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Purpose: Adjoint image warping is an important tool to solve image reconstruction problems that
warp the unknown image in the forward model. This includes four-dimensional computed tomography
(4D-CT) models in which images are compared against recorded projection images of various time
frames using image warping as a model of the motion. The inversion of these models requires the
adjoint of image warping, which up to now has been substituted by approximations. We introduce an
efficient implementation of the exact adjoints of multivariate spline based image warping, and com-
pare it against previously used alternatives.

Methods: Using symbolic computer algebra, we computed a list of 64 polynomials that allow us to
compute a matrix representation of trivariate cubic image warping. By combining an on-the-fly com-
putation of this matrix with a parallelized implementation of columnwise matrix multiplication, we
obtained an efficient, low memory implementation of the adjoint action of 3D cubic image warping.
We used this operator in the solution of a previously proposed 4D-CT reconstruction model in which
the image of a single subscan was compared against projection data of multiple subscans by warping
and then projecting the image. We compared the properties of our exact adjoint with those of approx-
imate adjoints by warping along inverted motion.

Results: Our method requires halve the memory to store motion between subscans, compared to meth-
ods that need to compute and store an approximate inverse of the motion. It also avoids the computation
time to invert the motion and the tunable parameter of the number of iterations used to perform this inver-
sion. Yet, a similar and often better reconstruction quality was obtained in comparison with these more
expensive methods, especially when the motion is large. When compared against a simpler method that is
similar to ours in computational demands, our method achieves a higher reconstruction quality in general.
Conclusions: Our implementation of the exact adjoint of cubic image warping improves efficiency and pro-
vides accurate reconstructions. © 2021 The Authors. Medical Physics published by Wiley Periodicals LLC
on behalf of American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14765]
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1. INTRODUCTION

A four-dimensional computed tomography (4D-CT) scan is a ser-
ies of n consecutive, regular CT scans, called subscans. These
subscans are used to capture different three-dimensional (3D)
images of a deforming object. It is generally assumed that the
scanned object is motionless during each subscan, such that the
scan can be modeled by the equation Wx; =p;. Here, x; ER" is
a column vector representing an image with N voxels, p, €RX is
a column vector representing the projection data of the i-th sub-
scan, with K the number of detector pixels times the number of
projections, and W; is a K X N matrix representing the projection
operator of the i-th subscan. If the object is not motionless, the
extent to which this static model is accurate depends on the time
that passed during the subscan. For this reason, subscans are usu-
ally fast scans with few projections. Reconstructing a 4D image
from a 4D-CT scan with 7 subscans then corresponds to solving
n linear systems

Wixi:pi7 i:1,“',n, (1)

which are often highly underdetermined due to the low num-
ber of projections. Equivalently, the problem can be repre-
sented as a single underdetermined system of the form
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One way to alleviate this underdetermination is to link
the time frames using image registration or optical flow
techniques'~ * and image warping.” Each specific image
can then be reconstructed with a motion compensated
reconstruction technique that combines the projection data
of all subscans. Such techniques can be roughly classified
as follows:

1. The motion compensated reconstruction techniques
employed in Refs. [6-9] first make a reconstruction of
each subscan separately. The resulting reconstructions
are then warped to a single point in time where they are
averaged. This average reconstruction then depends on
the projection data of all subscans. This type of method
is very fast and it does not require the adjoint or the
inverse of the warping operators.

© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC
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2. In the MoVIT algorithmlO and in Ref. [11] the
images are warped along the flow between frames
before they are projected using a standard projection
geometry. This entire forward model is then itera-
tively inverted. Such an iterative procedure requires
the adjoint of all operators present in the forward
model. The adjoint of the projection operator is
(non-filtered) backprojection and has been well stud-
ied. The adjoint of the image warping operator was
substituted by an approximation of the inverse warp.
It was shown in Ref. [10] that this iterative approach
outperforms the averaging of separate reconstructions
in terms of reconstruction quality.

3. In Refs. [12,13], Eq. (2) is regularized with terms that
constrain the change of the object between frames, that
is, with constraints on the optical flow. In Ref. [13],
warping operators are involved in these regularization
terms of the objective function, and the adjoints of
these operators are needed to use convex optimization
techniques for minimizing it.

