarking method, Zhang’s method transforms the whole image into a curvelet domain to
insert a watermark. Whereas Zhang’s method inserts multi-bits by dividing the curvelet directions,
the proposed watermarking method inserts multi-bits by dividing the image into spatial blocks.

We also experimented with the proposed template for the new type of DIBR watermarking [31].
This DIBR watermarking method exploits the DT-CWT domain, which is robust against DIBR
attacks and signal distortions, but vulnerable to geometric distortion. By comparing the performance
before and after applying the template to the DIBR watermarking method, we show that the
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proposed template can compensate the vulnerability of the geometric distortion for the new
watermarking method.

5.1. Experiment Setting

BOSSBase [32], Middlebury [33,34], and Microsoft Research 3D Video [35] datasets with 5000
images with resolutions ranging from 512× 512 to 1800× 1500 were used for the experiment. A total of
3500 images were used for training, and the remaining 1500 images were used for performance testing.
For network learning, 70,000 images were synthesized from the 3500 images with geometric and signal
distortions. The geometric distortion used random parameters of 0 to 90-degree rotation, 0.7 to 1.5
times scaling, and 0 to 30% translation. The signal distortion also randomly applied a Gaussian noise
of 0 to 200 variance and a JPEG compression factor of 30 to 100 to the geometrically distorted image.

The proposed method was implemented with a tensorflow library [36] and Python. The network
was trained using the adam optimizer [37], with a learning rate of 10−3, epsilon of 10−8, batch size of 32,
and λ in (7) of 0.2. Until convergence occurred, the end-to-end network was trained and convergence
typically occurred after 15 epochs. The training took about an hour per epoch using the Nvidia GTX
1080 single GPU.

For fair comparison, all experiments were performed on a gray channel. The bit capacity for
Zhang’s method and the proposed watermarking method were set to 256 bits. For the proposed
watermarking method, the image was divided by 8 × 8 to create 64 blocks. Among these, 32 blocks
were used to insert bit information and the remaining blocks were used for the template. The proposed
watermark was inserted on scale 3 in the curvelet domain divided by scale 5 and direction 8.
Zhang’s method inserts the watermark on scales 3 and 4 in the curvelet domain divided by scale 5 and
direction 128. The quantization step q for the proposed method and Zhang’s method was set to 3.

In the experiment with the DIBR watermarking method [31], all other parameter values were set
to default, and only the block size was adjusted. In the DIBR watermarking method with the template,
the image was divided by 8 × 8 to create 64 blocks. Among these, 32 blocks were used to insert bit
information and the rest were used for the template. In the method without a template, the image was
divided by 5 × 6 to create a total of 30 blocks, and all 30 blocks were inserted with bit information.
With this block size adjustment, the bit capacity of the DT-CWT method with a template and the
DT-CWT method without a template were set to a similar level.

5.2. Image Quality

Figure 8 shows the original image and the template/watermark-embedded image. As can be seen,
the degradation of quality due to the proposed watermark and template insertion is hardly noticeable.
We also measured the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [38] for more
objective image quality measurements. As can be seen from Table 1, the ‘proposed template + proposed
watermark’ shows a similar image quality to that obtained using Zhang’s method.

The watermarking method using DT-CWT shows a lower visual quality than other methods
because the DT-CWT watermarking method greatly modifies the image to have robustness to DIBR.
‘DT-CWT + proposed template’ has a slightly better visual quality than the DT-CWT only method
because it uses half the image area as a template, which has relatively lower energy than the
DIBR watermark.

Table 1. Average PSNR and SSIM.

PSNR SSIM

Proposed template + watermark 43.6668 0.9859
Zhang’s method 43.2523 0.9850
DT-CWT (DIBR watermark) 40.3532 0.9788
DT-CWT + proposed template 41.1286 0.9804
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(a) (b) (c)

(d) (e) (f)

Figure 8. (a–c) Original image, (d–f) Proposed template and watermark-embedded image.

5.3. Robustness Test for RST Attack

Figure 9 shows the robustness test results for rotation, scaling, and translation. The following four
methods were tested for robustness: (1) proposed watermarking method without recovery, (2) proposed
watermarking method with proposed template recovery, (3) proposed watermarking method with
ground-truth recovery and (4) Zhang’s method. The robustness performance was measured based on
the bit-error-rate (BER).

