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Abstract: Here we report the reaction in the biphasic system of the in situ prepared selenols and
thiols with 1,4-androstadiene-3,17-dione (1) or prednisone acetate (2) having α,β-unsaturated ketone
as an electrophilic functionalization. The Michael-type addition reaction resulted to be chemo- and
stereoselective, affording a series of novel steroidal selenides and sulfides. This is an example of a
one-step, eco-friendly process that bypasses some of the main concerns connected with the bad smell
and the toxicity of these seleno- and thio-reagents. Furthermore, we demonstrated that the proposed
methodology offers the possibility to prepare libraries of steroids variously and selectively decorated
with different organochalcogen moieties at the C1 position starting from 1,4-androstadienic skeletons
and leaving unaltered the C4–C5 unsaturation. Based on the data reported in the literature the intro-
duction of an organoselenium or an organosulfur moiety in a steroid could provide new interesting
pharmaceutically active entities exerting anticancer and antimicrobial activities. In this optic, new
synthetic strategies to efficiently prepare this class of compounds could be strongly desirable.

Keywords: selenium; sulfur; zinc; steroids; Michael additions

1. Introduction

In the last decades different classes of organoselenium compounds were investigated
for biological purposes, evidencing, besides the antioxidant properties [1], some promising
activities, such as antiviral, antibacterial and anticancer [2,3].

Similarly, the cyclopenta[a]phenanthrene skeleton is a privileged core structure present
in several pharmacologically relevant molecules as well as in some commercially available
drugs and/or hormones such as glucocorticoids, steroidal anti-inflammatories or cardiac
steroids [4]. On the basis of these considerations, a hybrid formed by placing a Se- or a
S-moiety to a steroidal structure may have enhanced biological properties when compared
to the native fragments [5]. Consequently, improving synthetic tools in order to enable
the chemo regio- and stereoselective preparation of novel selenium- and sulfur-containing
libraries of steroids is particularly challenging for the exploration of the chemical space
in the discovery of novel biologically active compounds. Right now, a small number of
selenosteroids are reported in the literature, and some general examples of functionalization
on different carbons of the cyclopentanoperhydro-phenanthrene skeleton are summarized
in Figure 1. Selenium can be contained in functionalized selenoureas [6], or heterocycles
such as N-linked selenoxazoles [7] or 1,2,3-selenodiazoles [8] that are generally introduced
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using multistep procedures. Ibrahim-Ouali in 2009 described the first total synthesis of
11-selenosteroids as the unique example in which a carbon of the steroidal skeleton is
substituted with a selenium atom [9].
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Figure 1. Examples of Se-functionalization on cyclopentanoperhydro-phenanthrene skeleton.

In other examples, electrophilic and or nucleophilic selenium reagents were directly
introduced in the structures using the reactivity of the ketonic hydrazones [10] and of the
epoxides, respectively [11].

More specifically, Barton reported the conversion of C-6 and C-17 keto groups into
vinyl selenide steroidal systems [10], and Braga and coworkers prepared a series of seleno-
cholestane derivatives by the stereoselective ring opening reaction of 5α,6α epoxide with
selenolates, generated in situ by the NaBH4-mediated reduction of diphenyldiselenide
(PhSe)2 and other, differently functionalized diselenides [11]. This chemistry was expanded
at different positions within the steroidal core by some of us who recently reported the
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epoxide transformation exploiting the reactivity of PhSeZnCl, obtaining selenosteroids
endowed with antibiofilm activity [12,13].

With the aim to develop a novel procedure to prepare hybrid derivatives [5], we report
here the functionalization of the steroidal core of the biologically relevant androstadiene and
prednisone bearing an α β-unsaturated keto system, which underwent Seleno-Michael or
Thio-Michael addition by treatment with selenolates and thiolates generated in situ using a
previously reported acidic biphasic system that was extensively used for the selenenylation
of different classes of organic compounds [14–20].