4. In Refs. [14,15], the optical flow between frames is
accounted for in the projection operators, by using a
curved ray projection geometry instead of explicitly
involving image warping. Solving the resulting system
requires the adjoint of this specialized projection oper-
ator. Since the projection operator can be seen as the
composition of a regular projection operator and image
warps, adjoint image warping can also be employed
here.

Next to motion compensated reconstruction, there are
other inverse problems that involve warping operators in their
forward model, such as the direct inversion of a warping oper-
ator as used in Ref. [16].

The above mentioned methods implement the adjoint
image warping operators by warping along an approximated
inverse of the flow, or they are restricted to very small exam-
ples where they can work with matrix representations of the
operators and their transpose. Computing the inverse of the
flow requires computation time and memory. On top of that,
since the flow is generally not exactly invertible and the
adjoint of a warp is not exactly the warp along the inverse
flow, it introduces inaccuracies. Few papers have investigated
how these approximations compare with the exact adjoints.
In Ref. [17], a pair of adjoint warping operators with a cus-
tom linear interpolation method is used for respiratory and
cardiac motion correction in 4D PET. It is shown that using
inverse warps as an approximation for the adjoint warp leads
to image degradation compared to using the exact adjoint
warps.

In this work, an efficient, GPU-based algorithm that
exactly computes the adjoint action of generic multivariate
spline based image warping is introduced. This algorithm
avoids the memory overhead of storing an inverted flow. We
specifically focus on 3D cubic warping, but our methods are
applicable in general to multivariate spline based warping of
any degree.
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2. MATERIALS AND METHODS
2.A. Image warping operators

While the scanned object can change during a 4D-CT
scan, a standard assumption of optical flow based methods is
that the attenuation values of the materials that make up the
object do not change, but only get repositioned. This assump-
tion is only approximately valid, which puts a limit on the
number of time frames we will be able to combine. Under
this assumption, we can deform an image x;€RY into the
image x jeRN of a different time frame, by moving its voxel
values without changing them. For each voxel, a vector in R?
describes its displacement. Together, these displacement vec-
tors form a displacement vector field or deformation vector
field (DVF) representing the optical flow between the
images.

Repositioning the voxel values according to the DVF
results in non-grid data, because the voxels are allowed to
move to non-integer coordinates. To turn the result back into
an image in RY, resampling is required. General image warp-
ing is the combined action of repositioning the voxels and
resampling. A standard choice of resampling method is mul-
tivariate spline interpolation (usually linear or cubic splines),
used in for example Refs. [5,10,11]. With this choice, each
voxel in the warped image is a linear combination of voxels
in the original image, so such warping operators are linear
maps. We will write M;; to denote an N X N warping opera-
tor that transforms x; into x;.

There are two different approaches to implement image
warping operators, referred to as forward and backward
warping’ (see Fig. 1). Assume we have two images, x, and
x;, and a DVF describing the flow from x, to x;. With for-
ward image warping, the voxels of x, are first repositioned
along the DVF to obtain non-grid data representing the
warped version of x,, and this non-grid data is then resam-
pled at grid points to get an image similar to x;,. Backward
image warping is another approach, in which the DVF is
followed in the opposite direction. For each voxel, we look
at the position it is sent to by the DVF and interpolate the
regular grid data of x; at that point. The result is an image
similar to x,.

In this work, we derive the adjoint operators of backward
image warping operators that use multivariate spline interpo-
lation to interpolate the regular grid data of the image that is
warped. The methods are described for tricubic interpolation,
which is 3D or trivariate spline interpolation using cubic
splines. It is also the warping method that is used in Refs.
[10,11]. Adjoint warping operators for the less complicated
trilinear, bicubic, and bilinear interpolation methods were
also implemented.

