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Multi-trait (MT) genomic prediction models enable breeders to save phenotyping
resources and increase the prediction accuracy of unobserved target traits by
exploiting available information from non-target or auxiliary traits. Our study evaluated
different MT models using 250 rice accessions from Asian countries genotyped and
phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and
cadmium (Cd). The predictive performance of MT models compared to a traditional single
trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1,
CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local
epistatic effects along with the main additive effect in MT models; and 3) using a selective
marker panel composed of trait-associated SNPs in MT models. MT models were not
statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic
information was available for the accessions in the test set. After including phenotypes from
auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT
models significantly (p < 0.05) outperformed ST model for all the traits. The highest
increases in the predictive ability of MT models relative to ST models were 11.1% (Mn),
11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects
using a haplotype-based model further improved the predictive ability of MT models by
4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The
predictive ability of the haplotype-based model was not improved after optimizing the
marker panel by only considering the markers associated with the traits. This study first
assessed the local epistatic effects and marker optimization strategies in the MT genomic
prediction framework and then illustrated the power of the MT model in predicting trace
element traits in rice for the effective use of genetic resources to improve the nutritional
quality of rice grain.
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INTRODUCTION

Over half of the world’s population relies on rice as a staple crop (Bandumula, 2018). Growing and
consuming rice has relative merits, as rice is themajor dietary source for both toxic and essential trace
elements (Yang et al., 2018). For instance, Cd is a potent environmental and human health toxicant
(Arao and Ae, 2003; Uraguchi and Fujiwara, 2012; Lien et al., 2021) transported into rice grain via the
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same channels with other trace elements Zn, Fe, Cu, and Mn
(Sasaki et al., 2012; Hao et al., 2018; Han et al., 2021) of essential
nutritional and physiological functions to plants, animal and
humans species (Miller, 1970; Olivares and Uauy, 1996; White
and Broadley, 2009; Aschner and Erikson, 2017; Gao and Xiong,
2018).

Recent advancements in genomic research and the increasing
number of germplasm resources in gene banks offer a great
opportunity to develop safe and nutritious rice varieties cost-
effectively. The trait’s heritability indicates the potential that a
given trait can be genetically improved. Previously, broad sense
heritability of grain Zn, Fe, Cu, Mn, and Cd was found to be low
(0–0.3), moderate (0.4–0.6) to high (0.6 or higher) (Norton et al.,
2010; Pinson et al., 2015; Naik et al., 2020), indicating the
practical possibility to improve these traits via selective
breeding methods. Furthermore, many molecular genetic
studies have identified numerous quantitative trait loci (QTLs)
responsible for trace element uptake, transport, and
accumulation into different rice tissues through genome-wide
association studies (GWAS) or QTL mapping (Lu et al., 2008;
Garcia-Oliveira et al., 2009; Ueno et al., 2010; Du et al., 2013;
Huang et al., 2016; Meng et al., 2017; Swamy et al., 2018; Yang
et al., 2018; Descalsota-Empleo et al., 2019; Frouin et al., 2019; Liu
J. et al., 2021). As a genomics-enabled breeding approach,
marker-assisted selection (MAS) is useful to improve trace
element traits when genes/QTLs with large additive genetic
effects exist (Wu et al., 2020). However, prominent non-
additive gene action has also been reported for trace element
traits, making MAS-based strategies ineffective (Sharma V. et al.,
2021). In addition, MAS-based breeding methods are practically
ineffective at simultaneously exploiting information from
multiple genes (Spindel et al., 2016) or traits (Van Der
Straeten et al., 2020).

In contrast, genomic selection (GS) approaches make use of
total genome-wide markers with either large additive effects or
minor effects to derive the genomic estimated genetic values of
genotypes (Meuwissen et al., 2001), which overcomes the
constraints of MAS-based methods (de los Campos et al.,
2009). Also, GS models can be modified to a multi-trait
(MT) form to exploit available information from multiple
traits simultaneously. The MT models used in GS heavily
rely on genetic correlation between traits (Henderson and
Quaas, 1976). This correlation possibly results from the
pleiotropic effect (multiple traits controlled by the same
QTL) or linkage disequilibrium (LD) between genes
(Falconer, 1996). Exploiting multi-trait information in GS
has been awarded with an increase in prediction accuracy
ranging from 24% to 105% relative to single trait (ST) models
(Rutkoski et al., 2016; Sun et al., 2017; Arojju et al., 2020).
Besides gains in prediction accuracy, integrating MT models
with appropriate cross-validation (CV) schemes compensated
for the negative effect of small population size without
affecting the prediction accuracy, enabling breeders to
minimize phenotyping budgets (Lado et al., 2018; Arojju
et al., 2020). The benefits of MT models under various CV
schemes are yet to be studied in diverse rice collections.
Nevertheless, MT models have shown their potential in

predicting complex traits in rice, such as grain arsenic
content (Ahmadi et al., 2021), grain yield (Wang et al.,
2017), and root index architecture (Sharma S. et al., 2021).

Most of the MT genomic prediction studies discussed above
only modeled the additive genetic effects. Non-additive effects
are also essential components of the genetic effect and can
benefit the predictive ability of MT models if accommodated
(dos Santos et al., 2016; Lyra et al., 2017). However, non-
additive effects such as dominance or global epistatic effects
may not be conserved during breeding due to chromosomal
recombination events (Falconer, 1996; Breseghello and
Sorrells, 2006; He et al., 2017). In contrast, the local
epistasis that spans short segments of chromosomes can be
preserved over generations (Akdemir and Jannink, 2015), as
adjacent loci normally hold a strong LD (Ardlie et al., 2002).
Earlier GS studies with ST models illustrated that accounting
for local epistatic effects along with the main additive model
increased the prediction accuracy of agronomic traits in wheat
accessions (Akdemir and Jannink, 2015; Akdemir et al., 2017;
He et al., 2017; Jiang et al., 2018; He et al., 2019). However, the
benefits of modeling local epistasis effects in MT models
remain unknown in crop or animal species.

