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Abstract
In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used

motion capture systems; particularly, when position- or orientation-related analyses of human

movements are intended. However, for many applied research questions, field experiments

are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric

systems can be expected to perform similarly to in-lab experiments. This study aimed to

assess the instrumental errors of kinematic data collected on a ski track using optoelectronic

stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors

and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static

and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between

three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed

and, subsequently, were compared to the manufacturer-specified exact values. While at rest

or skiing at low speed, the optoelectronic stereophotogrammetric system’s accuracy and pre-

cision for determining inter-marker distances were found to be comparable to those known for

in-lab experiments (< 1 mm). However, whenmeasuring a skier’s kinematics under “typical”

skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spray-

ing), additional errors were found to occur for distances between equipment-fixed markers

(total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed mark-

ers, such as the anterior hip markers, additional artifacts were observed (total measurement

errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection

of meaningful position- or orientation-related differences in alpine skiing. However, it must be

emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously

constrained by limited practical usability, small-sized capture volumes and the occurrence of

extensive snow spraying (which results in marker obscuration). The latter limitation possibly

might be overcome by the use of more sophisticated cluster-basedmarker sets.
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Introduction
In recent years, optoelectronic stereophotogrammetry has become one of the most commonly
used systems for measuring human kinematics under laboratory conditions. It allows a highly
accurate and precise three-dimensional (3D) reconstruction of the instantaneous position of
passive or active markers with respect to a predefined global frame (i.e. systematic and random
instrumental errors of below 2 mm) [1–3]. While systematic instrumental errors are mainly
due to photogrammetric calibration inaccuracies and instrumental non-linearities, random
instrumental errors most likely result from electronic noise, marker-flickering, and marker
image shape distortion as a consequence of velocity effects or obscured markers [2].

Field experiments are indispensable for answering many biomechanical research questions
that cannot be answered within controlled laboratory environments. This is particularly the
case when investigating outdoor sports, such as alpine skiing, where the involvement of repre-
sentative real-life settings (i.e. playground, sports facilities, climatic conditions, and so on) is
essential to obtain valid results. However, collecting highly accurate kinematic data under such
circumstances (e.g. on a ski track) is challenging. Additionally, to cover the entire area of inter-
est, large capture volumes are necessary; therefore, complex multi-camera set-ups or wearable
measurement systems (e.g. inertial measurement units and/or differential global navigation
satellite systems) are needed [4–8].

Traditionally, systems of multiple fixed or panned/tilted/zoomed cameras (hereinafter
called “video-based 3D kinematics”) have been used for the purpose of stereophotogrammetry
in alpine skiing research [4, 9–17]. Since this method does not allow automatic marker track-
ing, substantial efforts have to be undertaken with regard to a manual digitizing process. At
first glance, this problem might easily be overcome by the automatic tracking functions when
using optoelectronic stereophotogrammetry during field experiments. However, it is not a pri-
ori clear whether the high standard of accuracy and precision observed under controlled labo-
ratory conditions also can be achieved under challenging in-field conditions. For instance,
when collecting kinematic data on a ski track, the effects of higher velocities and substantially
obscured markers due to inclined/angulated postures or snow spraying may increase the occur-
rence of measurement errors. Moreover, the use of a minimally warming ski suit may change
the number of soft tissue artifacts, which are known to be the most critical source of error in
marker-based human movement analysis [18, 19].

More recently, new wearable measurement technologies have emerged resulting in several
alternative approaches for collecting kinematic data on a ski track [5–8]. However, for some
specific research questions, their major advantages (i.e. a superior practical usability and an
unrestricted capture volume) must be weighed against compromises in the obtained signal’s
exactness (e.g. when determining 3D positions of specific anatomical landmarks and/or orien-
tations of human segments). Inertial measurement units, for example, cannot measure position
and orientation directly. They are estimated by integrating acceleration and angular velocity
data. Thus, when position- or orientation-related analyses of human movements need to be
exact, optoelectronic stereophotogrammetry might provide a more direct and rational way of
measurement. However, little is known about their practical usability under in-field
conditions.

Therefore, the aims of the current study were to (1) assess the instrumental errors of kine-
matic data collected with optoelectronic stereophotogrammetry on a ski track, (2) investigate
the magnitudes of additional skiing-specific sources of errors and soft tissue/suit artifacts, and
(3) explore the practical usability of optoelectronic stereophotogrammetric systems for alpine
skiing-related field experiments.
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Materials and Methods

Ethics statement
This study was approved by the Ethics Committee of the Department of Sport Science and
Kinesiology at the University of Salzburg (approval number: EC_NR. 2010_03). The subject
described in this article gave written informed consent to participate in this study, and for his
image to be published. Other permissions were not required.

