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Background and objective: Deregulation of the expression of amyloid precursor protein
(APP) can lead to the development of Alzheimer’s disease (AD). Recent studies have shown
that many single nucleotide polymorphisms (SNPs) in the 3′ untranslated region (UTR) of
APP are associated with the development of AD. Since microRNAs (miRNAs) are involved
in the regulation of APP expression, we believe that the APP 3′UTR polymorphism may
affect the regulation of APP expression in miRNAs. Results: The levels of miR-101-3p,
miR-153-3p, miR-144-3p, miR-381-3p, and miR-383-5p in plasma of patients with AD were
significantly lower than those in the control group. The APP-534G/A site A allele was a pro-
tective factor for AD risk (adjusted odds ratio (OR) = 0.700, 95% confidence interval (95%
CI): 0.573–0.840, P<0.001). The APP-369C/G site variation was not associated with AD risk.
The APP-118C/A site A allele was a protective factor for AD (adjusted OR = 0.762, 95% CI:
0.639–0.897, P=0.001). The APP-534G/A site mutation affects the regulation of APP protein
expression by miR-101-3p, miR-144-3p, miR-153-3p, and miR-381-3p, and the mutation of
the APP-118C/A site affects miR-101-3p, miR-144-3p, miR-153-3p, and miR-383-5p regu-
lation of APP expression. Conclusion: APP 3′UTR polymorphisms can affect the regulation
of APP expression by miRNAs and thus affect the occurrence of AD.

Alzheimer’s disease (AD) is a common geriatric disease whose incidence is increasing worldwide [1].
Current treatment can only delay the progress of cognitive impairment, which makes the early diagnosis
of AD particularly important. Pathologically, AD is caused by the accumulation of aggregated and hyper-
phosphorylated τ protein in cells and the extracellular deposition of amyloid-β (Aβ) peptides derived
from the hydrolysis of amyloid precursor protein (APP) [2]. Studies have shown that mutations of APP
can lead to abnormal APP processing and accumulation, to the deposition of abnormal Aβ, and eventu-
ally lead to neuronal death [3]. There are also related studies showing that elevated APP protein levels can
lead to abnormal elevation of Aβ production, inducing neurodegeneration and dementia [4–6].

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression af-
ter gene transcription and are negative regulators of gene expression regulation, thereby playing
an important role in neuronal function and survival [7,8]. miRNAs interact with the 3′ untrans-
lated region (UTR) of a target messenger RNA (mRNA) transcript through a partially comple-
mentary form, resulting in mRNA destabilization and/or translational inhibition [9,10]. The ex-
pression level of APP protein is closely related to the occurrence of AD. TargetScan (http://
www.targetscan.org/mamm 31/) predicts that the targets of APP protein, including miR-101-3p,
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miR-144-3p, miR-153-3p, and miR-381-3p, are all APP 3′UTR. Vilardo et al. [11] showed that miR-101-3p is a neg-
ative regulator of APP expression and affects the accumulation of amyloid β, suggesting that miR-101-3p may play
a role in neuropathological disorders. Liang et al. [12] identified the binding site of miR-153-3p on APP 3′UTR
by luciferase assay, and confirmed that miR-153-3p inhibited APP expression by experiments. Overexpression of
miR-144-3p is ubiquitous in primate brain and AD patients, and miR-144-3p acts as a negative regulator of a dis-
integrin and metalloprotease 10 (ADAM10) in the pathogenesis of AD [13]. MiR-185 is capable of targeting DNA
methyltransferase 1 and modulating DNA methylation in human gliomas [14], but it is not clear whether it can reg-
ulate APP expression. MiR-381-3p regulates stromal cell-derived factor-1 (SDF-1) SDF-1/CXC chemokine receptor
type 4 (CXCR-4) CXCR4 signaling pathway through leucine-rich to repair of nerve damage in acute cerebral is-
chemia after cerebral lymphatic obstruction [15]. However, whether miR-381-3p is involved in the regulation of APP
expression is currently lacking evidence. MiR-383-5p may play a key role in focal cerebral ischemia by regulating
post-transcriptional levels of peroxisome proliferator-activated receptor γ (PPARγ) expression [16], whether it has
function during the pathogenesis of AD is not clear.