Genomic prediction models can be extended to incorporate
markers associated with causal QTLs, such as trait-associated
SNPs (TA-SNPs), bridging the gap between biology and
mechanistic GS models using uninformative genome-wide
markers. Also, genomic prediction with markers derived
from functional QTL is less reliant on LD patterns shared by
training and target populations, possibly allowing robust
prediction, especially across unrelated populations where LD
decays more rapidly (Snelling et al., 2013). Simulation and
empirical studies have shown that accounting for known
QTLs improves the performance of genomic prediction
models compared to models using uninformative genome-
wide markers (Bernardo, 2014; Owens et al., 2014). Alemu
et al. (2021); Zhou et al. (2021) reported a two- to four-fold
gain in prediction accuracy using GS + de novo GWAS (Spindel
et al., 2016), in which the most significant TA-SNPs from a
GWAS conducted on the training population are fitted as fixed
effects in the model along with the polygenic background. Other
groups (Bhandari et al., 2019; Ahmadi et al., 2021) also reported
gains in prediction accuracy ranging from 16% to 32% by
exploiting GWAS-derived TA-SNPs using trait-specific
genomic relationship matrices (Zhang et al., 2014) in which
markers with stronger association signals are assigned higher
weights than markers with weaker associations. However, the
application of the above methods has not always been beneficial
(Veerkamp et al., 2016; Rice and Lipka, 2019) and has been
shown to depend on the genetic architecture of the traits of
interest, trait heritability, the number of underlying causal
mutations, and their effect sizes (Huang and Mackay, 2016).
In addition, the use of TA-SNPs in genomic prediction has been
scarcely investigated in models accounting for the non-additive
effects. The potential of GWAS-derived TA-SNPs on the
predictive ability of MT models accounting for the local
epistatic effects in diverse rice populations is yet to be
demonstrated and worth inspecting.
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There is a great scope for applying MT models to evaluate
trace elements in large germplasm collections such as those
archived in gene banks. Earlier studies using ST models
showed that GS is a robust and cost-efficient tool to
predict the genetic merit of individuals in large germplasm
collections for various agronomic traits, such as grain yield in
rice (Tanaka et al., 2021), biomass yield in sorghum (Yu et al.,
2016), oil, protein, and yield in soybean (Jarquin et al., 2016),
total root length in maize (Pace et al., 2015), and days to head
and days to maturity in wheat (Crossa et al., 2017). However,
the application of MT or even ST models to predict the
concentrations of trace elements in food crops is still
limited to a few studies involving arsenic (Frouin et al.,
2019; Ahmadi et al., 2021), Mn (Leplat et al., 2016), and
Zn (Guo et al., 2020) in rice, barley, and maize grain,
respectively. Therefore, the overall goal of the present
study is to compare the robustness of ST and MT models
in predicting concentrations of four essential trace elements,
Fe, Zn, Cu, and Mn, and one toxic metal, Cd, in rice grain.
Different CV schemes, implying varied phenotyping patterns
and costs, were examined in our study to seek the most
efficient phenotyping strategy when multiple traits are
planned to be measured. In addition, we investigated
whether incorporating local epistatic effects and using a
selective marker panel of TA-SNPs derived from GWAS
into MT models could further enhance the predictive
ability of MT models.

MATERIALS AND METHODS

Rice Materials
Our study used 250 rice accessions, including indica and japonica
ecotype accessions from Asian countries (Supplementary Table
S1). Accessions from China are mainly landrace indica varieties
mostly cultivated on Cd-polluted soils in Guangdong province,
China (Long et al., 2014).

Plant Cultivation and Quantification of
Trace Elements in Rice Grain
The procedures followed for growing the 250 accessions and
determining concentrations of trace elements in rice grain
were as previously described by Liu S. et al. (2021). Briefly,
seeds from the 250 accessions were first cultivated in pots filled
with soil collected from the experimental station of the
Agricultural Genomics Institute at Shenzhen, China. Next,
germinated seeds were selected and cultivated in seedling
trays for 4 weeks. Healthy seedlings were then transferred
into pots containing soil amended with an initial
concentration of Cd of 0.5 mg kg−1. Finally, all the seedlings
were planted in an augmented randomized complete block
design with two replicates of 25 accessions from 20 July 2019 to
2 October 2019. Our study was limited to a single environment.
Multi-environment data would be essential for understanding
the environmental correlations and their stability and
genotype effects by environment interactions (GxE). To

determine grain concentrations of Zn, Fe, Cu, Mn, and Cd,
grain samples were first peeled and dried at 65°C for 3 days.
The dried samples were then crushed, wet-digested in
concentrated nitric acid (HNO3) at 120°C for 30 min, and
further digested with perchloric acid (HClO4) at 180°C until
the samples became transparent. The samples were then
diluted with ultrapure water. Finally, the grain
concentration of each trace element was determined using
the Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
machine (Houk et al., 1980).

Genotyping
The 250 accessions were genotyped following the re-
sequencing and variants-calling procedures of the rice 3K
project as reported by Wang et al. (2018). The following
steps were implemented for all the genotypes to merge the
variants-calling: First, raw reads were aligned to the R498
reference genome (Du et al., 2017) using the program bwa-
mem alignment software (Li, 2013). Next, the PCR duplicates
were identified with Picard software, version 2.9.0 (http://
broadinstitute.github.io/picard/), and discarded. Following
that, the GATK HaplotypeCaller engine (McKenna et al.,
2010), with the option “-ERCGVCF,” was used to call
genotypes at each site. The resulting genomic variants called
format (gVCF) for each genotype were combined using the
GATK Genotype GVCFs engine. Next, the GATK hard filter
pipeline was used to individually call SNP and INDEL variants
from the population variant file. All the variants within 5 bp of
an INDEL were discarded. A variant was confirmed if at least
one genotype supported it with a QUAL parameter greater
than 30. After that, VCF tools indicated (Danecek et al., 2011)
sites for which genotypes were not called in at least 20% of the
used genotypes. The above procedures yielded 30,089,814 bi-
allelic SNPs for the 250 genotypes. SNP quality control steps
were implemented using PLINK software (Chang et al., 2015)
with standards that remove SNPs with 1) minor allele
frequency lower than 0.5, 2) call rate less than 0.9, and 3)
pairwise LD (r2) greater than 0.01. Finally, 36,171 SNPs were
available for the 250 accessions.