Data collection
During a biomechanical field experiment on a ski track, kinematic data were collected by an
optoelectronic stereophotogrammetric system (hereinafter called “optoelectronic system”). In
the experiment, the following measurements were conducted: first, the 3D position data of
three passive markers attached to a rigid bar (i.e. the VICON standard wand, VICONMotion
Systems Ltd, UK) were captured at rest (static measurement, 1 trial). Second, the 3D position
data of the same markers were also measured at motion, while being carried and lifted by a
skier passing the system’s capture volume (dynamic measurement, average speed ~ 25 km/h, 1
trial). Third, the 3D kinematic data of one highly-skilled expert skier were collected while he
performed a ski turn (dynamic measurement, average speed ~ 50km/h, 2 trials). The passive
markers on the skier’s body were attached according to the PLUG-IN-GAITmodel (Fig 1), and
were directly fixed on the skin and pierced through a thin, highly elastic, and minimally warm-
ing ski suit. In order to avoid additional marker movements relative to the underlying bone as
a consequence of wearing a ski suit, small holes around the markers were cut into the suit. The
model’s foot markers were mounted on the ski boots, and additional markers were attached to
the skis and ski poles.

The optoelectronic system consisted of 24 infrared-cameras (VICONMX 13 & VICON
MX40, 250 Hz) positioned on 1.8 to 2.6 m high tripods along the analyzed turn (Fig 2). The
capture volume covered the space that was needed to perform approximately one ski turn of a
pre-defined three gate course (average linear gate distance: 21.2 m; slope inclination 23°). Prior
to the aforementioned measurements, the static and dynamic calibrations of the system were
performed following the manufacturer’s standard procedure, whereas on the inclined slope the
L-frame was aligned perpendicular to gravity with the y-axis representing the direction of the
fall line. The camera settings were adapted for the light conditions present on a ski track. Due
to the outdoor application of the infrared cameras, the measurement took place at night (i.e. in
floodlight conditions). In order to guarantee unrestricted operation of the cameras at tempera-
tures below zero, they were protected by customized heating systems.

Data evaluation and post processing
For all of the aforementioned measurements and repetitions, markers were labeled, and their
positions were reconstructed in 3D using the commercial software Nexus (VICONMotion Sys-
tems Ltd, UK). All marker distances were directly measured by the use of a caliper/measuring
tape (accuracy and precision� 1 mm). The exact distances between the markers of the VICON
standard wand were provided by the manufacturer (VICONMotion Systems Ltd, UK, accuracy
and precision � 0.001 mm). For the purpose of error analysis, only unfiltered kinematic data
were used. If markers were lost, gaps� 25 frames were interpolated using a NEXUS imple-
mented pattern fill, provided that the ambient markers were continuously visible. All other
data gaps remained unfilled (for a more detailed description please see S3 Table; unfilled data
gaps are recognizable by the value NAN and the red colored background).
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Fig 1. Skier equipped with the PLUG-IN-GAITmarker-set and additional markers on the skis and
poles. Top: body and pole marker placement. Middle: equipment used with ski marker placement. Bottom:
reconstructed 3D-model.

doi:10.1371/journal.pone.0161757.g001
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Fig 2. Overview of the measurement-setup. Top: VICON camera set-setup. Bottom: schematic drawing of the on-hill
measurement setup.

doi:10.1371/journal.pone.0161757.g002

Feasibility of Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry

PLOS ONE | DOI:10.1371/journal.pone.0161757 August 25, 2016 5 / 12



Measures of interest
Instrumental errors. For assessing the systematic and random instrumental errors during

the static measurement (i.e. 1 trial at rest) and the dynamic measurement (i.e. 1 trial at motion),
the optoelectronic system’s accuracy for determining inter-marker distances was defined as the
arithmetic mean of the absolute differences between the stereophotogrammetrically recon-
structed and the manufacturer-specified distances between the three markers of the VICON
standard wand (= reference values). The system’s precision for determining inter-marker dis-
tances was defined as the standard deviation of the absolute differences between the recon-
structed and the reference values. The system’s maximum instrumental error was defined as
the maximum value of the absolute differences between the reconstructed and the reference
values within the analyzed static and dynamic trials.