There is increasing evidence that genetic variation in sites that bind to miRNAs may significantly increase the
risk of neurodegenerative diseases. For example, Wang et al. [17] showed that the single nucleotide polymorphisms
(SNPs) of the 3′UTR of the fibroblast growth factor 20 (FGF20) gene may affect its binding to miR-433 and lead to
an increased risk of PD [18]. The role of miRNAs in the development of AD has been supported by a large body of
research, and a variety of miRNAs have also been used as markers for the diagnosis of AD [19–22]. Simultaneously, a
number of AD-specific gene mutations have been identified in the 3′UTR of APP and BACE1, for example, Brouwers
et al. [23] showed that APP-369C>G and -534G>A increased the APP promoter activity by nearly two-fold. Theuns
et al. [24] identified three mutations (-118C→A, -369C→G and -534G→A) in European patients with AD, showing
a nearly two-fold increase in neuronal specificity of APP transcriptional activity in vitro.

In the present study, we analyzed whether the expression of APP is regulated by miRNAs such as miR-101-3p,
miR-144-3p, miR-153-3p, and miR-381-3p in a Chinese Han patient population with AD, and whether the expression
regulation was related to the polymorphisms at the APP 3′UTR-534G/A, -369C/G, and -118C/A loci.

Materials and methods
General data
A total of 385 patients with AD treated in our hospital from March 2015 to January 2018 were enrolled in the present
study, including 200 males and 185 females aged 60–85 years with a mean age of 73.4 +− 8.9 years. All AD patients
were sporadic. The diagnostic criteria for AD were based on the diagnostic criteria for neurological communica-
tion disorders and strokes, the Association of Alzheimer’s Disease and Related Diseases (NINCDS-ADRDA) [25],
and the Alzheimer’s Disease Diagnostic Practice Standard (OCDAD). Exclusion criteria were: a diagnosis of cogni-
tive impairment caused by vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson’s disease
dementia, and other diseases excluding AD [26]. For the control group, 385 physical examinees without AD were
recruited and matched to the age and sex of the patients; these participants all had a Mini-Mental State Examination
(MMSE) score higher than 24, and the group consisted of 201 males and 184 females, aged 62–81, with an average age
of 72.5 +− 7.8 years. All subjects in the study signed informed consent and complied with the Declaration of Helsinki.

Cell culture
Human HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
heat-inactivated fetal bovine serum (Invitrogen, Carlsbad, CA, U.S.A.). One day before transfection, HEK293 cells
were inoculated into a 24-well plate with 1.0 × 105 cells per well, and HeLa cells were inoculated into a six-well plate
with 20% confluency. According to the manufacturer’s instructions, Lipofectamine 2000 (Invitrogen) was used for
transfection.

Construction of each genotype plasmid of APP 3′UTR-534G/A, -369C/G,
and -118C/A loci
Mutagenesis of APP 3′UTR -534G/A, -369C/G, -118C/A loci were carried out by TOPgene Technology (Montreal,
Quebec, Canada) and verified by sequencing.
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Table 1 Primers of the miRNA RT-qPCR