2.B. Tricubic interpolation

Let f:Z> — R be a function with values at only integer
coordinates. Tricubic interpolation extends such a function to
a piecewise polynomial function f :R* =R which agrees
with f on integer coordinates and is differentiable in every
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FiG. 1. Forward and backward image warping.

point. In each cube of the grid Z°, the interpolant f is given
by a multivariate polynomial of the form

Farnd) =3 3 S a2 3)
=0m=0n=0
We assume to be working on the cube that has (0,0,0) as
its lowest coordinate value. All other cubes can be interpo-
lated by shifting. The 64 coefficients a,,,, can be obtained by
demanding that f agrees with f, and by putting constraints on
the differentiability of f. Once 64 independent linear con-
straints have been made, the coefficients are determined.'®
Another common way of computing f is via a composition of
successive cubic one-dimensional (1D) interpolations, using,
for example, Catmull-Rom splines (see, e.g., Refs. [19,20]).
By computing the composition numerically, the coefficients
a., are never explicitly needed, but they can be determined
by performing the composition symbolically. In both cases,
the coefficients a,,, are linear combinations of the 64 values
of fon the 4 X 4 X 4 cube surrounding the cube that is being
interpolated. More explicitly, every coefficient a,,, is of the
form

Almn = Z Z Z aUk ’J’ (4)

i=—1 j=—1k=-1

with Vi, j,k : o/

) Imn
sion of the form

€R. Equivalently, fis given by an expres-

xy? z Z Zbljkxy’

i=—1 j=—1k=—-1

)f (i.j.k) (&)

where each coefficient b;(x,y,z) is a multivariate polynomial
of the form

Z Z Eﬁf,”,z”x’ymz" ©)

I=0m=0n=

bl]k X y’

with Vil,n,m: l”’"eR The second representation of f is
obtained, simply by rearranging the terms in Eq. (3). This
rearrangement is a straightforward but tedious computation
to do by hand. Instead, it was performed using the open
source computer algebra package SageMath®' (the code is
available hereZz) The benefit of Eq. (5) is that the 64
polynomials b express explicitly how the interpolated
value f (x,y,z) depends linearly on the surrounding values

of f.
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2.C. Adjoint image warping with tricubic
interpolation

A 3D image can be represented by a function f:Z*> — R
which is zero outside the image bounds, or it can be
represented by a column vector feRM N=width
x height x depth, which lists all voxel values in a predeter-
mined order. The first representation allows to use tricubic
interpolation on the image, while the second representation
describes an image warping operator as a linear map
M :RY —RM which can be represented as an N x N
matrix. The equation g = M f expresses the warping of
image f with resulting image g. Each voxel value of g is
obtained by taking a linear combination of 64 voxel values
of f, with weights given by the coefficients by, of Eq. (5).
These weights make up the 64 non-zero entries of one row
of matrix M, and M has one such row for each voxel of f.
Now that a rowwise representation of M is known, a colum-
nwise representation of M’ can be obtained by transposing:
MT = (ml,--,ml), where m; is the i-th row of M. An
adjoint image warping operator can then be implemented as
a columnwise matrix multiplication with M

N
M'g=7Y gm! (7)
i=1

The matrix M or MT does not need to be stored. Instead,
the matrix multiplication can be performed by computing the
rows of M or the columns of M7 on the fly, leading to the fol-
lowing algorithm:

Algorithm 1: Adjoint tricubic image warping
input : Image g, DVF
output: Adjoint warped image f
1 f=0
2 foreach vozel position (p1.p2, p3) do
3 | (q1.q2,3) = (p1,p2,p3) + DVF(p1, pa, ps)
o | @) = () L), L))
5 | for (i,j, k)€ {-1,0,1,2}* do
6 | | S L 0K k) = b = a5 — g2 K = a3)g(pr, pa, ps)
7 end
s end

When working with large 3D volumes, it is important to
leverage the performance gains of parallelization. The outer
for loop of algorithm 1 can be computed in parallel, but spe-
cial care needs to be taken because of the addition on line 6.
The position to which we are adding is dictated by the DVF,
and it is possible that multiple threads would write to the
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same position, leading to a race condition. By implementing
the addition as an atomic addition, race conditions can be
avoided and additions are performed sequentially if needed.
Because the amount of overlap caused by the DVF pointing
multiple times to the same area is in most cases relatively
small, the achieved parallelization is almost indistinguishable
from a complete parallelization. A GPU-accelerated imple-
mentation is available here.*

2.D. Dynamic tomographic model

We will now describe the dynamic tomographic model
used in the MoVIT algorithm.'® This model was used in our
experiments to validate our algorithm of adjoint image warp-
ing. Suppose that we want to reconstruct a certain time frame
of interest, x;. In an ideal situation, any time frame x; can be
produced from x; by using a suitable warping operator M
such that x; = M ;x; holds for all j. This can be written as:

ij»

M; X
M X

xi=| . (8)
Min Xn.