Moreover, the coefficient of variation (CV) was calculated, as was previously recommended
by Atkinson and Nevill [20].

Skiing-specific errors and soft tissue/suit artifacts. To investigate the magnitude of the
occurring total measurement errors including all instrumental and skiing-specific errors (i.e.
the effects of higher velocities and substantially obscured markers due to inclined/angulated
postures or snow spraying), for two trials of one skier, the distances between the ski boot-fixed,
stereophotogrammetrically reconstructed left toe (LTOE) and left ankle (LANK) markers were
calculated and compared to the values directly measured by caliper.

In the interest of investigating the magnitude of the total measurement errors that occurred
under “typical” skiing conditions (including all instrumental and skiing-specific errors, as well
as all soft tissue/suit artifacts), the distances between several skin-fixed, stereophotogrammetri-
cally reconstructed body markers were calculated and were compared to the values directly
measured by measuring tape for two trials of one skier.

Subsequently, the absolute differences between the stereophotogrammetrically recon-
structed and directly measured inter-marker distances were reported as mean, SD, maximum
and CV values.

Results

Instrumental errors
The accuracy, precision, maximum instrumental error and CV values for the measurement of
the VICON standard wand marker distances are presented in Table 1. For both the static and

Table 1. Accuracy, precision, maximum instrumental error and coefficient of variation (CV) values for the measurement of the VICON standard
wandmarker distances a, b and c using an optoelectronic system.

Accuracy [mm] Precision [mm] Maximum Instrumental Error [mm] CV [-]

Static measurement a

Distance a (390 mm) 0.3 0.2 1.0 0.67

Distance b (260 mm) 0.1 0.1 0.6 1.00

Distance c (130 mm) 0.3 0.1 0.5 0.33

Dynamic measurement b

Distance a (390 mm) 0.6 0.4 3.3 0.67

Distance b (260 mm) 0.4 0.3 5.2 0.75

Distance c (130 mm) 0.3 0.3 6.5 1.00

a Underlying data: 400 frames at rest.
b Underlying data: 905 frames at motion. These are the frames that are required for the skier to ski through the capture volume while carrying and lifting the

VICON standard wand (average speed: 24.5 km/h).

doi:10.1371/journal.pone.0161757.t001

Feasibility of Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry

PLOS ONE | DOI:10.1371/journal.pone.0161757 August 25, 2016 6 / 12



dynamic measurements, the optoelectronic system’s accuracy and precision for determining
inter-marker distances were found to be below 0.6 mm and 0.4 mm, respectively. The maximal
instrumental error observed was 1.0 mm for the static measurement, and 6.5 mm for the
dynamic measurement. For an overview of the individual data points underlying the overall
statistics reported in Table 1, refer to S1 and S2 Tables.

Skiing-specific errors and soft tissue/suit artifacts
In general, the measurement errors that occurred (i.e. the absolute differences between the
stereophotogrammetrically reconstructed, and directly measured inter-marker distances)
became larger when analyzing the distance between the equipment-fixed LTOE—LANK mark-
ers of an expert skier at a higher average skiing speed (48.0 km/h), inclined/angulated postures
and more substantial snow spraying, than in the aforementioned dynamic measurement
(Tables 1 and 2). Under these “typical” skiing conditions, the total measurement errors were
found to be 2.3 ± 2.2 mm (Table 2, top).

Additionally, further skiing-specific artifacts might have been introduced when markers
were fixed directly on the skin. In this case, total measurement errors of up to 8.3 ± 7.1 mm
were found when, for instance, the distance between the right (RASI) and left (LASI) anterior
hip markers was analyzed (Table 2, bottom).

The highest maximum total measurement error (including all instrumental and skiing-
specific errors, as well as all soft tissue/suit movement artifacts) was found for the inter-
marker distance LTHI—LKNE. For an overview of the individual data points underlying the
overall statistics reported in Table 2, refer to S3 Table. Similar magnitudes of total measure-
ment errors as presented in Table 2 were found for a second trial assessed (S3 Table, data-
sheet 2).

As indicated by footnote “a” in Table 2 and further illustrated in S3 Table, during the turn
phase while the skier steers out of the fall line (somewhere between 52.6% and 68.8% of the
turn cycle), the visibility of several markers was reduced and occasionally substantial data gaps
occurred. In some cases even the use of a pattern fill algorithm was not feasible because ambi-
ent markers also were not available. As a result, these gaps remained unfilled.