miRNAs Primer sequence

miR-101-3p F:5′-TGGGCTACAGTACTGTGATA-3′

R:5′-TGCGTGTCGTGGAGTC-3′

miR-144-3p F:5′-ACACTCCAGCTGGGTACAGTATAGATGATGTA-3′

R:5′-CTCAACTGGTGTCGTGGA-3′

miR-153-3p F:5′-ACACTCCAGCTGGGTTGCATAGTCACAAAAGT-3′

R:5′-TCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGATCACTTT-3′

miR-185 F:5′-AGGGATTGGAGAGAAAGGCA-3′

R:5′-AAGGACCAGAGGAAAGCCAG-3′

miR-381-3p F:5′-ACACTCCAGCTGGGTATACAAGGGCAAGCT-3′

R: 5′-TGGTGTCGTGGAGTCG-3′

miR-383-5p F:5′-GTGCAGGGTCCGAGGT-3′

R:5′-AGATCAGAAGGTGATTGTGGCT-3′

U6 F:5′-ATTGGAACGATACAGAGAAGATT-3′

R:5′-GGAACGCTTCACGAATTTG-3′

Plasma miRNA level detection
A volume of 5 ml blood was extracted from all subjects for genomic DNA extraction. According to the man-
ufacturer’s instructions, miRNAs were extracted from isolated plasma using miRNeasy Serum/Plasma Kit (Qia-
gen GmbH, Hilden, Germany). The miRNAs were analyzed using quantitative real-time polymerase chain reac-
tion (qRT-PCR).First, miRNA reverse transcription kits (Applied Biosystems, Foster City, CA, U.S.A.) with miRNA
primers were used to reverse transcribed miRNA into complementary DNA (cDNA). Reverse transcription was per-
formed in a T-Personal thermocycler (Biometra, Göttingen, Germany) with a total reaction volume of 15μl, according
to the manufacturer’s instructions. Finally, TaqMan Universal Master Mix II and UNG (Applied Biosystems) and Taq-
Man fluorescent labeled probes (Applied Biosystems) were used to amplify the cDNA of the studied miRNAs, with
a total reaction volume of 20 μl. Specific reaction conditions: UNG activation: 50◦C, 2 min; polymerase activation:
95◦C, 10 min; 40 cycles: 95◦C, 15 s, 60◦C, 1 min. The miRNA RT-qPCR primers are shown in Table 1. The Ct value
of the detected sample was analyzed using EcoStudy software v4.0 (Illumina Inc, San Diego, CA, U.S.A.). All samples
were standardized by U6 small nuclear RNA (U6 snRNA) as a control. The expression of miRNAs was assessed by a
2−��C

T analysis.

Transfection
Cells were transfected with 50 nM pre-miR (Applied Biosystems) and 50 ng/cm2 pGL3 HSV TK 3′-UTR APP geno-
type plasmids in HeLa cell lines by Lipofectamine 2000 (Invitrogen, Carlsbad, CA, U.S.A.) .

Enzyme-linked immunosorbent assay detection
Cells were lysed 24 h after transfection, and total cellular proteins were extracted using the EpiQuik Whole Cell
Extraction Kit (Epigentek, Farmingdale, NY, U.S.A.) and the expression of APP protein were detected by the Amyloid
Precursor Protein Human ELISA Kit (Life Technologies Corporation, Carlsbad, CA, U.S.A., Catalog # KHB0051),
with three replicate wells per sample.

Genotyping
Genomic DNA was extracted from the blood cells of all subjects, and PCR amplification was carried out using the
primers in Table 2. The PCR conditions were: 95◦C, 5 min; 94◦C, 20 s; 56◦C, 30 s; 72◦C, 30 s; 35 cycles: 72◦C, 5
min; storage at 4◦C. After the PCR was completed, the PCR amplification products were purified and sequenced by
Shanghai Shenggong Bioengineering Technology Co., Ltd.; the sequencing results were analyzed using Vector NTI
11.5.1 (Invitrogen).

Statistical analysis
Continuous variables were expressed by mean + S.D., and independent-sample t tests were used for statistical anal-
yses. Categorical variables were expressed in percentage [n(%)] and analyzed using Chi-squared tests. Whether the
genotype frequency was consistent with the Hardy–Weinberg equilibrium (HWE) was also assessed with Chi-squared
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Table 2 Primers of APP mRNA RT-qPCR

SNP Primers sequence

-534G/A F:5′-GAAATTCCAGGTTGCTCGTG-3′

R:5′-GGCGTTTCTGGAAGAGAATG-3′

-369C/G F:5′-CCCCCGCCCCGCAAAATC-3′

R:5′-TGGGCTTCGTGAACAGTGGGAGGGAGAG-3′

-118C/A F:5′-ATGATTCAAGCTCACGGGGACGAG-3′

R:5′-GCTCAGAGCCAGGCGAGTCAGC-3′

Table 3 General data

Parameter AD (n=385) Control (n=385) P

Age (years, mean +− S.D.) 73.6 +− 8.1 72.9 +− 11.3 0.161

Gender [n(%)] 0.972

Male 200 (52.0%) 201 (52.2%)