Estimation of Genomic Heritability and
Traits Genomic Correlation
The mixed linear model was used to estimate genomic heritability
as follows:

y � 1nμ + g + e

Where y is the vector of concentration of trace element under
consideration, 1n is the vector of ones, n is the number of
genotyped cultivars, μ is the intercept, g is the vector of
the genetic effects of accessions, e is the residual vector. g
and e are assumed as random effects, respectively, following
g ~ N(0,Gσ2g) and e ~ N(0, Iσ2e) where G is genomic
relationship matrix estimated following (Yang et al., 2010)
and I is identity matrix. The genomic heritability was
estimated as
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h2g �
σ2g(σ2

g + σ2
e)

Where σ2g is the additive genetic variance component and σ2e is
the residual variance component. GCTA software (Yang et al.,
2011) was used to compute the genomic relationship matrix and
genomic heritability.

The genomic correlation between traits was estimated using
the formula: cor � covi,j

σ iσj
where covi,j is the genetic covariance

between ith trait and jth trait, σ i and σj are the square root of the
genetic variance of ith trait and jth trait. The genetic covariances
and variances were estimated using the R package MTM (De los
Campos and Grüneberg, 2016).

Genetic Diversity
A hierarchical cluster analysis based on the Euclidean’s distance
matrix computed with the SNP genomic profiles was performed
to inspect the genetic diversity among the 250 genotypes. In
addition, a heat plot based on the cluster analysis was drawn to
visualize the genetic dissimilarities.

Genomic Prediction Approaches
The genomic prediction models used were the ST and MT
models. The ST model only captured additive genetic effects,
while the MT models accommodated both additive and local
epistatic effects. ST model was the commonly used genomic
best linear unbiased prediction (GBLUP) model and same as
the mixed model estimating genomic heritability:
y � 1nμ + g + e, where y, 1n, μ and ε were exactly as afore
denoted, g is the vector of additive genetic effect in genotype-
based model or additive plus local epistatic effects in the
haplotype-based model. In the genotype-based model, we
assumed g ~ N(0,Gσ2a), where G is an n × n-dimensional
additive genomic relationship matrix, and σ2a is the additive
genetic variance component. In the haplotype-based model,
we assumed g ~ N(0,Hσ2h) , where H is an n × n-dimensional
haplotypic relationship matrix derived from the haplotypic
profile matrix with values 0, 1, and 2 indicating the number of
copies for a specific haplotypic allele (Jiang et al., 2018; He
et al., 2019). To obtain the haplotypic profile matrix, the
genotypic data of SNPs were phased using software
SHAPEIT (Delaneau et al., 2012) with default augment
settings. The phased genotypic data was recoded to
haplotypic profiles using a fixed-length haplotype of 2, 3, 4,
or 5 SNPs. G and H were established using software GCTA
(Yang et al., 2010; Yang et al., 2011) based on the genotypic
and haplotypic data, respectively.

For MT models, we used two approaches considering no
correlation between traits; the Bayesian multi-output regressor
stacking (BMORS) proposed by Montesinos-López et al. (2019);
the MT-GBLUP; and two methods accommodating correlation
between traits; the factorial analytic (FA) model and the
unstructured (UN) model. For genotype-based approaches, the
MT-GBLUP model was formulated as y � μ + u + ε, where

y � (y′1, y′2, . . . , y′m)′, μ � (μ′1, μ′2, . . . , μ′m)′, u � (g ′1, g ′2, . . . , g ′m)′,
ε � (e′1, e′2, . . . , e′m)′, m is the number of traits included in the
model. We assumed u ~ N((0′, 0′, . . . , 0′)′,Ψu ⊗ G),
ε ~ N((0′, 0′, . . . , 0′)′,Ψε ⊗ I)

where Ψu �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2g1
/ 0 / 0

..

.
1 ..

.
1 ..

.

0 / σ2gj
/ 0

..

.
1 ..

.
1 ..

.

0 / 0 / σ2gm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ψε �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2ε1 / 0 / 0

..

.
1 ..

.
1 ..

.

0 / σ2εj / 0

..

.
1 ..

.
1 ..

.

0 / 0 / σ2εm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ2gj

and σ2εj are respectively the

genetic and residual variance of jth trait, and ⊗ denotes Kronecker
product of matrices.

BMORS was a two-stage process. The first stage is the same as
the MT-GBLUP, but instead of directly using the GBLUP
predicted values as the final output, BMORS implemented a
second stage that integrated the GBLUP predicted values of
each trait in the first stage and fitted a ridge regression model.
In this way, the prediction of a single trait could be corrected by
the predictions of other traits in the first stage using the second
stage model (Spyromitros-Xioufis et al., 2012; Spyromitros-
Xioufis et al., 2016; Montesinos-López et al., 2019). The FA
model was also based on the formula of the MT-GBLUP
model but assuming a covariance structure between traits, that is

Ψu �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2g1
/ covg1gj / covg1gm

..

.
1 ..

.
1 ..

.

covgjg1 / σ2gj / covgjgm

..

.
1 ..

.
1 ..

.

covgmg1 / covgmgj / σ2gm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (ΛΛ′ +Π) �FA(k)

where k is the number of latent factors, Λ is a j × k dimensional
matrix containing trait loadings, Π is a j × j diagonal matrix
(Burgueño et al., 2012). Theoretically, the FA model requires
at least three traits to be simultaneously included in the
model. The UN model (Burgueño et al., 2012; Cuevas et al.,
2017) tried to estimate all variances and covariances in Ψu,
i.e., σ2gj

and covgigj, i, j ∈ {1, . . . ,m}, which may cause
convergence problems when a large number of traits are
considered. The haplotype-based approach was only implemented
in the MT-UN model by replacing the relationship matrix G
by H .