Table 2. Mean, SD, maximum and coefficient of variation (CV) values of the absolute differences between the stereophotogrammetrically recon-
structed, and directly measured distances betweenmarkers with equipment and skin fixation using an optoelectronic system.

Mean [mm] SD [mm] Maximum [mm] CV [-]

Body marker with equipment fixation a

LTOE—LANK (288 mm) 2.3 2.2 12.6 0.96

Body marker with skin fixation b

CLAV—STRN (182 mm) 5.8 4.9 22.0 0.85

RASI—LASI (217 mm) 8.3 7.1 34.2 0.86

RPSI—LPSI (119 mm) 3.9 2.9 15.4 0.74

LTHI—LKNE (97mm) 5.4 11.3 57.1 2.09

LTOE: left toe marker; LANK: left ankle marker. CLAV: clavicular marker; STRN: sternummarker; RASI: right anterior pelvic marker; LASI: left anterior pelvic

marker; RPSI: right posterior pelvic marker; LPSI: left posterior pelvic marker; LTHI: left thigh marker; LKNE: left knee marker.
a Underlying data: one ski turn performed by an expert level skier (average speed: 48.0 km/h). Please note that due to substantial gaps in marker visibility, for

the area between 52.6% and 68.8% of the turn (i.e. frames 243–318), the use of a pattern fill algorithm was not feasible and, therefore, data is not available.

Consequently, the data of this area is not included in the corresponding mean, SD, maximum and CV values.
b Underlying data: one entire ski turn performed by an expert level skier (average speed: 48.0 km/h).

doi:10.1371/journal.pone.0161757.t002
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Discussion
The main findings of the study were: (1) while at rest or skiing at a low average speed of 24.5
km/h, only minimal snow spraying occurred. In such cases, all markers were fully visible, and
the optoelectronic system’s accuracy and precision for determining inter-marker distances on
a ski track were found to be below 0.6 mm and 0.4 mm, respectively. (2) Under “typical” skiing
conditions (i.e. while skiing at a higher average speed of 48.0 km/h, inclined/angulated postures
and moderate snow spraying), additional skiing-specific errors were found to occur for dis-
tances between equipment-fixed markers (total measurement errors of 2.3 ± 2.2 mm). (3) For
distances between skin-fixed markers such as the anterior hip markers, additional artifacts
were observed, resulting in a total measurement of up to 8.3 ± 7.1 mm. (4) Occasionally, the
maximum values of the aforementioned total measurement errors were found to be several
times higher. (5) Within the turn phase while the skier steered out of the fall line, extensive
snow spraying resulted in substantially reduced marker visibility and/or large data gaps.

Instrumental errors
Generally, the systematic and random instrumental errors of kinematic data collected on a ski
track by the use of optoelectronic stereophotogrammetry were found to be comparable with
those achievable under laboratory conditions [1–3]. In the absence of substantial velocity
effects or obscured markers, the optoelectronic system’s accuracy and precision for determin-
ing the distances between stationary or slowly moving markers was found to be below 0.6 mm
and 0.4 mm, respectively (Table 1). Based on these findings, we conclude that photogrammet-
ric calibration inaccuracies must have been minimal, and fundamentally, collecting kinematic
data on a ski track using optoelectronic stereophotogrammetry is accurate and precise.

Skiing-specific errors and soft tissue/suit artifacts
In the presence of high skiing speeds, inclined/angulated postures and moderate snow spraying
(i.e. “typical skiing conditions”), for distances between equipment-fixed markers, additional
skiing-specific errors were found to occur, resulting in total measurement errors of 2.3 ± 2.2
mm (Table 2, top). Thus, compared to the traditional in-field measurement method “video-
based 3D kinematics” (marker distance determination accuracy of 9 mm), the observed
optoelectronic system’s in-field performance is slightly better [4].

When using markers with skin fixation, for inter-marker distances, additional skiing-spe-
cific artifacts were observed (Table 2, bottom); for instance, the resulting total measurement
error was found to be 8.3 ± 7.1 mm for the anterior hip markers. Compared to the total mea-
surement error observed for the aforementioned equipment-fixed markers (e.g. LTOE—
LANK: 2.3 ± 2.2 mm), this is a difference of 6.0 mm with regard to the mean value. Previous
studies assessing the relative movement between skin-fixed markers and the underlying bone
under laboratory conditions reported soft tissue artifacts in the range of 10–30 mm [19, 21].
Even if such relative movements were not directly assessed within the current study, the afore-
mentioned total measurement error mean difference between equipment-fixed and skin-fixed
markers indicates that soft tissue/suit artifacts are most likely of the same order when collecting
kinematic data while skiing.