Substituting Eq. (8) into Eq. (2) yields the dynamic tomo-
graphic model:

W, 0 0 07[Ma P
0 W, 0 0 ||M:2 ) 2)
X = 5 (9)
0O 0 - O :
0 0 0 W,l|m, p,
or more concisely:
WMx;,=p . (10)

In practice, Eq. (8) cannot be achieved exactly, but by esti-
mating the DVFs between initial reconstructions, a good
approximation can be obtained. There are many image regis-
tration and optical flow algorithms available to estimate the
DVFs, such as Refs. [1- 4] We used the TV-L1 optical flow
algorithm of Ref. [3] implemented along the lines of Ref.
[23]. System Eq. (10) is the one that is solved by MoVIT, and
it can be interpreted as a factorization of the model presented
in which the DVFs are used to directly modify the projection
matrix W instead of adding the extra factor M;. The new sys-
tem has the same number of equations as Eq. (2), but the
number of unknowns is reduced to only the number of voxels
of the chosen time frame.

2.E. Solver

There are many choices of solvers for the system Eq. (10).
These different choices can enforce different types of con-
straints on the solution. In Refs. [11, 13] the Primal Dual
Hybrid Gradient method of Ref. [24] is used to enforce spar-
sity of the gradient of the solution. MoVIT uses a modified
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version of SIRT with an intuitive interpretation. This can be
seen as a gradient descent based algorithm, as SIRT is a
slightly altered version of gradient descent.”> We chose to use
a basic (projected) gradient descent to minimize the objective
function

Fix:) =||WMax; —pl3. (1
The gradient descent update step for Eq. (11) is
X =Xy MIWT (p — WM ") (12)
=x' 7, X MIW! (p; — WM x}). (13)
=1

Equation (13) shows explicitly how the adjoint image
warping operators M 5 are used.

2.F. Experiments

To evaluate the validity of the proposed algorithm for com-
puting adjoint image warps, three experiments were per-
formed involving the solution of system Eq. (10).

1. The first experiment is a simulation experiment that
investigates the influence of the magnitude of the DVF,
in the case that the DVF is known.

2. The second experiment is a simulation experiment with
unknown DVF. This experiment investigated the influ-
ence of noise in a realistic setting, including the estima-
tion of the DVF.

3. The last experiment is an application to experimental
data obtained at a synchrotron facility. This experiment
evaluates the influence of the time step between com-
bined subscans, by selecting subscans which are fur-
ther and further apart.

In these experiments, our method was compared against
two alternative methods to compute (approximate) adjoint
image warps.

1. The first method substitutes the adjoint warp by a regu-
lar image warp along an inverted DVF computed by the
fixed point algorithm of Ref. [26]. This is the approach
taken in the MoVIT algorithm and in Ref. [14]. For this
method, a convergence criterion for the inversion algo-
rithm needs to be chosen, and twice the amount of
DVFs need to be stored (for each DVF also its inverse).

2. A simpler and computationally less expensive
approach is to substitute the adjoint warp by a regular
warp along the negative DVF. A simple sign change is
inexpensive to compute and no extra storage is required
because we can compute it on the fly. This method is
valid when the DVF is interpreted as the derivative of
the voxel position with respect to time. Changing the
sign of this derivative is equivalent to an inversion of
the motion with respect to time. In practice, this is only
an approximation because the DVFs are not exactly
derivatives. Instead, they contain the change of a voxel
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(a) Ground truth image.
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(b) Ground truth DVF at scale 1.

FiG. 2. The ground truth image and deformation vector field (DVF) for the simulation experiment with known DVF.

(a) Subscan 1

(b) Subscan 2

(c¢) Subscan 3

FiG. 3. The ground truth at the middle time point in each of the subscans.

position with respect to a discrete time step. This
method is thus reliant on small time steps.