Female 185 (48.0%) 184 (47.8%)

Education [n(%)] 0.879

Primary school and below 99 (25.7%) 105 (27.3%)

High school 224 (58.2%) 218 (56.6%)

University 62 (16.1%) 62 (16.1%)

MMSE scoring 8.9 +− 3.5 28.6 +− 5.9 <0.001

CDR scoring 2.0 +− 1.0 0.6 +− 0.3 <0.001

tests. The correlation between SNPs and AD was determined based on the distribution of allele frequencies and ge-
netic models (additive, dominant, and recessive models), and odds ratios (OR) and 95% confidence intervals (CI) were
used in an unconditional logistic regression analysis, corrected for age, sex, education, and other factors. SPSS20.0
software (IBM, Chicago, IL, U.S.A.) was used for all statistical analyses. Multivariate dimensionality reduction analy-
sis (MDR) was used to analyze the interaction among -534G/A, -369C/G, and -118C/A loci. All tests were two-tailed,
and P<0.05 indicated a statistically significant difference.

Results
General data
Age, sex, education level, MMSE scores, and clinical dementia rating (CDR) scores of the AD group and the control
group are shown in Table 3. There was no significant difference in age, sex, or education (P>0.05). The MMSE and
CDR scores of the AD group were lower than the scores of the control group (P<0.05).

Bioinformatics prediction of miRNA target sites in APP 3′-UTR
To identify new miRNA target sites in human APP 3′-UTR, we used TargetScan (version 7.2) to predict the inter-
action between miRNAs and APP 3′UTR. The potential targets of miR-101-3p, miR-144-3p, miR-153-3p, miR-185,
miR-381-3p, miR-383-5p, and other miRNAs are located in the APP 3′UTR, and the sequences that miRNAs may
target are shown in Table 4.

Analysis of plasma miRNA expression levels in the AD and the control
group
The levels of plasma miRNAs in 385 patients with AD and 385 healthy subjects were detected by RT-qPCR. The results
show that the levels of miR-101-3p, miR-153-3p, miR-144-3p, miR-381-3p, and miR-383-5p were significantly lower
in patients with AD than in the control group. Differences between groups were statistically significant P<0.001,
<0.001, <0.001, <0.001, <0.001, <0.001) (Figure 1).

Association between APP gene polymorphism and AD risk
The genotypic analysis of APP gene-534G/A, -369C/G, and -118C/A loci showed that those three loci genotype fre-
quencies are consistent with the HWE (P>0.05). Based on the GG genotype of the APP gene-534G/A locus, GA and
AA genotypes were protective factors for AD (adjusted OR = 0.715, 95% CI: 0.571–0.878, P=0.001; adjusted OR =
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Table 4 Human APP 3′UTR miRNAs and target region prediction

Position of APP 3′UTR
miRNAs Predicted pairing of target region (top) and miRNA (bottom) Seed match*

APP 3′UTR 226-250 5′ UUAAUGGGUU-UUGU-GUACUGUA

8mer

miR-101-3p 3′ GAAGUCAAUAGUGUCAUGACAU

APP 3′UTR 514-539 5′ UUUCCAUGACUGCAUUUUACUGUAC

7mer-1A

miR-101-3p 3′ GAAGUCAAUAGUGUCAUGACAU

APP 3′UTR 219-251 5′ ACUACAUUAUUAAUGGGUUUUGUGUACUGUAA

7mer-1A

miR-144-3p 3′ GAUCAUGUAGUAG———–AUAUGACAU

APP 3′UTR 514-539 5′ . . . CAUGACUGCAUU—-UUACUGUAC . . .

7mer-1A

miR-144-3p 3′ GAUCAUGUAGUAGAUAUGACAU

APP 3′UTR 440-465 5′ . . . AUUC-CUUUCCUGAUCACUAUGCAU . . .

7mer-m8

miR-153-3p 3′ AGUGAAAACAC—UGAUACGUU

APP 3′UTR 275-295 5′ . . . AUGAAUAG–AUUCUCUCCU . . .