The ST-GBLUP model was implemented in R (R Core Team,
2016) using the BGLR package (De los Campos and Pérez-
Rodríguez, 2015). The MT-GBLUP, FA, and UN approaches
were realized using the R package MTM (De los Campos and
Grüneberg 2016). BMORS was fitted using the R package
BMTME (Montesinos-López et al., 2019). The number of
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iterations of all models was set to 20,000, and the first 12,000 were
discarded as burn-in.

Cross-Validation Schemes and Evaluation
of Genomic Prediction Accuracy
Four different CV schemes, referring to those reported by Lado
et al. (2018) and Arojju et al. (2020) were used in our study
(Table 1). CV1 was applied to both ST-GBLUP and MT models,
referring to a scenario where the target trait was predicted
without the support of auxiliary traits (ST-CV1) or with
auxiliary traits only available in the training set (MT-CV1).
CV2 and CV3 were only assessed for MT models. Under CV2
scheme, genotypes in both training and test sets had phenotypic
data for all the auxiliary traits. Under CV3, phenotypes of the
auxiliary traits were only available in the test set.

To assess the genomic prediction accuracy across the above
CV schemes, the entire population of 250 genotypes was
randomly divided into five equal-sized folds. Four folds
collectively constituted the training set, and the remaining fold
was the test set. Stochastic partitioning of training and test sets
was repeated 20 times, yielding one hundred times (5 folds × 20
replicates) calibrations and predictions. The genomic prediction
accuracy of the target trait was estimated using the Pearson
correlation coefficient between the genomic predicted genetic
values and the observed phenotypic values of 250 accessions
when incorporated in the five test sets of each repeat of CV. The
Student t-test was used to test the statistical difference in genomic
prediction accuracies among the prediction models.

Selective SNP Marker Panel
To investigate whether the predictive ability of MT genomic
prediction on rice grain trace elements concentration could be

boosted by optimizing the SNP marker panel, we applied a
(GWAS) to identify the trait-associated SNPs (TA-SNPs) and
establish the selective marker panel. The CV scenarios in
which the MT-UN haplotype-based models disregarding the
length of haplotypes (two to five SNPs) constantly showed
statistically significantly (p < 0.05, t-test) higher prediction
accuracies than their genotype-based counterparts and the ST-
GBLUP model were used to validate the efficacy of using the
TA-SNPs to train the genomic prediction models. In more
detail, GWAS using the total SNP marker panel was performed
in the training set of the designated CV scenarios. First, the
TA-SNPs with p values less than 0.01 were recorded. Then each
chromosome was divided into bins spanning 300 kb (the bin
size is decided by the LD decay, with the physical distance
between pairs of SNPs based on the total population). Finally,
the most trait-associated SNPs with the lowest p-value in
each bin was picked together with the TA-SNPs (p < 0.01)
and recorded to constitute the selective SNP marker panel
of each repeat of CV. The MT-UN genotype-based model
was implemented using the genotypic data of the selective
SNPs. Contrastingly, the adjacent selective SNPs located
within 300 kb (highly possible as the position of the
selective SNP from each bin is unfixed) were combined to
compile the haplotypes using the phased genotypic data as the
LD decay implied a non-negligible LD among them. The
remaining SNPs without close neighbors within 300 kb were
maintained, and their genotypic profiles were used. Therefore,
the MT-UN haplotype-based model took advantage of both
haplotypes and genotypes. The GWAS was implemented using
GCTA software (Yang et al., 2011; Yang et al., 2014). The
additive genomic relationship matrix was exclusively used in
the GWAS model to account for the relatedness between
accessions.

TABLE 1 | Investigated single trait (ST) and multi-trait (MT) cross-validation (CV) schemes.

Training set Test set

Target traits Auxiliary traits Target traits Auxiliary traits

ST-CV1 Zn/Cu/Fe/Cd/Mn — Zn/Cu/Fe/Cd/Mn —

MT-CV1 Zn Mn, Fe, Cu, Cd Zn
Cu Mn, Fe, Zn, Cd Cu
Fe Mn, Cu, Zn, Cd Fe
Cd Mn, Fe, Cu, Zn Cd
Mn Fe, Cu, Zn, Cd Mn

MT-CV2 Zn Mn, Fe, Cu, Cd Zn Mn, Fe, Cu, Cd
Cu Mn, Fe, Zn, Cd Cu Mn, Fe, Zn, Cd
Fe Mn, Cu, Zn, Cd Fe Mn, Cu, Zn, Cd
Cd Mn, Fe, Cu, Zn Cd Mn, Fe, Cu, Zn
Mn Fe, Cu, Zn, Cd Mn Fe, Cu, Zn, Cd

MT-CV3 Zn — Zn Mn, Fe, Cu, Cd
Cu Cu Mn, Fe, Zn, Cd
Fe Fe Mn, Cu, Zn, Cd
Cd Cd Mn, Fe, Cu, Zn
Mn Mn Fe, Cu, Zn, Cd

Phenotypes for auxiliary traits are not available The unobserved target traits to be predicted are highlighted with bold font.
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RESULTS

Linkage Disequilibrium Decay, Kinship, and
Population Structure
The LD decay distance between all SNP markers for the 250
accessions was ~250–300 kb when the cut-off value (r2) was set at
0.1, assuming non-negligible SNP pairwise correlation (r = 0.3)
(Figure 1A). The kinship between accessions was determined
based on pairwise Euclidean distances. Pairwise distances among
accessions ranging from 0 to 0.2 accounted for less than 5% of all the
pairwise distances. Pairwise distances from 0.6 to 0.8 were the most
frequent and accounted for 12%–23% of all the pairwise distances
(Figure 1B). Further, no genetically structured sub-populations were
observed among the 250 varieties used in this study. However, several
families were detected (Supplementary Figure S1).