The quality of the reconstructions was evaluated using the
mean squared error (mse) and the structural similarity index
measure (SSIM).?” All forward and backward CT projections
were performed with the GPU routines of the ASTRA tool-
box, which use Joseph’s method.?%~ 3¢

2.F.1. Simulation experiment with known DVF

To investigate the effect of the magnitude of the DVF
on the adjoint warping techniques, a simulation experi-
ment was performed using a 2D phantom of a lung at
time 0, and a 2D DVF to simulate motion on it (Fig. 2).
The moved phantom is then regarded as ground truth at
time 1. This phantom is one of the reconstructions pre-
sented in Ref. [31], which we use as ground truth. The
DVF was obtained by estimating the optical flow between
the ground truth and the next time frame presented in
Ref. [31], and is also used as ground truth. To simulate
the motion, we used a bilinear warp, in contrast to the
bicubic warp used in the reconstruction, to not use the
same model in the synthesization as in the inversion. At
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(a) DVF between sub- (b)) DVF between sub-
scan 1 and subscan 2 scan 2 and subscan 3

FiG. 4. The ground truth at the middle time point of subscan 2, with the
deformation vector fields mapping it to the other subscans overlayed on top
of it. For a clearer visualization, we only display each 10th vector in both the
horizontal and vertical direction.

both time frames, a parallel beam CT scan was simulated
with 128 projections at golden ratio angles. Gaussian
noise with a standard deviation of 0.002 was added to
the projection data, after rescaling it to the interval [0,1].
The image of time O was then reconstructed using the
projection data of time O and time 1, by solving system
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FiG. 5. Three orthogonal slices of the reference reconstruction of subscan 98. The region of interest with large complex motion is marked by the red rectangles

(see Fig. 6).

Eq. (10). This experiment was repeated several times,
each time with a different scalar multiplier applied to the
DVFE. We used 16 scalar multipliers from the range
[0.5,3] and each experiment was performed with 10 noise
realizations.

2.F.2. Simulation experiment with unknown DVF

A numerical study was performed on a cylindrical phan-
tom containing growing spheres, mimicking the formation
process of foam.”> A 2D+time phantom (Fig. 3) with two
materials was obtained by extracting a single slice of the 4D
phantom, and pixelating it on a 1024 x 1024 grid. The width
and height of the phantom is 1 cm. The first material is liquid
with a constant attenuation coefficient of 0.8069 cm™'. The
second material is air with a constant attenuation coefficient
0f 0.9529 x 10~ em™". A dynamic (2D+time) CT scan was
simulated with three subscans recording a part of the foam
formation process. Each subscan consists of 512 parallel
beam projections with golden ratio angles. These projections
where simulated with various noise levels on a detector with
1024 detector elements. The noise is simulated Poisson noise
corresponding to 7 beam intensities in the range 10° to 10°
(photon count). Each noise level was evaluated with 10 differ-
ent realizations. To evaluate the quality of the reconstructions,
they were compared against the ground truth in the middle of
the subscan.

For each of the generated datasets, we reconstructed sub-
scan 2, combining its data with the data of subscans 1 and 3
using system Eq. (10). The estimated DVFs used in this sys-
tem are shown in Fig. 4.

2.F.3. Liquid foam dataset

To evaluate our method on real experimental data, an experi-
ment was performed with a 4D-CT scan of a liquid foam that is
pushed through a funnel, available from Tomobank.*® This 4D-
CT scan was recorded at the TOMCAT beamline of the Swiss
Light Source. The data consists of 180 subscans. Each of the
subscans has 300 parallel beam projections taken uniformly over
a 0 to 180 degree range with a rotational speed of 840 deg/s.
The projections were recorded at an energy level of 16 KeV,
with an exposure time of 0.7 ms. The detector consists of
1800 x 2016 detector pixels of size 3 ym. For our experiments,
the projections were vertically cropped and downsampled by a
factor of 4, resulting in 128 X 504 pixel projections with a vir-
tual pixel size of 12um.