7mer-m8

miR-185 3′ CUUGACGGAAAGAGAGGU

APP 3′UTR 304-332 5′ . . . UCACAUAGCCCCUUAGCCAGUUGUAUAU . . .

7mer-1A

miR-381-3p 3′ UGUCUC-UCGAA-CGG-GAACAUAU

APP 3′UTR 430-458 5′ . . . CUUGCCUAAGUAUUCCUUUCCUGAUCAC . . .

7mer-1A

miR-383-5p 3′ UCGGUGUUA-GUGGAA–GACUAGA

*8mer: An exact match with positions 2–8 of the mature miRNA (seed + position 8) followed by an ‘A’. 7mer-m8: An exact match with
positions 2–8 of the mature miRNA (seed + position 8). 7mer-A1: An exact match with positions 2–7 of the mature miRNA (seed) followed
by an ‘A’.

0.540, 95% CI: 0.247–0.957, P=0.029) (Table 5). AD risk was lower for the APP gene-534G/A site in the dominant
model (adjusted OR = 0.693, 95% CI: 0.559–0.845, P<0.001), and there was no AD risk in the recessive model (ad-
justed OR = 0.576, 95% CI: 0.264–1.019, P=0.062); with the G allele as a reference, the A allele was a protective factor
for AD risk (adjusted OR = 0.700, 95% CI: 0.573–0.840, P<0.001). The risk of AD for CG, GG, and G allele carriers
was not significant when compared with the CC genotype as a reference and the C allele at the -369C/G locus of the
APP gene (P>0.05); in the dominant and the recessive models, AD risk was likewise not significant (P>0.05) (Table
5). Taking the APP gene-118C/A site CC allele as a reference, the CA and AA genotypes were protective factors for
AD (adjusted OR = 0.781, 95% CI: 0.638–0.941, P=0.007; adjusted OR = 0.600, 95% CI: 0.308–0.989, P=0.043),
the risk of AD decreased in the dominant model (adjusted OR = 0.757, 95% CI: 0.624–0.906, P=0.002), and there
was no risk of AD in the recessive model (adjusted OR = 0.634, 95% CI: 0.326–1.004, P=0.083). Taking the APP
gene-118C/A site C allele as a reference, the A allele was a protective factor for AD (adjusted OR = 0.762, 95% CI:
0.639–0.897, P=0.001) (Table 5).

Correlation between APP gene polymorphism and plasma miRNAs levels
We analyzed the correlation between plasma miRNAs levels and APP gene polymorphisms. The results showed
that plasma miR-101-3p, miR-144-3p, miR-153-3p, and miR-381-3p of subjects with APP-534G/A locus GG, GA,
and AA genotypes were elevated (P<0.05). There was no statistically significant difference in the level of miR-185
and miR-383-5p between subjects of each genotype (P>0.05) (Figure 2A). There were no differences in plasma
miR-101-3p, miR-144-3p, miR-153-3p, miR-185, miR-381-3p, and miR-383-5p levels in subjects with CC, CG,
and GG genotypes at APP-369C/G locus (P>0.05) (Figure 2B). The levels of plasma miR-101-3p, miR-144-3p,
miR-153-3p and miR-383-5p in subjects with APP 118C/A locus in CC, CA and AA were increased (P<0.05). There
were no significant differences in miR-185 and miR-381-3p levels between subjects of each genotype (P>0.05) (Figure
2C).
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Figure 1. Detection of miRNA expression levels in plasma

(A) is the expression level of miRNAs in plasma of healthy subjects; (B) is the expression level of miRNAs in plasma of patients with

AD.