Zhang’s method shows good robustness to low-level geometric distortion. This is
because the absolute values of curvelet coefficients do not have a large variation in weak
geometric distortions. Especially, this method shows low BER for weak scaling and translation.
However, it shows a relative weakness in rotation.

The proposed watermarking method without recovery showed lower performance despite using
a similar insertion method in the same domain as Zhang’s method. This is because the watermark
is inserted with block-units unlike with Zhang’s method. Since block synchronization is broken due
to geometric distortion, block-based watermarking is not effective without correction for geometric
distortion. On the other hand, low BER is obtained for scaling even without recovery because the
proposed watermarking method uses resized images in fixed sizes of 512 × 512 for the watermark
insertion/decoding process to fit the image size to the network size.

If an image is recovered using the proposed template, the proposed watermark shows a low error
even for strong geometric distortion. This result shows that the robustness is almost identical to the
results of recovery with ground-truth, which means that the template almost completely recovers
the image from the geometric distortion. The error that occurs even when the image is completely
recovered is because the watermark information is cropped together with the image information.
Except for the cropped part, the watermark is normally decoded.
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Figure 9. Robustness results for geometric distortions. (a) rotation, (b) scaling, (c) translation.
The method with the proposed template recovery and the method with ground-truth recovery show
almost the same performance.

5.4. Robustness Test for Simultaneous Attack

To test the robustness of the template for signal distortion, we measured the BER when signal
distortion and RST distortion occurred simultaneously. We compared the BER when recovering an
image with the proposed template and ground-truth.

Tables 2–4 show the results of BER when Gaussian noise and RST distortion occur simultaneously.
As can be seen from these tables, the larger the noise variance, the greater the error in the method
with a template compared to the method with ground-truth. At 200 noise variance, the BER is very
high in the method with a template. This is because the noise has corrupted the template as well as
the watermark signal, and the image has not been correctly recovered. However, considering that the
variance of the inserted template noise is less than 10, the noise variance of 200 is very strong, and in
practice, such a large amount of noise barely occurs. In addition, there is little difference between the
template-recovered method and the ground-truth-recovered method for scaling. This is because the
watermark is inserted/decoded at a fixed image size of 512 × 512 as mentioned above.
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Table 2. Average BER for rotation attack with Gaussian noise. GT denotes ground-truth.

Noise Variance

Rot. Recover 25 50 100 200

10° With template 0.174 0.233 0.268 0.304
With GT 0.17 0.22 0.265 0.281

30° With template 0.138 0.205 0.258 0.288
With GT 0.132 0.189 0.223 0.244

50° With template 0.169 0.241 0.28 0.314
With GT 0.145 0.2 0.232 0.25

70° With template 0.204 0.297 0.333 0.387
With GT 0.189 0.248 0.296 0.32

90° With template 0.081 0.204 0.254 0.33
With GT 0.054 0.159 0.194 0.243

Table 3. Average BER for scaling attack with Gaussian noise.

Noise Variance

Scaling Recover 25 50 100 200

0.7 With template 0.089 0.173 0.235 0.275
With GT 0.089 0.168 0.226 0.264

0.9 With template 0.07 0.16 0.201 0.249
With GT 0.061 0.163 0.197 0.244

1.2 With template 0.068 0.161 0.207 0.241
With GT 0.068 0.161 0.207 0.241

1.5 With template 0.065 0.152 0.204 0.243
With GT 0.065 0.152 0.204 0.243

Table 4. Average BER for translation attack with Gaussian noise.