Distribution of Phenotypes, Genomic
Heritability, and Genetic Correlation
The distributions of phenotypes (adjusted phenotypic means) based
on the 250 accessions varied among the five traits studied. The
distribution of Zn was almost symmetrical. The skewness was high
and negative for Cu, and moderate and negative for Fe, Cd, and Mn
(Supplementary Figure S2). The genomic heritability for all studied
traits ranged from low (Zn: 0.14 and Cu: 0.21) tomedium (Mn: 0.35)
and high (Fe: 0.5 and Cd: 0.62) (Table 2). The genetic correlation
estimated with the MTM model was highest between Fe and Cd
(0.95) and Cu and Zn (0.95) and lowest between Mn and Cd (0.39)
and Mn and Fe (0.44). Zn had the highest genetic correlations with
all the other studied traits, ranging from 0.67 to 0.95 (Table 2).

Prediction Accuracy of Single-Trait Model
Versus Multi-Trait Model Using
Whole-Genome Markers
The average prediction accuracy with the traditional ST-
GBLUP model under the CV1 scheme was the highest for

FIGURE 1 | Linkage disequilibrium (LD, r2) decay and Euclidean distance for the 250 diverse rice accessions used in this study. (A) LD decay for the studied
accessions. The X-axis represents the physical distance between SNP pairs in kilobases (kb). (B) Pairwise Euclidean distance for the studied accessions.

TABLE 2 | Genomic heritabilities (diagonal and bold) and genetic correlations
(upper triangle) of the trace elements traits studied.

Traits Cd Fe Mn Cu Zn

Cd 0.62 0.95 0.39 0.71 0.67
Fe 0.5 0.07 0.79 0.76
Mn 0.35 0.59 0.7
Cu 0.21 0.95
Zn 0.14

Diagonal and bold are genomic heritabilities as indicated.

FIGURE 2 | Genomic prediction accuracies of the studied traits were
assessed using a single trait GBLUP (ST-GBLUP) model.
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Cd (0.52), followed by Fe (0.39), Mn (0.36), Zn (0.23), and Cu
(0.21) (Figure 2). Also, under the CV1 scheme, prediction
accuracies of MT models were not statistically significantly
(p < 0.05) superior to those of ST-GBLUP irrespective
of the models and traits studied (Supplementary Tables
S2–S6).

As compared, when phenotypes of the auxiliary traits were
made available in both training and test sets (MT-CV2) or merely
in the test set (MT-CV3), the MT models, namely FA or UN,
significantly (p < 0.05) outperformed the ST-GBLUP model
(Figures 3, 4). For most of the studied traits, the highest
performance of MT models was observed under the MT-CV2
scheme (Figures 3, 4). However, MT-GBLUP and BMORS MT
models were not significantly (p < 0.05) superior to the ST-
GBLUP model for all the CV schemes studied (Supplementary
Tables S7–S11).

We further compared scenarios where the prediction of the
target traits was assisted with a single auxiliary trait or a

combination of multiple auxiliary traits in MT models.
Supporting the prediction of Zn with one of its correlated
traits (Cu, Fe, Mn, or Cd) was sufficient to significantly (p <
0.05) increase the prediction accuracy MT-UN model relative to
ST-GBLUP model in MT-CV2 (Figure 3A). Cu was the best
single auxiliary trait for predicting Zn. Incorporating
observations from Cu in MT-UN model (under MT-CV2)
significantly (p < 0.05) increased the prediction accuracy of Zn
by 82.6% (0.23–0.42) relative to the ST-GBLUP model. However,
the highest increase in prediction accuracy (126% or 0.23–0.52) of
MT models was observed when observations from Mn, Fe, and
Cu were combined as supporting traits for Zn under the MT-CV2
scheme (Figure 3A). Under MT-CV3, the MT-UN model
outperformed the ST-GBLUP model only after multiple
auxiliary traits were used to support the prediction of Zn
(Figure 3A).

Similarly, compared to ST-GBLUP, the prediction accuracy of
Cu by the MT-UN model significantly (p < 0.05) increased by

FIGURE 3 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, andMT-CV3). The target traits are (A) Zn, (B)Cu, and (C) Fe. The first box-whisker in each portrayal indicates
the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations.
Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05,
t-test) higher than those of the ST-GBLUP model.
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95.2% (0.21–0.41) and 38% (0.21–0.29) in MT-CV2 and MT-
CV3, respectively, when Zn was used as a single supporting trait
(Figure 3B). Yet, after including other traits inMT-CV2 (Mn and
Zn) andMT-CV3 (Zn and Cd), the prediction accuracy improved
by 109.5% (0.21–0.44) and 57.1% (0.21–0.33) relative to ST-
GBLUP, respectively.

Similarly, when Fe was the target trait, MT-UN model
accounting information from Cd significantly (p < 0.05)
outperformed ST-GBLUP by 23% (0.39–0.48) and 12.8%
(0.39–0.44) under MT-CV2 and MT-CV3 schemes,
respectively (Figure 3C). Nevertheless, considering phenotypes
frommore auxiliary traits in MT-CV2 (Zn and Cd) and MT-CV3
(Zn and Cd) provided 33.3% (0.39–0.52) and 23% (0.39–0.48)
gains in the prediction accuracy of Fe with the MT-UN model,
respectively (Figure 3C).

Furthermore, the prediction accuracy of Cd (the most
heritable trait) with the MT-UN model was significantly (p
< 0.05) improved by 3.8% (0.52–0.54) when Fe, its strongly
correlated trait, was used as a single auxiliary trait under the
MT-CV2 scheme (Figure 4A). As observed for the other
traits, 7.6% (0.52–0.56) and 11.5% (0.52–0.58) gains in
prediction accuracy were attained after using combined
information from multiple auxiliary traits (Mn, Fe, and Cu)
in MT-UN and MT-FA models under MT-CV2, respectively
(Figure 4A). Similarly, under MT-CV3, MT models did not
significantly outperform ST-GBLUP models in scenarios
where a single auxiliary trait was used. However, when
information from Fe and Zn or Fe and Cu was considered,
an improvement of 5.7% (0.52–0.55) in the prediction

accuracy of the MT-FA model over the ST-GBLUP model
was observed (Figure 4A).