Analysis of endogenous regulation of APP expression by miRNAs
The results of the enzyme-linked immunosorbent assay (ELISA) kit showed that in HeLa cells transfected with
APP-534G/A locus GG, GA, and AA genotype plasmids, the highest level of APP protein was detected in the cells
transfected with miR-101-3p, miR-144-3p, miR-153-3p, and miR-381-3p, followed by the cells transfected with the
GA genotype, and the lowest level detected for the AA genotype (P<0.001). There was no difference in APP pro-
tein expression among genotypes carrying the APP gene-534G/A locus in the cells transfected with miR-185 and
miR-383 (P>0.05) (Figure 3A). In HeLa cells transfected with APP-369C/G CC, CG, and GG genotype plasmids,
there was no difference in the expression of APP protein in the cells transfected with miR-101, miR-144, miR-153,
miR-185, miR-381, and miR-383 (P>0.05). (Figure 3B). In HeLa cells transfected with APP-118C/A CC, CA, and AA
genotype plasmids, the highest level of APP protein was detected in cells transfected with miR-101-3p, miR-144-3p,
miR-153-3p, and miR-381-3p, followed by the CA genotype. The lowest expression was detected for the AA genotype,
and the difference was statistically significant (P<0.001). However, there was no significant difference in APP protein
levels among genotypes carrying the APP-118C/A locus (P>0.05) detected in the cells transfected with miR-185 and
miR-381 (Figure 3C).
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Figure 2. Comparison of plasma miRNAs levels in subjects with different genotypes of APP gene (A) -534G/A, (B) -369C/G,

and (C) -118C/A

**P<0.01,***P<0.001, ns: not significant.

Figure 3. MiRNAs endogenously regulate APP protein expression

**P<0.01,***P<0.001.
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Table 5 Genotype and allele frequencies of the APP -534G/A, -369C/G, and -118C/A loci

AD (n=385) Control (n=385) P
Cruded OR (95%

CI) P*
Adjusted OR (95%

CI)

-534G/A

GG 315 (81.82%) 268 (69.61%)

GA 63 (16.36%) 100 (25.97%) <0.001 0.536 (0.370–0.776) 0.001 0.715 (0.571–0.878)

AA 7 (1.82%) 17 (4.42%) 0.017 0.350 (0.130–0.912) 0.029 0.540 (0.247–0.957)

Dominant model <0.001 0.509 (0.358–0.724) <0.001 0.693 (0.559–0.845)

Recessive model 0.038 0.401 (0.149–1.039) 0.062 0.576 (0.264–1.019)

G 693 (90.00%) 636 (82.60%)

A 77 (10.00%) 134 (17.40%) <0.001 0.527 (0.386–0.720) <0.001 0.700 (0.573–0.840)

-369C/G

CC 308 (80.00%) 310 (80.52%)

CG 65 (16.88%) 67 (17.40%) 0.901 0.976 (0.659–1.447) 0.977 0.988 (0.800–1.191)

GG 12

(3.12%) 8

(2.08%) 0.371 1.510 (0.566–4.102) 0.505 1.204 (0.725–1.624)

Dominant model 0.856 1.033 (0.714–1.497) 0.928 1.016 (0.837–1.208)

Recessive model 0.365 1.516 (0.570–4.107) 0.497 1.206 (0.728–1.624)

C 681 (88.44%) 687 (89.22%)

G 89 (11.56%) 83 (10.78%) 0.627 1.082 (0.778–1.504) 0.686 1.039 (0.877–1.207)

-118C/A

CC 299 (77.66%) 259 (67.27%)

CA 77 (20.00%) 107 (27.79%) 0.006 0.623 (0.439–0.885) 0.007 0.781 (0.638–0.941)

AA 9 (2.34%)

19 (4.94%) 0.027 0.410 (0.169–0.976) 0.043 0.600 (0.308–0.989)

Dominant model 0.001 0.591 (0.423–0.825) 0.002 0.757 (0.624–0.906)

Recessive model 0.054 0.461 (0.190–1.091) 0.083 0.634 (0.326–1.004)

C 675 (87.66%)

625 (81.17%)

A 95 (12.34%)

145 (18.83%) <0.001 0.607 (0.454–0.811) 0.001 0.762 (0.639–0.897)

*Corrected according to general information such as age, sex, body mass index, smoking, and drinking.

MDR analysis of interaction among SNPs at APP-534G/A, -369C/G,
-118C/A loci
The interaction between SNPs at APP-534G/A, -369C/G, -118C/A loci was analyzed by MDR. The results showed
that the interaction between-534G/A locus and-369C/G locus was the strongest, the interaction between-369C/G,
-118C/A locus was the second, and the interaction between-534G/A locus and-118C/A locus was the smallest (Figure
4).