2. Results and Discussion

For the current investigation we slightly modified the procedure recently reported by
some of us for the conjugated nucleophilic addition of selenolates [20]. A biphasic system
composed by the same volume of ethyl acetate and 10% HCl, containing PhSe2 (3a) and
10 equiv. of zinc shaves was stirred until complete discoloration of the organic layer. The
liquid phase was transferred under argon atmosphere into a flask containing the substrate:
1,4-androstadiene-3,17-dione (1) or prednisone acetate (2). The resulting reaction mixture
was stirred at room temperature for 3 h (Figure 2). When compound 1 was used as starting
material, the formation of steroidal selenide 4a was regio- and stereoselectively obtained
and isolated in 70% yield after chromatographic purification, having a physical and spec-
troscopic date fully coherent with those reported in the literature [21]. The selenenylation
afforded only the α diastereisomer at C1 carbon as a consequence of the steric hindrance at
the electrophilic carbons.
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Figure 2. Addition reaction of nucleophilic reagents prepared in situ from the dichalcogenides 3a–g
to the Michael acceptors 1 and 2 affording the target compounds 4a–f and 5a–g, respectively (the
scopes are reported in Tables 1–3).
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Table 1. Seleno-Michael reactions on substrate (1).
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Entry (RSe)2 (3) Product (4) Yield %
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The scope of the reaction was investigated by the use of commercially available
diselenide (3a) or diselenides prepared according to the literature (3b–e) [22]. Diphenyld-
iselenide (3a) and diaryldiselenides bearing both electron withdrawing (3d) or donating
(3e) substituents afforded the corresponding selenenylated steroids 4a, 4d and 4e, in good
yields (Table 1 entries 1, 4 and 5). On the contrary, dibenzyldiselenide (3b) and bis(2-
phenylethyl)diselenide (3c) gave the target compounds only in moderate yields (Table 1,
entries 2 and 3). In all the cases the reactions resulted in being regio- and stereoselective, as
described for the conversion of 1 into 4a.

The same panel of diselenides (3a–e) were reacted with prednisone acetate (2), which
is the prodrug of prednisolone, a widely used steroidal anti-inflammatory drug [23]. As
depicted in Table 2, the reactivity resulted to be very similar to that observed for 1,4-
androstadiene-3,17-dione (1).

The C1-α-selenenylated derivatives 5a–e were obtained in isolated yields ranging
from 52% to 96% (Table 2). Interestingly the ester functionality resulted in being compatible
with the applied conditions, and it was not affected by the aqueous acidic conditions.

By using the same protocol, the substrates 1 and 2, and disulfides 3f–h as chalcogenate
sources, the scope of the Thio-Michael addition was explored. The results reported in
Table 3 were obtained by reducing the commercially available, colorless disulfides 3f–h for
15 min in the zinc-containing, biphasic acidic system [20]. Then, organic and aqueous layers
were transferred under argon into a flask containing 1,4-androstadiene-3,17-dione (1) or
prednisone acetate (2), and the resulting mixture was stirred for an additional 3 h at room
temperature. As a result of the reduced nucleophilicity of the sulfur atom, thioderivatives
4f and 5f–h were obtained in lower yields when compared to the selenium analogues, but
with the same regio- and stereoselectivity, indicating a lower reactivity of sulfur when
compared to selenium in the tested conditions.

3. Conclusions

In conclusion, we developed a new methodology for the regio- and stereoselective
synthesis of seleno- and thiosteroids using chalcogenating reagents generated in situ by
the Zn-mediated reduction of diselenides or disulfides in a biphasic acidic medium. The
resulting chalcogen cantered nucleophiles were reacted with model steroids having a
Michael acceptor functionalization, affording the target compounds in poor to excellent
yields after chromatographic purification.