Finally, when Mn was the target trait, MT-UN with a single
auxiliary trait failed to improve its prediction accuracy under
both MT-CV2 and MT-CV3 schemes (Figure 4B). However,
considering information from additional traits (Cu, Zn, and
Cd), using the MT-FA model significantly (p < 0.05) improved
the prediction accuracy of Mn up to 11.1% (0.36–0.40) over
ST-GBLUP under MT-CV2 (Figure 4B). On the other hand,
under the MT-CV3 scheme, MT-UN or MT-FA did not
significantly outperform ST-BLUP even after using multiple
auxiliary traits.

Prediction Accuracy of Haplotype-Based
Model Versus Genotype-Based Models
We further investigated the benefits of accommodating local
epistatic effects on the prediction accuracy of MT models by
using haplotypes instead of genotypes in the UN model.
Comparing to the genotype-based UN model, the observed
largest and significant (p < 0.05) increment of prediction
accuracies using haplotype-based models was 3.8% for Zn
(0.52–0.54), 4.6% for Cu (0.43–0.45), and 3.5% (0.56–0.58) for
Cd underMT-CV2. For Zn, the above improvement in prediction
accuracy was achieved with a haplotype length of 3 SNPs, and
when Mn, Fe, Cu, and Cd were collectively used as auxiliary traits
(Figure 5A). For Cu, the observed gains were realized with a
haplotype length of 4 SNPs and when auxiliary traits Mn and Zn
were used together (Figure 5B). For Cd, the gains were from the

FIGURE 4 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Cd and (B) Mn. The first box-whisker in each portrayal indicates the
accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations.
Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05,
t-test) higher than those of the ST-GBLUP model.
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MT-UNmodel with a haplotype length of 2 SNPs, and when Mn,
Fe, Cu, and Zn were combined as the auxiliary traits (Figure 5C).
Under MT-CV3, the haplotype-based UN model was

significantly (p < 0.05) superior to the genotype-based UN
model by 12.5% (0.32–0.36) for Zn (Figure 5A) and 6%
(0.33–0.35) for Cu (Figure 5B).

FIGURE 5 |Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and haplotype-based multi-trait (MT) model (MT-UN) under
different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Zn, (B) Cu, and (C) Cd. The number of SNPs contained in haplotype
blocks ranged from three to five. The first box-whisker in each portrayal indicates the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers
refer to the accuracies achieved by MT models with different trait combinations. Asterisks above box-whiskers indicate that the prediction accuracies of the
haplotype-based MT-UN model for the specific trait combination were statistically significantly (p < 0.05, t-test) higher than those of the ST-GBLUP approach. Pounds
above box-whiskers indicate that the prediction accuracies of the haplotype-based MT-UN model were statistically significantly (p < 0.05, t-test) higher than those of its
corresponding genotype-based counterparts. Only the scenarios where the haplotype-basedMT-UNmodel were statistically significantly outperformed (p < 0.05, t-test)
the genotype-based MT-UN model are presented.
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Compared to the ST-GBLUP model, the haplotype-based UN
models were significantly (p < 0.05) superior with an increment of
prediction accuracy of 134.7% (0.23–0.54), 114.2% (0.21–0.45),
23% (0.39–0.48), and 11.5% (0.52–0.58) for Zn (Figure 5A), Cu
(Figure 5B), Fe (Supplementary Figure S3), and Cd (Figure 5C),
respectively.

Prediction Accuracy of a Haplotype-Based
Model Capitalizing on Trait-Associated
SNPs
With this study, we sought to investigate whether the
prediction accuracy of Zn, Cu, and Cd with the haplotype-
based model can be improved by using the selective marker
panel made by TA-SNPs derived from GWAS (Supplementary
Table S12). We purposely selected Zn and Cu because for
both traits the haplotype-based MT model performed
superiorly for several scenarios irrespective of the lengths of
haplotypes (2–5 SNPs) (Figure 5). We also investigated Cd in
addition to Zn and Cu since successive significant (p < 0.2) TA-
SNPs were observed in GWAS based on the total population
(Supplementary Figures 4A–C). The non-negligible LD
(r2≥0.1) observed between the TA-SNPs, especially in Cu

and Cd, underpinned the necessity of modelling local
epistatic effects among TA-SNPs (Figures 6A–C). The
haplotype-based UN model accounting for TA-SNPs
significantly (p < 0.05) outperformed their genotype-based
counterparts; however, it was significantly (p < 0.05) inferior to
the model using all genome-wide markers for all the traits and
scenarios evaluated (Figures 7A–C).

DISCUSSION

Quantifying trace element content in food crops is labor- and
time-intensive. As a result, trace element traits have been the
subject of few genomic prediction studies (Owens et al., 2014;
Leplat et al., 2016; Frouin et al., 2019; Guo et al., 2020; Ahmadi
et al., 2021) compared to agronomic or physiological traits. This
study demonstrates how MT models with appropriate CV
strategies can be useful in saving phenotyping resources for
trace element traits in diverse rice collections without
compromising the prediction accuracy. It also provides the
first proof of concept in diverse rice for incorporating local
epistatic effects and trait-associated SNPs into MT genomic
prediction models.

FIGURE 6 | Linkage disequilibrium (LD, r2) heatmaps for the trait-associated SNPs (TA-SNPs, p < 0.01) identified from a genome-wide association study (GWAS)
using the total population for (A) Zn, (B) Cu, and (C) Cd. The physical distance indicates the distance between the first and last TA-SNPs found on each chromosome.
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Multi-Trait Models Improved the Prediction
Accuracy of Trace Elements in Rice Grain
In this study, MT models did not significantly outperform ST-
GBLUP under the CV1 scheme for all the scenarios evaluated
(Supplementary Tables S2–S6). Earlier studies also reported
insignificant differences in the prediction accuracies of MT-
CV1 and ST-CV1 (Calus and Veerkamp, 2011; dos Santos
et al., 2016; Bhatta et al., 2020), implying that MT models are
not always robust over ST models, especially when information
on auxiliary traits is only available in the training set and the
unobserved accessions are predicted only based on genotypic
data. In contrast, when phenotypes of the auxiliary traits were
present in the training and test set (MT-CV2) or merely in the test
set (MT-CV3), the prediction accuracy of MT models (MT-UN
andMT-FA) for the unobserved target traits (Zn, Cu, Fe, and Cd)
was significantly improved relative to ST-GBLUP (Figures 3, 4).
Previous studies attributed the predictive performance of MT
models to both higher heritability of the auxiliary trait and strong

genetic correlation between the target and auxiliary traits (Sun
et al., 2017; Fernandes et al., 2018).