Hierarchical analysis of miRNA levels and age, gender, and MMSE
A comparative analysis of plasma miRNAs levels in AD patients with different ages, genders, and MMSE revealed that
there were no differences in levels of miRNAs between AD patients of different ages (P>0.05), including miR-101-3p,
miR-153-3p, miR-144-3p, miR-381-3p, miR-185-5p and miR-383-5p (P>0.05) (Figure 5A). There was no differ-
ence in plasma miR-101-3p, miR-153-3p, miR-144-3p, miR-381-3p, miR-185-5p, miR-383-5p levels between male
and female AD patients (P>0.05) (Figure 5B). Plasma levels of miR-101-3p, miR-153-3p, miR-144-3p, miR-381-3p,
miR-185-5p, and miR-383-5p were significantly higher when MMSE ≥ mean (8.9). AD patients with MMSE < mean
(8.9) (P<0.05) (Figure 5C).

Discussion
In recent years, the molecular mechanism and early diagnosis of AD occurrence and development have become the
focus of research, especially the biomarkers for specific early warning signs [27,28]. Studies have found that free
miRNAs in plasma can be used as biomarkers for a variety of diseases, such as Parkinson’s disease [29], tumors [30],
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Figure 4. MDR analysis of the interaction between APP-534G/A, -369C/G, and -118C/A site SNPs

Locus1 represents the ‘-534G/A’ site, locus2 represents ‘-369C/G’, and locus3 represents the ‘-118C/A’ site. The value at the

apex represents the effect on AD, and the larger the value, the greater the risk of AD at the SNP site. The edge values represent

interactions between the SNP sites, positive values represent positive interactions, and larger values indicate stronger interactions.

Figure 5. Comparison of miRNA levels in patients of different ages, genders, or MMSE AD

*P<0.05, **P<0.01, ***P<0.001, ns: not significant.
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and AD [31]. Some researchers have found that miRNAs in peripheral blood play an important role in the diagnosis of
AD [19–21]. The current study shows that the levels of free miR-101-3p, miR-153-3p, miR-144-3p, miR-381-3p, and
miR-383-5p in the plasma of patients with AD are lower than the levels in healthy subjects, making them potential
molecular markers of AD. In addition, bioinformatics research based on target prediction found that all of these
miRNAs target the APP 3′UTR region; whether mutations in this region affect the efficiency of miRNAs targeting
regulation is a key issue worthy of study.

AD is one of the most common forms of dementia, and its neuropathological markers include Aβ and τ accumu-
lation, which manifest as senile plaques and neurofibrillary tangles or dystrophic neuritis [32]. Aβ is derived from
its parental molecule Aβ precursor protein (APP), which is usually cleaved by β-secretase (BACE1) from the Aβ