4. Experimental Methods
4.1. General Information

Solvent reagents and commercially available starting materials were purchased from
Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Kandel, Germany), and VWR (Milano,
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Italy), and used as received unless otherwise noted. Diselenides 3b–e were synthesized
as reported in the literature [22]; the physical and spectral data of 4a–f and 5a–h are
reported below and all the spectra are reported in the Supporting Information. Reactions
were conducted in round-bottom flasks and were stirred with Teflon coated magnetic
stirring bars (Sigma-Aldrich, St. Louis, MO, USA). Flash chromatography was performed
with silica gel, pore size 40A (70–230 mesh) unless otherwise stated. All reactions were
monitored by TLC on silica gel plates 60 F254 (Merck, Darmstadt, Germany). NMR
experiments were performed in a Bruker Advance 400 spectrometer (Bruker, Fällanden,
Switzerland). Only selected signals in the 1H NMR spectra are reported. The 1H and 13C
NMR chemical shifts (δ) are reported in parts per million (ppm), and they are relative to
TMS (0.0 ppm) and the residual solvent peak (CDCl3, 7.27 for 1H NMR, and 77.0 ppm for
13C NMR). The 77Se chemical shifts (δ) are reported in parts per million (ppm), and they are
relative to diphenyl diselenide (464 ppm) in CDCl3. Data are reported as follows: chemical
shift, multiplicity, coupling constants, where applicable, and the number of hydrogen
atoms. Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd
(doublet of doublet), dt (doublet of triplet), tt (triplet of triplet), m (multiplet), br.s. (broad
signal). Coupling constant (J) is quoted in Hz to the nearest 0.1 Hz. High-resolution
mass spectrometry (HRMS) measurements were performed using an Agilent 6520 QTOF
instrument (Agilent, Santa Clara, CA, USA). IR spectra were obtained in a CHCl3 solution
with a Thermo Scientific, Nicolet 6700 FT-IR spectrometer (Thermo Scientific, Waltham,
MA, USA) and data are reported in reciprocal centimeters. Melting points were determined
by a Kofler bench (Boetius type) apparatus and are uncorrected (Wagner & Munz GmbH,
Munchen, Germany).

4.2. General Procedure for the Michael-Type Addition

Diselenide or disulfide (1.3 equiv.) was added to a flask with 2 mL of 10% HCl, 2 mL
of ethyl acetate, then 13 equiv. of zinc shaves (or turnings) were added. The reaction
was stirred vigorously (800 rpm) until the discoloration of the organic layer occurred
(15–20 min), in the case of colorless disulfides, the reaction was kept for 15 min. Then,
the biphasic mixture was separated by the unreacted zinc and transferred under inert
conditions (Ar) into a vial containing the steroid 1 or 2 (1 equiv) using the double-ended
cannula technique. The reaction mixture was stirred for 3 h at room temperature, poured
into water and extracted with ethyl acetate (3 × 20 mL). The organic layer was dried with
Na2SO4, filtered and the solvent removed under vacuum. The products were purified by
flash chromatography (Figures S1–S64).

1α-phenylselenylandrost-4-en-3,17-dione (4a) [21]
Isolated as a white solid after flash chromatography, eluent petroleum ether/ethyl

acetate (7:3). Yield 70%. m.p. (CH2Cl2/hexane): 172–174 ◦C [21]: 192.1–193.8 ◦C); IR,υmax
(cm−1) 1736, 1677, 1479; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.49–7.47 (m, 2H,
o-CH-Ar), 7.24–7.20 (m, 3H, CH-Ar), 5.77 (s, 1H, CH=C), 3.55 (m, 1H, CH-Se), 2.94 (d, 1H,
J = 17 Hz, CHH), 2.60 (d, 1H, J = 17 Hz, CHH), 1.31 (s, 3H, CH3), 0.87 (s, 3H, CH3) ppm;
13C NMR (100.6 MHz, CDCl3, 298 K, TMS): δ 220.3, 196.4, 166.2, 135.9, 129.4, 128.6, 128.4,
124.7, 51.4, 50.7, 50.2, 47.5, 43.0, 40.7, 35.8, 35.3, 32.4, 31.0, 29.7, 21.8, 19.7, 19.1, 13.8 ppm;
77Se NMR (76.3 MHz, CDCl3, 298 K, TMS): δ 345.9 ppm. HRMS calculated for C25H31O2Se
443.1484, found 443.1494.

1α-benzylselenylandrost-4-en-3,17-dione (4b)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (7:3); 48% of yield. m.p. (CH2Cl2/hexane): 153–155 ◦C; IR,υmax (cm−1) 2958, 1736,
1654, 1157; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.23–7.14 (m, 5H, CH-Ar), 5.69 (s, 1H,
CH=C), 3.76 (d, 1H, J = 12.3Hz), 3.56 (d, 1H, J = 12.3 Hz), 3.09 (dd, 1H, J = 3.3 and 16.9 Hz),
2.93 (m, 1H, CHSe), 2.76 (dd, 1H, J = 2.2 and 16.9 Hz), 1.18 (s, 3H, CH3), 0.77 (s, 3H, CH3)
ppm; 13C NMR (100.6 MHz, CDCl3, 298 K, TMS): δ 220.6, 196.6, 167.4, 138.6, 129.0, 128.5,
127.0, 124.6, 50.7, 50.0, 47.5, 45.3, 42.5, 41.2, 35.8, 35.2, 32.3, 31.0, 29.6, 27.1, 21.7, 18.9, 18.6,
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13.7 ppm; 77Se NMR (76.3 MHz, CDCl3, 298 K, TMS): δ 311.6 ppm. HRMS calculated for
C26H33O2Se 457.1640, found 457.1652.