Accounting for the Information From
Multiple Auxiliary Traits Boosted the
Predictive Ability of Multi-Trait Models
Using a single auxiliary trait in the MT-UN model significantly
(p < 0.05) improved the prediction accuracy of target traits Zn,
Cu, Fe, and Cd relative to the ST-GBLUP model (Figures 3, 4).
When a strong genetic correlation exists between target and
auxiliary trait, the prediction accuracy of MT models could
still be improved under MT-CV2 or MT-CV3 regardless of
trait heritability. For instance, supporting the prediction of Cu
with Zn, its strongly correlated trait (cor Zn, Cu = 0.95) but with
lower heritability (h2Zn = 0.14; h2Cu = 0.21) significantly improved
the prediction accuracy of Cu with the MT-UN model
(Figure 3B). Also, supporting Cd with Fe, its strongly
correlated trait (cor Cd, Fe = 0.95) but with lower heritability

FIGURE 7 |Genomic prediction accuracies of the haplotype-based multi-trait model (MT-UN) with uninformative genomic markers (all SNPs haplotype-based) and
haplotype- or genotype-based multi-trait model (MT-UN) with trait-associated SNPs (TA-SNPs) under MT-CV2 and MT-CV3. The target traits were (A) Zn, (B) Cu, and
(C)Cd. The size of the haplotype blocks containing the TA-SNPs is maximally 300 kb. Different letters above box whiskers indicate statistically significant (p < 0.05, t-test)
differences among compared groups. The average number and the coefficient of variation (CV) of the used TA-SNPs for the observed predictions are shown for
each trait.
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(h2Cd = 0.62; h2Fe = 0.50), improved the prediction accuracy of Cd
with the MT-UN model (Figure 4A). Arojju et al. (2020) also
indicated that the genetic correlation was the main cause of
the observed gain in prediction accuracy of MT models. The
same study further showed that when a trait in strong genetic
correlation with the target trait is used in the MT model, the
predictive performance of the MT model was still superior to
the ST model even after reducing the training population size
by 50%.

Collectively accounting for phenotypes of multiple
auxiliary traits further improved the predictive ability of
the MT models compared to the MT models with a single
auxiliary trait. For example, the highest increase in the
prediction of Zn was 82.6% when a single auxiliary trait
was used in MT-UN models. Yet, using multiple traits
collectively in the same model improved the prediction of
Zn by 126% compared to the ST-GBLUP model (Figure 3A).
Also, MT models with one auxiliary trait showed no benefit
over the ST-GBLUP model when predicting Mn, with relative
medium heritability and no strong genetic correlation with
any other studied trait. However, when auxiliary traits were
collectively used in the MT-FA model, significant
improvements in the prediction accuracy over the ST-
GBLUP model were observed (Figure 4B). Multiple
auxiliary traits would optimize MT models, though the
assisting trait per se is neither strongly genetically
correlated with the target trait nor highly heritable.
Therefore, when no single auxiliary trait meets the
criterion of heritability or genetic correlation, combining
multiple auxiliary traits in the MT model could be an
effective approach to enhance the predictive ability of MT
models. These findings are concurrent with previous findings
by Wang et al. (2017), indicating that the prediction accuracy
of MT models was highest when eight different traits were
used as auxiliary traits to predict grain yield in rice.

Modeling Local Epistatic Effects is
Beneficial in Multi-Trait Models Irrespective
of Using Total or Selective Marker Panel
Previous studies demonstrated that accounting for local
epistatic effects besides the additive effect in genomic
prediction could improve the prediction accuracy of ST
models (Akdemir and Jannink, 2015; Akdemir et al., 2017;
Jiang et al., 2018; He et al., 2019). Here, we are the first to
attempt to model the local epistatic effects in the context of
MT genomic prediction. Accounting for the local epistatic
effects in haplotype-based MT models significantly improved
the prediction accuracy of Zn, Cu, and Cd relative to
genotype-based MT models, only capturing additive effects
(Figures 5A–C). Relative to ST-GLUP, the highest increase in
prediction accuracy, 134.7% for Zn, was observed after
incorporating the local epistatic effects into the MT-UN
model (Figure 5A). These findings imply that the potential
of MT models can be maximized by accounting for local
epistatic effects besides additive effects in the model.

Using a selective marker panel based on approaches exploiting
the trait biological and genetic background knowledge such as
GWAS has been proven effective to improve the predictive ability
of GS models (Owens et al., 2014; Wang et al., 2019). Our study
did not show any improvements of prediction accuracy by using
the TA-SNPs instead of all genome-wide SNPs for Cu, Zn, and Cd
(Figures 7A–C). These findings could be attributed to the
complex genetic architectures of the trace elements we studied
(Supplementary Figures S4A–C). Our approach was slightly
similar to previous methods using GWAS-derived TA-SNPs to
construct the trait-associated matrix (Zhang et al., 2014; Ahmadi
et al., 2021), except that we did not assign weights to haplotype-
or genotype-based genomic relationship matrices. Though
numerous studies reported improved gains from using the
above strategy (Bhandari et al., 2019; Ahmadi et al., 2021),
Veerkamp et al. (2016) showed that the proportion of total
variance explained by the TA-SNPs combined in a GRM was
considerably smaller than that explained by all variants in
Holstein-Friesian cattle population. A potentially more
promising way to use TA-SNPs would be to fit them as fixed
effects in the GP model along with all other SNPs as random
effects (Spindel et al., 2016). However, the latter approach is best
suited for features with a few large-effect QTLs in a polygenic
context (Poland and Rutkoski, 2016; Bian and Holland, 2017;
Rice and Lipka, 2019). Therefore, the genetic architecture of the
target traits must be studied before applying this strategy to a
breeding program. The marked advantage of the haplotype-based
UN model over their genotype-based counterparts using the TA-
SNPs (Figures 7A–C) substantiates the existence of local epistasis
in trace element traits (Sharma V. et al., 2021) and the merit of
modelling local epistatic effects in MT-GP program.