Noise Variance

Trans. Recover 25 50 100 200

3% With template 0.119 0.229 0.273 0.338
With GT 0.1 0.198 0.23 0.275

9% With template 0.163 0.249 0.289 0.354
With GT 0.15 0.227 0.253 0.301

15% With template 0.203 0.291 0.329 0.387
With GT 0.19 0.263 0.289 0.324

21% With template 0.255 0.328 0.364 0.427
With GT 0.234 0.294 0.319 0.353

27% With template 0.304 0.369 0.4 0.445
With GT 0.284 0.338 0.359 0.378

5.5. Application of Proposed Template to DIBR Watermarking Method

We tested the robustness of the DIBR watermarking method against RST when the proposed
template is applied. The experiment was conducted in three ways: (1) DT-CWT with template recovery,
(2) DT-CWT with ground-truth recovery, and (3) Only DT-CWT method. All experiments used the
right-view image rendered by DIBR. In other words, we measured the BER of images with DIBR
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distortion and RST distortion simultaneously. DIBR parameters used in this test were the recommended
values in [39].

As shown in Figure 10, the DT-CWT-based DIBR watermarking method has a low BER for weak
geometric distortions, similar to curvelet watermarking methods. However, as the degree of geometric
distortion increases, the BER increases sharply.

On the other hand, if the image is recovered using a template with the DT-CWT method,
the watermark can be decoded well after the geometric distortion. The DT-CWT method recovered
with a template has a slightly higher BER than that recovered with ground-truth because the template
is disturbed by DIBR. However, since the error increase rate is insignificant, the proposed template
can be considered robust to the new type of distortion, DIBR. These results show that the proposed
template can give robustness against geometric attacks to newly proposed watermarking techniques.
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Figure 10. Average BER for RST attack with DIBR rendering. (a) rotation, (b) scaling, (c) translation.

6. Discussion and Conclusions

Conventional template-based watermarking techniques usually use whole image-unit transform
rather than block-unit transform. However, the image-unit template has a problem in that the template
cannot be inserted independently with the watermark containing copyright information unless they use
the same transform domain. Therefore, there is a limitation that the template and watermark signal can
interfere with each other. Also, it is difficult to design a multi-bit watermarking system in comparison
with the block-unit method. On the other hand, since the proposed template is a block-unit method
and can be separated spatially, it does not cause interference with the watermark. Moreover, because it
is a learning-based method, it has the advantage of being able to respond quickly to new types of
distortion. Due to these advantages, the proposed template can be applied not only to conventional
watermarking methods but also to newly proposed watermarking methods for various purposes.
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For example, the proposed template can be applied to a new form of watermarks such as the
recently proposed depth-image-based rendering (DIBR) watermarking technique. DIBR is a rendering
method to give a stereoscopic effect to images [40,41], but it cannot be protected by conventional
watermarks and templates because it causes horizontal non-linear distortion. To cope with this, various
DIBR watermarking techniques have been proposed [31,42–44], but they show weaknesses in geometric
distortion since there have been few studies on the topic. The proposed learning-based and block-based
template can easily solve the problem of geometric distortion for the DIBR watermark.

However, the proposed template-based watermarking system also has an inherent problem.
Instead of acquiring robustness, there is an increase in computational cost for matching the embedded
template. For example, compared to the case of applying only the curvelet transform, the watermark
detection time increases by about 0.6 s on average when the proposed template is used. In the case
of watermark, about 0.6 s of CPU time comes out when decoding a 512 × 512 video (based on
Intel 6700 K). The proposed method uses only half of the image area, resulting in around 0.3 s of CPU
time. In the case of the template, it takes around 0.25 s of GPU time to decode (based on GTX 1080).
This can be a weakness when processing large-scale image data (e.g., web-scale image database) and
improvement in template processing time will be needed in future studies. In terms of cost-efficiency,
model simplification of the deep neural network [45,46] should be helpful to improve the performance.

Recently, Webcomic companies and content providers of IPTV have started actively using
these techniques to track and punish illegal distribution. Watermarking techniques and templates
based on CNN are still in the early stage for these applications. Further research is needed to
improve watermark performance such as masking techniques that will increase invisibility and
security enhancement. As the market for real-time content services such as web-comics (also called
webtoons) and video streaming services such as YouTube has grown very rapidly, the demands of the
watermarking framework have to be not only user friendly but also requires computing efficiency.
There are some potential implementation of the proposed method based on the other machine learning
techniques including graphical models, and different CNN architectures such as dilated convolution
[47]. Also, we will extend the scope of our research into video content watermarking using CNN.
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