1α-phenylethylselenylandrost-4-en-3,17-dione (4c)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 51% yield. m.p. (CH2Cl2/hexane): 163–165 ◦C; IR,υmax (cm−1), 1744, 1243,
1187; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.23–7.20 (m, 2H, CH-Ar), 7.16–7.10 (m,
3H, CH-Ar), 5.71 (s, 1H, CH=C), 3.25 (m, 1H, CH-Se), 3.07 (dd, 1H, J = 3.5 and 17 Hz),
2.95–2.75 (m, 2H), 1.32 (s, 3H, CH3), 0.88 (s, 3H, CH3) ppm; 13C NMR (CDCl3, 100.6 MHz,
298 K, TMS): δ 220.4, 196.5, 166.6, 155.4, 140.8, 128.5, 128.4, 127.7, 126.5, 124.5, 50.6, 50.0,
47.5, 45.8, 42.8, 41.0, 36.7, 35.8, 35.3, 32.4, 31.2, 31.0, 25.0, 21.8, 19.6, 18.9, 13.7 ppm; 77Se
NMR (76.3 MHz, CDCl3, 298 K, TMS): δ 215.4 ppm. HRMS calculated for C27H35O2Se
471.1797, found 471.1808.

1α-(4-chlorophenylselenyl)-androst-4-en-3,17-dione (4d)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 81% of yield. m.p. (CH2Cl2/hexane): 175–177 ◦C; IR,υmax (cm−1) 2847, 1738,
1663, 1471; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.45 (d, J = 8.4 Hz, 2H), 7.24 (d,
J = 8.4 Hz, 2H), 5.81 (s, 1H), 3.60 (m, 1H), 2.99 (dd, J = 3.4 and 17.2 Hz, 1H), 2.61–2.40 (m,
4H), 2.16–2.07 (m, 1H), 2.04–1.30 (m, 11H), 1.24–1.10 (m, 2H), 0.93–0.87 (m, 4H) ppm; 13C
NMR (CDCl3, 100.6 MHz, 298 K, TMS): δ 220.2, 196.1, 166.0, 137.3, 134.9, 129.6, 124.6, 51.6,
50.6, 50.2, 47.4, 43.0, 40.5, 35.8, 35.3, 32.3, 31.0, 29.7, 21.8, 19.7, 19.1, 13.8 ppm; 77Se NMR
(76.3 MHz, CDCl3, 298 K, TMS): δ 339.4 ppm. HRMS calculated for C22H30ClO2Se 477.1094,
found 477.1084.

1α-(4-methylophenylselenyl)-androst-4-en-3,17-dione (4e)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 64% of yield. m.p. (CH2Cl2/hexane): 182–184 ◦C; IR,υmax (cm−1) 2920, 1729,
1673, 1187; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.43 (d, J = 7.9 Hz, 2H), 7.09 (d,
J = 7.8 Hz, 2H), 5.82 (s, 1H), 3.55 (m, 1H), 2.97 (dd, J = 17.2 and 3.5 Hz, 1H), 2.65 (dd, J = 17.1
and 2.5 Hz, 1H), 2.33 (s, 3H, CH3), 1.36 (s, 3H, CH3), 0.93 (s, 3H, CH3) ppm; 13C NMR
(CDCl3, 100.6 MHz, 298 K, TMS): δ 220.2, 196.4, 166.1, 138.4, 136.1, 130.1, 124.8, 124.6, 51.4,
50.6, 50.0, 47.4, 42.9, 40.5, 35.7, 35.3, 32.3, 30.9, 29.6, 21.7, 21.2, 19.6, 19.0, 13.7 ppm; 77Se
NMR (76.3 MHz, CDCl3, 298 K, TMS): δ 335.7 ppm. HRMS calculated for C26H33O2Se
457.1640, found 457.1627.