The experiment was focused on the reconstruction of sub-
scan 98 since around this subscan, some challenging motion
happens. The subscan was first reconstructed using its 300 pro-
jections and with a smoothed TV1 regularization term®* added
to the objective function of Eq. (11), to get a high quality recon-
struction to be used as a reference. The reconstruction is shown
in Fig. 5. Next, we evaluated our adjoint image warping method
by reconstructing subscan 98, using only the 150 projections
with even index, but combining it with 150 projections of a sec-
ond subscan with odd index, using system Eq. (10). We repeated
this experiment several times with different choices for the sec-
ond subscan ranging from 89 to 107, to investigate how far away
in time we can go, and still benefit from the added data. We paid
special attention to a small region of interest shown in Fig. 6.
Inside this region of interest, a lot of complex motion occurs,
while the rest of the volume hardly moves.

FiG. 6. A visualization of the norm of the optical flow between frame 95 and frame 98. Three orthogonal slices are shown, one for each dimension. The red rect-
angle marks a region of interest where the flow is large and complex, which complicates the inversion of the deformation vector field.
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FiG. 7. Mean squared error (7a) and SSIM (7b) of the reconstructions of the
lung phantom with differently scaled deformation vector fields (see Sec-
tion 2.F.1)

3. RESULTS
3.A. Simulation experiment with known DVF

The MSE and SSIM of the reconstructions from this simu-
lation experiment, averaged over 10 noise realizations, are
displayed in Figs. 7(a) and 7(b), respectively. The horizontal
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axis shows the scalar multiplier applied to the DVF. In Fig. 9
the reconstructions are shown for three of those scalar multi-
pliers (1, 2 and 3). In Fig. 8, the convergence rates of the dif-
ferent methods are visualized, at DVF scale 3.

3.B. Simulation experiment with unknown DVF

The MSE and SSIM of the reconstructions from this sec-
ond simulation experiment, averaged over 10 noise realiza-
tions, are displayed in Figs. 10(a) and 10(b), respectively. The
reconstructions at noise level 10° are shown in Fig. 12, next
to the ground truth. In that same figure, a zoomed in version
of the reconstructions is shown that highlights a bubble with
artifacts. In Fig. 11, the convergence rates of the different
methods are visualized, at photon count 10°.

3.C. Liquid foam dataset

The MSE and SSIM, with respect to the reference recon-
struction, of all reconstructions of subscan 98 are shown in
Fig. 13. The black line indicates the MSE and SSIM of a
reconstruction using only 150 projections of subscan 98, in
contrast to the other reconstructions that also include 150
projections of a second subscan. Obtaining an MSE lower
than the black line, or an SSIM higher than the black line,
indicates that the information of the extra subscan was
exploited to improve the reconstruction quality.

Figure 14 shows the MSE and SSIM of our reconstruc-
tions in the region of interest shown in Fig. 6, using the data
of subscans 89 to 97. This region is of interest because during
the recording of subscan 89 to 97, the motion is concentrated
in this region. A slice of the reconstructions of subscan 98
using the data of subscan 95 is shown in Fig. 15. The region
of interest is marked and magnified in this figure.

4. DISCUSSION

When comparing the three methods, it is important to
keep in mind that using the exact adjoint and using the nega-
tive DVF have almost equal computational demands, while
using the inverse DVF requires an iterative inversion of the
DVFs, and the storage of these inverted DVFs. For instance,

(b)
107> 4 -
E I I negative
1 inverse
1076 4
w ]
g ]
1077 3
108 3
0 500 1000
Iterations

Fic. 8. Convergence plots comparing the different methods at scale 3.
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Fic. 9. Reconstructions of the lung phantom with different methods and differently scaled deformation vector fields.

if a 500 x 500 x 500 volume is used, then a DVF stored in
single precision floating point numbers requires 1.5 GB of
memory. Having to store twice the amount of DVFs can
easily lead to a lack of RAM or GPU memory. The inversion
algorithm also requires the choice of a convergence criterion,
which further complicates the 4D-CT algorithm.

Our experiments show how our method compares to two
alternatives when used in a basic 4D-CT reconstruction algo-
rithm. However, our method is applicable to various other
motion compensated reconstruction techniques that make use
of adjoint image warping, including the methods of classes 2,
3, and 4 discussed in the introduction, which leaves much
room for further exploration.