For most applied research questions in the context of alpine skiing, a measurement system’s
accuracy and precision must be below the range of 25–100 mm in order to be able to detect
meaningful 3D position- or orientation-related differences [13, 22, 23]. In the current study,
the total measurement errors that occurred (including all instrumental and skiing specific
errors, as well as all soft tissue/suit artifacts) were found to be markedly lower (Table 2). Thus,
we conclude that the accuracy and precision of an optoelectronic system can be considered
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sufficient for 3D position- or orientation-related analyses on a ski-track, even if a specific
research question required a higher accuracy and precision than mentioned above (e.g. below
10 mm).

However, at this point, it must be emphasized that when markers are lost for several frames,
and an interpolation based on the patterns of ambient, rigidly connected markers is not feasible
(e.g. due to extensive snow spraying), the optoelectronic systems performance might be sub-
stantially poorer than observed in the current study. In such a case, an interpolation of large
data gaps by unfitting methods might increase the occurring measurement errors drastically.

In this context, it is also worth mentioning that the amount of snow spraying observed in
this study represented “moderate” conditions rather than the most extreme case. The skier
skied in a controlled low-dynamic recreational skiing style with a relatively low average speed
of 48.0 km/h. For more dynamic modes of recreational or competitive alpine skiing, the occur-
rence of snow spraying is expected to be many times stronger, making a biomechanical analysis
of an entire turn almost improbable given the current experimental set-up.

One approach to solving this issue in future experiments might be the use of more sophisti-
cated, cluster-based marker sets. Marker clusters might increase the probability that despite
extensive snow spraying, at least some markers remain visible and, therefore, might provide
enough input data for a sufficiently accurate reconstruction of missing, ambient markers.
Another approach, although possibly irrational, might be the use of additional cameras for
snow-spraying-prone sections. However, whether these approaches can help to overcome the
snow-spraying-related limitations of optoelectronic systems still needs to be verified by future
studies.

Practical usability of optoelectronic stereophotogrammetry on a ski track
Despite the obvious advantages of using optoelectronic stereophotogrammetry to collect kine-
matic data on ski track (i.e. the high accuracy and precision for 3D position- or orientation-
related analyses and the possibility of at least partially automatic tracking), there are several
limitations regarding its practical usability of which potential users should be aware.

First, to define a suitable measurement setup is a tremendously demanding task. In order to
guarantee sufficient space coverage by the cameras, and to account for the situation-related
limitation of snow spraying, three pilot measurements were conducted for the current study.
Moreover, for the construction of the final setup of the main experiment, eight persons worked
for approximately one day. Second, due to missing markers (as a result of extensive snow
spraying,) data processing time should be expected to be substantially longer than is known
under laboratory conditions. Third, in order to guarantee sufficient marker visibility (despite
the occurring snow spraying), cameras need to be positioned as high and close to the skiing
line as possible (better viewing angles). However, in general, this significantly limits the practi-
cal usability of the system (cameras on high tripods), and for applications at higher skiing
speeds, such as alpine ski racing, this might limit the comfort and safety of participating sub-
jects when skiing through the measurement area (tight camera corridor). Fourth, due to the
static nature of the cameras of the optoelectronic system, a large number of cameras is required
to cover the capture volume of one single ski turn, limiting the feasibility of analyzing larger
capture volumes (such as skiing sections or entire runs).

Thus, when deciding which measurement system to use for a specific research question/
experiment on a ski track, the aforementioned advantages and disadvantages of optoelectronic
stereophotogrammetry have to be weighed against each other, and should be compared to
those of alternative measurement systems (such as “video-based 3D kinematics”, inertial mea-
surement units, differential global navigation satellite systems [4–8]). In this context, one
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should also keep in mind that for most skiing-related research questions alternative measure-
ment systems most likely provide both superior practical usability and sufficient accuracy. In
some cases, alternative measurement systems may even allow for a more direct way of parame-
ter calculation (e.g. accelerometer for acceleration versus double differentiated position from
optoelectronic stereophotogrammetry). The only case of application where the use of optoelec-
tronic stereophotogrammetry seems to be indispensable is if an exact determination of 3D
positions/orientations is the highest maxim of the experiment.