1α-phenyltioandrost-4-en-3,17-dione (4f) [21]
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 35% of yield. m.p. (CH2Cl2/hexane): 186–190 ◦C (ref21 188.1–189.3 ◦C);
IR,υmax (cm−1): 1740, 1685, 1613, 1475. 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.41–7.39
(m, 2H), 7.31–7.27 (m, 3H), 5.84 (s, 1H, CH=C), 3.55 (m, 1H, CH-S), 2.77 (dd, 1H, J = 3.0
and 16.9 Hz), 1.38 (s, 3H, CH3), 0.94 (s, 3H, CH3) ppm; 13C NMR (CDCl3, 100.6 MHz,
298 K, TMS): δ 220.4, 196.2, 165.7, 133.9, 133.7, 129.3, 128.0, 124.6, 54.4, 50.7, 47.9, 47.5, 42.7,
39.7, 35.8, 35.2, 32.4, 31.0, 29.7, 21.8, 19.9, 19.6, 13.8 ppm. HRMS calculated for C25H31O2S
395.2039, found 395.2056.

1α-phenylselenyl-17,21-dihydroxy-pregn-4-eno-3,12,20–trioxo–21–acetate (5a)
Isolated as a white solid after flash chromatography, eluent petroleum ether/ethyl

acetate (6:4); 70% of yield. m.p. (CH2Cl2/hexane): 204–206 ◦C; IR,υmax (cm−1) 2973, 1692,
1654, 1433; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.42–7.40 (m, 2H, CH-Ar), 7.22–7.18
(m, 3H, CH-Ar), 5.72 (s, 1H, CH=C), 5.04 (d, 1H, J = 17.6 Hz), 4.66 (d, 1H, J = 17.6 Hz),
4.45–4.44 (m, 1H, CHSe), 3.10–2.90 (m, 2H), 2.80–2.20 (m, 8H), 2.10 (s, 3H, CH3), 1.95–1.55
(m, 5H), 1.48 (s, 3H, CH3), 1.45–1.20 (m, 3H), 0.62 (s, 3H, CH3) ppm; 13C NMR (100.6 MHz,
CDCl3, 298 K, TMS): δ 208.9, 204.6, 197.2, 170.6, 165.1, 135.4, 129.2, 128.5, 128.1, 124.8, 89.0,
67.7, 60.2, 51.8, 51.3, 49.6, 49.4, 42.7, 40.7, 36.8, 35.0, 32.0, 31.6, 23.2, 20.5, 18.4, 15.5 ppm.
HRMS calcd for C29H35O6Se 559.1593, found 559.1599.

1α-benzylselenyl-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5b)
Isolated as a white solid, eluent petroleum ether/ethyl acetate (6:4); 52% of yield.

m.p. (CH2Cl2/hexane): 175–177 ◦C; IR,υmax (cm−1) 2853, 1751, 1695, 1598; 1H NMR
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(400 MHz, CDCl3, 298 K, TMS): δ 7.29–7.22 (m, 5H, CH-Ar), 5.74 (s, 1H, CH=C), 5.12 (d,
1H, J = 17.7 Hz), 4.71 (d, 1H, J = 17.6 Hz), 4.18 (m, 1H, CHSe), 3.75 (d, 1H, J = 11.5 Hz), 3.65
(d, 1H, J = 11.5 Hz), 2.20 (s, 3H, CH3), 1.52 (s, 3H, CH3), 0.67 (s, 3H, CH3) ppm. 13C-NMR
(CDCl3, 100.6 MHz, 298 K, TMS): δ 209.1, 204.6, 197.2, 170.7, 166.1, 138.3, 128.9, 128.6, 126.9,
124.9, 89.1, 67.7, 60.0, 59.9, 51.5, 51.2, 49.6, 49.4, 47.0, 42.7, 42.4, 41.9, 36.8, 36.1, 32.6, 31.5,
28.8, 23.3, 20.6, 18.4, 15.5 ppm; 77Se NMR (76.3 MHz, CDCl3, 298 K, TMS): δ 295.7 ppm.
HRMS calculated for C30H37O6Se 573.1750, found 573.1758.