4.A. Simulation experiment with known DVF

The measurements in Fig. 7 show that using the exact
adjoint is robust to the scale of the DVF, while the
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approximation methods lead to a degraded quality if the DVF
gets too large. The quality decays the fastest in the case of the
negative DVF, which is to be expected as this method is
derived under the assumption that all changes are infinitesimal.
The fixpoint inverted DVF provides a much better approxima-
tion and only shows a small degradation in quality for large
DVFs. When the DVF is scaled to a small magnitude, the three
methods come very close together, and the fixpoint inverted
DVF sometimes gives better results than the exact adjoint. This
can possibly be explained by the fact that an accurate inversion
can be found in the case of a very small DVF, combined with
the fact that the incorrect error redistribution in the update of
the image has a smoothing effect, which can remove noise and
other artifacts. The convergence plot in Fig. 8 shows that, in
the case of a large DVF, the method using the negative DVF is
not capable of minimizing the residue after a certain point.
The other methods keep lowering the residue, and the lowest
residue is obtained using the exact DVF.
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FiG. 10. Mean squared error (10a) and SSIM (10b) of the reconstructions of
subscan 2 of the simulated scan, using the data of subscan 1 and 3, at differ-
ent noise levels (see Section 2.F.2).

The reconstructions in Fig. 9 show what kind of artifacts
are caused by the different approximations. At scale 2, the
negative DVF method shows distortions in wide regions
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around interfaces between different materials. The fixpoint
inverted DVF method causes tiny speckles in similar loca-
tions. These distortions remain present at smaller scales,
although to a lesser extent. The exact adjoint avoids both of
these artifacts, at a cheaper computational cost than the fix-
point inverted DVF method. However, in practice, there will
be other artifacts present due to the fact that the DVF is not
exactly known. This is further discussed in the following
experiments.

4.B. Simulation experiment with unknown DVF

Figure 10 shows that, in terms of MSE, using the exact
adjoint provides the best results, followed by using the nega-
tive DVF as an approximation, and then the inverse DVF.
This holds for all considered noise levels. In terms of SSIM,
the method with exact adjoints provides the best results for
noise levels with photon count 10* and above. Below this
photon count, the quality drops faster than the other methods,
indicating that the method is more sensitive to noise. Similar
to the previous experiment, this might be explained by the
fact that the approximating methods cause a smoothing effect
which suppresses noise. If that is the case, a possible
improvement to our method would be to include some kind
of explicit regularization in the method. It was observed that
the method using the exact adjoint is capable of lowering the
residue faster than the other methods (Fig. 11); however, this
seems to depend on the situation as it was not observed in the
previous experiment. Fig. 11(c) shows the evolution of the
MSE with respect to the iteration number. It shows that over-
fitting to the noise and the DVF estimation errors occurs
around iteration 200. At this iteration, the method using the
exact adjoint provides the lowest MSE and residual error of
the three methods.

In Fig. 12, the effects of the different methods on the
reconstruction can be seen visually. The reconstruction with
exact adjoints is more sharp and granular, while the two
approximating methods are smooth. The approximations do
cause an artifact around a fast growing bubble. This is due
to the fact that the DVF is not invertible in this area, so
methods relying on an approximate inversion of the DVF

- 1.6 x 104 2x1072
4x10% |nverse 1.5 x 10% | inverse 1.9x 102 inverse
=S R A negative =P B (S PPRTE negative 18x10-24 F e negative
S 4 £ 1.4 x10% '
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= = 1.3x10%1 w 5
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g o 1.5x 1072
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FiG. 11. Convergence plots comparing the different methods at photon count 10°.
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(@ Negative DVF () Inverse DVF

(d) Reference

(c) Exact adjoint

FiG. 12. Reconstructions of subscan 2 of the simulated scan, using the data of subscan 1 and 3, with a photon count of 10%, and different methods for the adjoint

warps. The second row shows a zoomed in image of a bubble with artifacts.

fail in such locations. Our proposed algorithm for the exact
adjoint does not require an approximate inverse of the
DVE. Still, the reconstruction with the exact adjoints shows
some artifacts which can not be seen in the reconstructions
with the other methods. This might be caused by the inac-
curacies present in the estimated DVF. Using the exact
adjoint likely results in a reconstruction which is more
faithful to the inaccurate DVF. Therefore, the decision of
which method to use in practice must be made with the
accuracy of the estimated DVF in mind. Possible improved
methods could be made by combining the different meth-
ods based on the DVF accuracy.