N-terminus to form soluble Aβ [33]. The human APP gene is located on chromosome 21, and alternative splicing
produces 8–11 kinds of APP protein isoforms with different protein amino acid lengths [34]. APP overexpression is
closely related to the occurrence of AD [35], and can therefore be used to reduce the production of AD by repress-
ing the expression of APP and Aβ in sporadic AD. APP 3′UTR is a key region for miRNAs to target the regulation
of APP expression. According to earlier research, genetic polymorphisms of this site are related to the efficiency
of miRNAs targeting regulation [36]. Using bioinformatics to predict miRNAs targeting the expression of the APP
gene, we found six kinds of miRNAs, namely miR-101-3p, miR-153-3p, miR-144-3p, miR-381-3p, and miR-383-5p.
Studies have shown that miR-101-3p markedly reduces the expression of reporter genes under the control of APP
3′-UTR in human cell culture [37]. Specific target protectants that block the interaction between miR-101-3p and
its functional target site within the APP 3′-UTR enhanced the level of APP expression in HeLa. Thus, endogenous
miR-101-3p regulates the expression of APP in human cells through specific sites located within its 3′-UTR. The
results of the present study show that miR-101-3p is down-regulated in AD, consistent with the results of Hebert et
al. [38]. miR-153-3p is associated with the development of many human diseases, such as non-small cell lung cancer
[39], liver cancer [40], and others. The initial detection of miR-153-3p involvement in neurodegenerative diseases
has been associated with α-synuclein regulation in PD, a protein that is also involved in both familial and sporadic
AD pathology. The results of the current study show that the expression of miR-153-3p is also down-regulated in pa-
tients with AD, consistent with the results of Junn et al. [41]. The miR-144-3p gene, located on chromosome 10, was
originally identified as an anti-cancer gene and plays a crucial role in tumor cell proliferation, apoptosis, invasion,
and metastasis [42]. Up-regulation of miR-144-3p expression is often accompanied by persistent cognitive decline
[43]. miR-144-3p can also be targeted to bind to APP 3′UTR, and studies have shown that miR-144-3p overexpres-
sion markedly inhibits APP protein expression [44], consistent with the results of the current study. miR-381-3p is
located in a cluster within the 14q32.31 chromosomal region. It has been shown that miR-381-3p is associated with
the development of various diseases, and its down-regulation can inhibit lung cancer [45], breast cancer [46], and
colorectal cancer [47]. miR-381-3p is therefore considered to be a potential tumor suppressor. miR-383-5p is also a
disease-associated miRNA, and its ectopic expression has been shown to be involved in cell growth, apoptosis, and
expression of apoptosis-related proteins [48]. At present, although bioinformatics are used to predict the binding of
miR-381-3p and miR-383-5p to APP 3′UTR, there are only few studies on the correlations between miR-381-3p,
miR-383-5p, and AD. The results of the current study show that the levels of miR-381-3p and miR-383-5p in the
plasma of patients with AD are down-regulated. We believe that these decreased expression levels of miR-381-3p and
miR-383-5p may lead to an increase in APP expression and soluble Aβ levels and to the onset of AD; further research
into this issue is however needed.

At the same time, we also found that genetic variations of the -534G/A and -118C/A sites in the APP 3′UTR re-
gion affected the binding of miRNAs to APP 3′UTR and thus the regulation of APP expression by miRNAs. The
-534G/A locus variation affects the binding of miR-101-3p, miR-144-3p, miR-153-3p, miR-381-3p, and APP 3′UTR.
The -534G/A locus A allele is a protective factor for AD, but in the present study, the APP protein level in transfected
A allele cells was significantly higher than the G allele. We speculate that there may be multiple miRNAs involved in
the regulation of APP protein expression in vivo. The co-regulation of multiple miRNAs in individuals carrying the
A allele down-regulates APP expression. When miR-101-3p, miR-144-3p, miR-153-3p, and miR-381-3p were trans-
fected alone, APP expression was up-regulated. The specific mechanism needs further research.While the -118C/A
site affects miR-101-3p, miR-144-3p, miR-153-3p, and miR-383-5p binding to APP 3′UTR. Similarly, the -118C/A
site A allele is a protective factor for AD. However, APP expression in cells of the A allele was increased after trans-
fection of miR-101-3p, miR-144-3p, miR-153-3p and miR-383-5p, respectively. We believe that there may be other
miRNAs involved in the regulation of APP expression in the body, and the specific mechanism needs further study.
In addition, the results of the current study suggest that the genetic variation at the -369C/G locus is unrelated to the
occurrence of AD, and that the regulatory effect of miRNAs on APP protein expression levels is not related to the
genetic variation at the -369C/G locus. Although Theuns et al. found that the -369C/G locus is associated with APP
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transcriptional activity, which is inconsistent with the results of the current study, we believe that this may be related
to inconsistencies in the genetic background of different ethnic groups.

The present study has several shortcomings that need to be mentioned. First, due to limitations of the sample
collection, we could not obtain AD brain samples to analyze the correlation between APP expression levels and miR-
NAs and the relationships between different genetic variations of APP 3′UTR. Second, the number of rare mutation
carriers is small, which may have affected the statistical analyses.

Conclusion
Genetic polymorphisms of the APP 3′UTR-534G/A and APP-118C/A loci can affect the development of AD through
the regulation of APP expression by miRNAs. Genetic polymorphisms may thus affect the usability of miRNAs as
potential targets for AD diagnosis.
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