1α-phenylethylselenyl-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5c)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 69% yield. m.p. (CH2Cl2/hexane): 203–205 ◦C; 1H NMR (400 MHz, CDCl3,
298 K, TMS): 7.31–7.29 (m, 2H, CH-Ar), 7.22–7.16 (m, 3H, CH-Ar), 5.74 (s 1H CH=C), 5.12
(d, 1H, J = 17.5 Hz), 4.71 (d, 1H, J = 17.5 Hz), 4.26 (m, 1H, CHSe), 3.27 (dd 1H J = 3.8 and
13.2 Hz), 2.17 (s 3H), 0.68 (s 3H); 13C-NMR (CDCl3, 100.6 MHz, 298 K, TMS): δ 209.2, 204.4,
196.5, 170.5, 165.4, 140.9, 128.4, 126.3, 124.9, 89.0, 67.5, 60.0, 51.2, 49.6, 49.5, 46.7, 42.8, 42.0,
36.8, 36.7, 35.1, 32.1, 31.4, 29.7, 26.1, 23.3, 20.4, 18.4, 15.5; 77Se NMR (76.3 MHz, CDCl3,
298 K, TMS): δ 222.7; HRMS calculated for C30H37O6Se 587.1906, found 587.1910.

1α-(4-chlorophenylselenyl)-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5d)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (6:4); 69% yield. m.p. (CH2Cl2/hexane): 207–209 ◦C; IR,υmax (cm−1) 2950, 1751,
1662, 1467; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.40 (d, J = 8.4 Hz, 2H, CH-Ar), 7.22
(d, J = 8.4 Hz, 2H, CH-Ar), 5.78 (s, 1H, CH=C), 5.10 (d, J = 17.6 Hz, 1H), 4.74 (d, J = 17.6
Hz, 1H), 4.50 (m, 1H, CHSe), 3.50 (br s, 1H, OH), 3.10 (dd, J = 3.6 and 17.2 Hz, 1H), 2.17
(s, 3H, CH3), 1.54 (s, 3H, CH3), 0.67 (s, 3H, CH3) ppm; 13C-NMR (CDCl3, 100.6 MHz, 298
K, TMS): δ 209.2, 204.7, 197.3, 170.7, 165.2, 136.7, 134.6, 129.4, 126.6, 124.7, 88.9, 67.8, 60.2,
52.2, 51.2, 49.6, 49.4, 42.7, 40.6, 36.8, 34.9, 32.0, 31.6, 23.2, 20.5, 18.3, 15.4 ppm; 77Se NMR
(76.3 MHz, CDCl3, 298 K, TMS): δ 339.2 ppm. HRMS calculated for C28H34ClO6Se 593.1204,
found 593.1183.

1α-(4-methylophenylselenyl)-17,21-dihydroxy-pregn-4-eno-3,12,20–trioxo-21-acetate (5e)
Isolated as a white solid after flash chromatography using petroleum ether/ethyl

acetate (8:2); 96% of yield. m.p. (CH2Cl2/hexane): 188–190 ◦C; IR,υmax (cm−1) 2923, 1738,
1663, 1621; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.36 (d, J = 7.8 Hz, 2H), 7.06 (d,
J = 7.8 Hz, 2H), 5.78 (s, 1H), 4.75 (d, J = 17.6 Hz, 1H), 4.44 (m, 1H), 2.31 (s, 3H, CH3), 2.17 (s,
3H, CH3), 1.53 (s, 3H, CH3), 0.68 (s, 3H, CH3) ppm; 13C-NMR (CDCl3, 100.6 MHz, 298 K,
TMS): δ 209.0, 204.7, 197.6, 170.6, 165.3, 138.2, 135.6, 130.0, 124.8, 124.7, 89.0, 67.8, 60.2, 51.7,
51.3, 49.6, 49.5, 42.7, 40.6, 36.8, 34.9, 32.0, 31.6, 23.2, 21.1, 20.5, 18.4, 15.4 ppm; 77Se NMR
(76.3 MHz, CDCl3, 298 K, TMS): δ 333.6 ppm. HRMS calculated for C30H37O6Se 573.1750,
found 573.1731.