4.C. Liquid foam dataset

The results in Fig. 13 show that we can successfully
exploit the data of many other subscans to improve the recon-
struction quality of subscan 98. It can be observed that the
improvement in reconstruction quality gets smaller when
using subscans that are further away in time. This holds for
all three methods. There are some outliers that do not follow
this pattern: subscan 94 and subscan 99 give a substantially
lower reconstruction quality. This can be attributed to the fact
that there is a substantial amount of motion during these sub-
scans, so there is a substantial amount of inconsistency in
their data.

As shown in Fig. 13, the difference between the MSE and
SSIM of the three methods is small. Using the negative DVF
yields the lowest reconstruction quality overall. In terms of
SSIM, the method using the inverse DVF is almost indistin-
guishable from the method using the exact adjoints. For
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select subscans (99, 105, 106, 107) there is a very small
advantage to the exact adjoints. In terms of MSE, using the
inverse DVF often gives a slightly higher quality than using
the exact adjoint. It should be noted that these errors were
measured over a large volume of which only a small part
shows complex motion, as shown in Fig. 6. The lower MSE
for the approximation using the inverse DVF might be
explained as follows: in most of the volume, the DVF is very
small, so an accurate inversion can be found. This explains
why there is no substantial loss of quality using this method.
On top of that, the approximation introduces a smoothing
effect, which can remove detail, but it also removes noise and
reduces some artifacts. In this experiment, no notable differ-
ence in convergence speed was observed between the differ-
ent methods.

The error measurements in Fig. 14 show how the methods
compare in the region with the largest motion. This paints a
different picture than the error measurements of the full vol-
ume. A first observation is that only the two closest subscans
can be used to give an improved reconstruction quality in this
region. A second observation is that the difference between
the three methods becomes more apparent. In this region,
using the exact adjoints yields the highest MSE and SSIM
overall, and the difference is more pronounced for larger time
steps.

Figure 15 shows a slice of the reconstructions of sub-
scan 98 with subscan 95 as the extra subscan. When
zooming in on the region of interest, some double edge
artifacts become apparent. These artifacts are present in all
three methods, but they are most prominent when using
the negative DVF approximation. They are less prominent
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FiG. 13. Mean squared error (13a) and SSIM (13b) of the reconstruction of subscan 98, using 150 projections + 150 projections of one extra subscan. The black
line shows the MSE and SSIM of a reconstruction with 150 projections, without extra projections from an other subscan. It can be used as a reference to evaluate
whether the information of the extra subscan was able to provide an improved reconstruction quality.
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FiG. 14. Mean squared error (MSE) (14a) and Structural similarity index measure (SSIM) (14b) of the region of interest (Fig. 6) of subscan 98, using 150 projec-
tions + 150 projections of one extra subscan. The black line shows the MSE and SSIM of a reconstruction with 150 projections, without extra projections from
an other subscan. It can be used as a reference to evaluate whether the information of the extra subscan was able to provide an improved reconstruction quality.
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(@) Negative DVF

(b) Inverse DVF

(c) Exact adjoint (d) Reference

FiG. 15. A horizontal slice of the reconstruction of subscan 98 using data of subscan 95 with 3 different methods, with the region of interest (Fig. 6) magnified.
The bottom row shows absolute difference images of the magnified region, with respect to the reference.

in the reconstructions of the exact adjoint method and the
method with the inverse DVF approximation. of these two
methods, the exact adjoint method is computationally the
cheapest.

5. CONCLUSIONS

In this work, a GPU accelerated algorithm that com-
putes the exact adjoint action of multivariate spline based
image warping was introduced. It was shown how this
adjoint operator can be applied to reconstruction prob-
lems in 4D-CT that rely on optical flow techniques. Our
method was experimentally compared against two alterna-
tive methods that approximate the adjoint image warp by
a regular warp along an approximate inverse of the opti-
cal flow. The experiments showed that our method can
improve reconstruction quality when the flow is difficult
to invert. Moreover, an accurate inversion of a flow field
requires an iterative algorithm with a stopping criterion,
as well as the storage of the resulting inverse flow.
Because our method does not require the inversion of the

Medical Physics, 48 (10), October 2021

flow, we avoid this tunable parameter and the memory
costs of storing the inverted flow.
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