Factors Affecting the Observed Prediction
Accuracies: Trait Heritability, Genetic
Correlation, and Population Relatedness
Various factors affect the predictive ability of GP models used in
GS (Crossa et al., 2017; Xu et al., 2021). In this study, the genomic
heritabilities spanned a wide range from 0.14 to 0.62 (Table 2),
which enabled the evaluation of the performance of MT models
under contrasting levels of genomic heritability. The genomic
heritability of Zn was the lowest (h2 = 0.14, Table 2), which
contradicts several previous studies that reported moderate to
high heritability of Zn (Norton et al., 2010; Pinson et al., 2015;
Naik et al., 2020). The poor heritability estimate of Zn in this
study could be due to potential environmental effects.
Unfortunately, our study does not include multi-environment
trials and therefore does not provide insight into environmental
factors and GxE interactions on genomic prediction of trace
element traits.

Strong genetic correlations (Cor > 0.75) were observed
between pairs of the studied trace element traits (Table 2).
This was expected due to their overlapping genetic and
physiological mechanisms (Sasaki et al., 2012; Cu et al., 2020).
For example, transporter gene families like zinc-iron permease
(ZIP), natural resistance-associated macrophage proteins
(NRAMPs), and heavy metal transporting, ATPases (HMAs)
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have been associated with uptake and translocation of several
trace elements in plants (Fernández-Paz et al., 2021;
Vanderschueren et al., 2021; Zhang et al., 2022). As a result,
borrowing information from correlated traits overall improved
the prediction accuracy of the MT models.

The success of GS is also highly dependent on the LD
between markers and unknown causal variants. The
genetically distant training and test sets would have
different LD decay patterns and consequently impede the
prediction (Snelling et al., 2013; Desta and Ortiz, 2014;
Thistlethwaite et al., 2020). Such a problem is typically
prominent in germplasm accessions, limiting the power of
GP (Crossa et al., 2017). This is also the case for the diverse rice
population used in this study, as most accession pairs were
distantly unrelated (Figure 1B). As a result, the predictive

ability for ST-GBLUP was poor (Figure 2), particularly for
traits with the lowest estimated heritabilities, namely Zn and
Cu (Table 2). Adding related materials to the training
population has been suggested to overcome the problem of
low relatedness between training and test populations and
improve the accuracy of genomic prediction (Arenas et al.,
2021). Nevertheless, increasing relatedness will damage
genetic gain in the long term because genetic variation will
be limited or exhausted if related populations are overused
(Jannink et al., 2010; Moeinizade et al., 2019). We show that
MT models are powerful tools for predicting trace element
traits in populations with diverse backgrounds. However,
further studies with larger datasets are needed to elucidate
the utility of different populations and marker optimization
strategies in the context of MT genomic prediction.

FIGURE 8 |General recommendations for using cross-validation (CV) schemes and multi-trait (MT) models. (A) An illustration of the different CV partitions and trait
combination scenarios evaluated. (B) Expected prediction accuracy and phenotyping cost for different CV schemes and MT models. Green dots represent models
which account only for additive effects. Black dots represent models considering both additive and local epistatic effects. The GBLUP model under ST-CV1 is
economically advantageous because the main effort is just devoted to phenotyping one target trait in the training set. However, in terms of prediction accuracy, it is
less robust than the UN and FA MT models under MT-CV2 or MT-CV3. Compared to ST-GBLUP, using MT models under MT-CV1 has no advantage in phenotypic
resource-saving or prediction accuracy. In contrast, MTmodels implemented underMT-CV2 andMT-CV3 can improve prediction accuracy. However, high phenotyping
efforts can be expected with MT-CV2, mainly when multiple auxiliary traits need to be phenotyped. MT-CV3 saves resources by only phenotyping the test set population
(20% of the total population in our case). Accounting for local epistatic effects may further improve the predictive ability of MT models under MT-CV2 or MT-CV3.
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The Prospect of Multi-Trait Models for the
Evaluation of Genetic Resources in Gene
Banks
Expediting genomic selection in gene banks to predict the genetic
merit of the unobserved accessions would enable accurate
identification of promising donor accessions without a
comprehensive phenotypic test of all the accessions in the field
(Pace et al., 2015; Yu et al., 2016; Crossa et al., 2017; Tanaka et al.,
2021; He et al., 2022). In fact, as the traits of breeders’ interest are
extensive, the genetic resources archived in gene banks would be
evaluated for several traits. MT genomic prediction is an effective
method to realize this comprehensive evaluation. Our study tested
several MT models under three different CV schemes, implying
different phenotyping layouts and costs. We found that high
prediction accuracy of MT models can be achieved under
prediction schemes MT-CV2 and MT-CV3. The MT-CV2
scheme requires more budget for phenotyping auxiliary traits in
both training and test sets. Therefore, breeders may kindly MT-
CV2 if phenotypes for the auxiliary traits can be inexpensively
obtained. Otherwise, MT-CV3 is more cost-effective as phenotypes
for the auxiliary traits are only required for the test set (i.e., 20% of
the entire population). Since using multiple auxiliary traits
collectively in the MT model can improve prediction even if the
individual auxiliary traits do not fully meet the heritability and
genetic correlation conditions, an ideal situation would be to
phenotype less expensive and more manageable traits (e.g., root
system architecture, 100-grain weight, data to heading, etc.) to
support the prediction of expensive target traits with the MT
models. Besides, accounting for local epistatic effects in MT
models would help to improve the predictive ability. The
different scenarios studied here and their respective potentials in
terms of prediction accuracy and phenotyping cost are illustrated in
Figures 8A,B.

To breed safe and nutritious crop varieties, further studies
using the genomic selection index (Habyarimana et al., 2020), for

example, are desired to provide a comprehensive understanding
of the strategies to optimize essential nutrients and toxic metals
such as Cd in food crops.
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