1α-phenyltio-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5f)
Isolated as a white solid after flash chromatography, using petroleum ether/ethyl

acetate (8:2); 33% of yield. m.p. (CH2Cl2/hexane): 220–221 ◦C; IR,υmax (cm−1): 1744, 1695,
1613, 1221; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.36–7.26 (m, 5H), 5.80 (s, 1H, CH=C),
5.11 (d, 1H, J = 17.6 Hz), 4.74 (d, 1H, J = 17.6 Hz), 4.43 (t, 1H, J = 2.8 Hz), 3.33 (br s, 1H),
3.03–2.98 (m, 2H), 2.87–2.78 (m, 2H), 2.17 (s, 3H, CH3), 1.55 (s, 3H, CH3), 0.67 (s, 3H, CH3)
ppm; 13C NMR (CDCl3, 100.6 MHz, 298 K, TMS): δ 209.4, 204.8, 197.5, 170.8, 164.8, 133.8,
133.6, 129.2, 127.9, 124.9, 89.11, 67.9, 57.9, 54.6, 51.4, 49.7, 49.5, 42.4, 39.6, 36.7, 35.1, 32.2, 31.6,
23.3, 20.6, 19.2, 15.5 ppm. HRMS calculated for C29H35O6S 511.2149, found 511.2169.

1α-benzyltio-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5g)
Isolated as a white solid after flash chromatography, using petroleum ether/ethyl

acetate (8:2); 11% of yield. m.p. (CH2Cl2/hexane): 192–194 ◦C; IR,υmax (cm−1): 2920, 2845,
1695, 1650; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.32–7.22 (m, 5H, CH-Ar), 5.74 (s,
1H, CH=C), 5.14 (d, 1H, J = 17.5 Hz), 4.71 (d, 1H, J = 17.5 Hz), 3.96 (t, 1H, J = 2 Hz), 3.65 (d,
1H, J = 12.9 Hz), 3.54 (d, 1H, J = 12.9 Hz), 2.19 (s, 3H, CH3), 1.49 (s, 3H, CH3), 0.65 (s, 3H,
CH3) ppm; 13C NMR (CDCl3, 100.6 MHz, 298 K, TMS): δ 209.1, 204.5, 197.1, 170.7, 165.2,
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137.4, 129.0, 128.6, 127.2, 124.9, 89.1, 67.6, 57.5, 49.6, 49.3, 42.4, 40.5, 36.9, 36.6, 35.2, 32.2, 23.3,
20.6, 19.3, 15.5 ppm. HRMS calculated for C30H37O6S 525.2305, found 525.2329.

1α-(4-methylophenyltio-17,21-dihydroxy-pregn-4-eno-3,12,20-trioxo-21-acetate (5h)
Isolated as a white solid after flash chromatography, using petroleum ether/ethyl

acetate (8:2); 33% of yield. m.p. (CH2Cl2/hexane): 193–195 ◦C; IR,υmax (cm−1) 2943, 1748,
1658, 1217; 1H NMR (400 MHz, CDCl3, 298 K, TMS): δ 7.23 (d, 2H, J = 8.0 Hz), 7.07 (d, 2H,
J = 8.0 Hz), 5.79 (s, 1H, CH=C), 5.11 (d, 1H, J = 17.6 Hz), 4.74 (d, 1H, J = 17.6 Hz), 4.33 (t,
1H, J = 3.2 Hz, CH-S), 3.33 (s, 1H), 3.04 (d, 1H, J = 12.6 Hz), 2.99 (d, 1H, 11.2 Hz), 2.83–2.78
(m, 2H), 2.30 (s, 3H, CH3), 2.17 (s, 3H, CH3), 1.53 (s, 3H, CH3), 0.68 (s, 3H, CH3) ppm; 13C
NMR (CDCl3, 100.6 MHz, 298 K, TMS): δ 209.4, 204.8, 197.6, 170.7, 164.7, 138.2, 134.2, 129.9,
124.9, 89.1, 67.9, 57.9, 54.8, 51.4, 49.7, 49.5, 42.4, 39.5, 36.7, 35.1, 32.2, 31.6, 23.3, 21.2, 20.6,
19.2, 15.5 ppm. HRMS calculated for C30H37O6S 525.2305, found 525.2328.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms23063022/s1, Spectroscopic data of all the synthetized compounds.
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