Methodological Considerations
This study aimed to assess the feasibility of collecting kinematic data on an alpine ski track by
the use of optoelectronic stereophotogrammetry. It is a pilot study exploring the possibilities
and limitations of this system for biomechanical analysis in the specific context of alpine skiing,
and might provide important knowledge for further applications in this field. However, the
current study does have some limitations that should be kept in mind.

Regarding the criteria of objectivity, the current study has two major short-comings. First,
the study cannot provide suggestions on how to deal with longer periods of reduced marker
visibility/extensive snow spraying. It is obvious that the larger the data gap, the larger the influ-
ence of the chosen interpolation method. Second, it is probable that the reported error magni-
tudes include a certain number of pattern-fill interpolation-induced errors. However, as
corresponding interpolations only were made (a) for small gaps (� 25 frames, i.e.� 0.1 s at a
frame rate of 250Hz), and (b) were based on reliable information provided by an ambient
marker fixed on the same harmonically moving segment, their influence on the study outcome
might have been marginally small. Third, the current study used one of the simplest marker
sets available, the PLUG-IN-GAITmodel. In this context, it remains unclear whether a pattern
fill-based interpolation of missing markers could be further improved by applying other, more
sophisticated cluster-based marker sets.

Concerning the criteria of validity, the current study is limited by the fact that only one
trial/subject per static and dynamic motion task was used for the purpose of error analysis.
Obviously this limits the generalization of the study findings (external validity), even if for
some of the tasks a second trial revealed similar results. Conversely, as the measurement errors
were found to be relatively small, and the skiing-related experiment was performed in the real
snow sport environment, the internal validity and ecological validity of the current study can
be considered to be sufficiently high. The only limitation to the ecological validity might be the
fact that the experiment took place at night (i.e. in floodlight conditions), which is not the most
common skiing environment.

Regarding the criteria of reliability, the current study lacks in the assessment of the effects of
marker placement artifacts. It is known from earlier studies that anatomical landmark mis-
placements can have substantial effects on the accuracy and precision of stereophotogram-
metric systems [24]. On the other hand, there is no reason to expect these effects to be different
to those reported for laboratory conditions.

Conclusions
This study illustrated that on a ski track, the accuracy and precision of optoelectronic systems
for determining the distances between stationary or slowly moving passive markers can be con-
sidered comparable to the values achievable under in-lab conditions (less than 1 mm). How-
ever, when measuring the kinematics of a skier under “typical” skiing conditions (i.e. high
speeds, inclined/angulated postures and moderate snow spraying) additional skiing-specific
errors and soft tissue/suit artifacts were found to occur. For the distance between the anterior
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hip markers, for example, total measurement errors of up to 8.3 ± 7.1 mm were observed in the
current study. This might be sufficient for the detection of meaningful 3D position- or orienta-
tion-related differences in the context of alpine skiing. However, it must be pointed out that as
a consequence of extensive snow spraying, partial, but substantial marker obscuration may
occur. In addition to a limited practical usability and small-sized capture volumes, this is a seri-
ous limitation of using optoelectronic stereophotogrammetry to collect kinematic data on a ski
track, and is expected to be even more serious when assessing dynamic modes of recreational
or competitive alpine skiing. Whether this issue might be solved by the use of more sophisti-
cated cluster-based marker sets could be subject of future research.

Supporting Information
S1 Table. Static measurement of the VICON standard wand marker distances a, b and c
(1 trial). AbsDiff: absolute difference between the stereophotogrammetrically reconstructed
and the manufacturer-specified distances.
(XLSX)

S2 Table. Dynamic measurement of the VICON standard wand marker distances a, b and c
(1 trial). AbsDiff: absolute difference between the stereophotogrammetrically reconstructed
and the manufacturer-specified distances.
(XLSX)

S3 Table. Dynamic measurement of selected distances between markers attached to a skier
performing turns (2 trials). LTOE: left toe marker; LANK: left ankle marker. CLAV: clavicular
marker; STRN: sternum marker; RASI: right anterior pelvic marker; LASI: left anterior pelvic
marker; RPSI: right posterior pelvic marker; LPSI: left posterior pelvic marker; LTHI: left thigh
marker; LKNE: left knee marker. AbsDiff: absolute difference between the stereophotogram-
metrically reconstructed and the manufacturer-specified distances. SD: Standard deviation.
(XLSX)
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