
TYPE Original Research

PUBLISHED 07 September 2022

DOI 10.3389/fnins.2022.926256

OPEN ACCESS

EDITED BY

Christopher DiMattina,

Florida Gulf Coast University,

United States

REVIEWED BY

Bertille Somon,

Université de Toulouse, France

Jüri Allik,

University of Tartu, Estonia

*CORRESPONDENCE

Zhong Yin

yinzhong@usst.edu.cn

SPECIALTY SECTION

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Neuroscience

RECEIVED 22 April 2022

ACCEPTED 08 August 2022

PUBLISHED 07 September 2022

CITATION

Zhang B, Zhuge Y and Yin Z (2022)

Design and implementation of an

EEG-based recognition mechanism for

the openness trait of the Big Five.

Front. Neurosci. 16:926256.

doi: 10.3389/fnins.2022.926256

COPYRIGHT

© 2022 Zhang, Zhuge and Yin. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Design and implementation of
an EEG-based recognition
mechanism for the openness
trait of the Big Five

Bingxue Zhang, Yuyang Zhuge and Zhong Yin*

Department of Optical-Electrical and Computer Engineering, University of Shanghai for Science and

Technology, Shanghai, China

The di�erentiation between the openness and other dimensions of the Big Five

personality model indicates that it is necessary to design a specific paradigm

as a supplement to the Big Five recognition. The present study examined

the relationship between one’s openness trait of the Big Five model and

the task-related power change of upper alpha band (10–12 Hz). We found

that individuals from the high openness group displayed a stronger alpha

synchronization over a frontal area in symbolic reasoning task, while the

reverse applied in the deductive reasoning task. The results indicated that

these two kinds of reasoning tasks could be used as supplement of the Big

Five recognition. Besides, we divided one’s openness score into three levels

and proposed a hybrid-SNN (Spiking Neural Networks)-ANN (Analog Neural

Networks) architecture based on EEGNet to recognize one’s openness level,

named Spike-EEGNet. The recognition accuracy of the two tasks was 90.6 and

92.2%. This result was highly significant for the validation of using a model with

hybrid-SNN-ANN architecture for EEG-based openness trait recognition.
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1. Introduction

1.1. Background

In modern personality psychology, the theory of personality traits defines traits

as relatively enduring and stable patterns of behavior, thought, and emotion, which

influence individuals’ behaviors and make their responses consistent with different

situations. Over a hundred years of research, psychologists applied factor analysis to

personality survey data and revealed five underlying factors: extraversion, neuroticism,

conscientiousness, agreeableness, and openness to experience (Costa and McCrae, 1976;

McCrae and Costa, 1987; McCrae and John, 1992). These five traits were known as the

“Big Five” personality traits. The Big Five personality traits were applied to multiple

fields, such as personnel selection (Holland, 1966; Kern et al., 2019) and mental disorder

detection (Khan et al., 2005; Cuijpers et al., 2010).
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A great deal of previous studies demonstrated that each

trait of the Big Five was more or less correlated with emotional

reactivity and affected response. For example, individuals

scoring high in neuroticism are more likely to experience

negative feelings (e.g., upset, depression, anxiety, jealousy)

(Dolan, 2006; Hettema et al., 2006) while agreeableness was

negatively related to negative affect (Kuppens, 2005; Letzring

and Adamcik, 2015). However, inconsistent results were found

in the study of the relationship between openness trait and

emotional reactivity (Shiota et al., 2006; Letzring and Adamcik,

2015). Differing from other traits of the Big Five, openness was

more strongly related to the intellect rather than affect (McCrae

and Costa, 1991; Ready and Robinson, 2008). Those scoring high

in the openness dimension were intellectually curious, tended to

think in symbols and abstractions, and found repetition boring

(Venville et al., 2013). Therefore, openness reflected the ability

to process abstract and perceptual information, indicating that

it had an underlying connection with one’s cognitive interest

and ability (DeYoung et al., 2005). Agreement on how to

interpret and contextualize the openness factor has not yet been

reached. Most importantly, openness was the only dimension

of the Big Five to be consistently and positively associated with

intelligence (DeYoung et al., 2005). In view of the importance

and particularity of openness, it has research and practical value

to establish a reliable and accurate measurement method for it.

Like other traits of the Big Five, a common-used measure

to evaluate one’s openness trait is self-report, which is widely

based on questionnaires [e.g., the Revised NEO-Personality-

Inventory (NEO-PI-R, Costa and McCrae, 2008) the Big-Five

Inventory (BFI, Carciofo et al., 2016)], and self-description

(either in sentences Fruyt et al., 2004 or single adjectives

Goldberg, 1992). These kinds ofmeasures are undoubtedly quick

and direct for self-testing. However, research studies showed that

as many as three-quarters of the test-takers achieved a different

personality type when tested again (Paul, 2010). Respondents

tended to produce comparatively higher nonresponse rates and

larger measurement errors in response to questions that were

seen as intrusive or easily raised concerns about the possible

repercussions of disclosing information (Tourangeau and Yan,

2007). The situation would be even worse when it comes to

competitive scenes such as personnel selection. For example,

applicants may paint them in the best light in order to obtain

the position they want. Therefore, the response to self-report

questionnaires would be fake and false.

Compared with the self-report methods mentioned above,

brain physiological data offers a more credible way to assess

one’s openness because it is spontaneously formed and thus

hardly forged. Although at its seedling stage, efforts have

been made to explore the relationship between the openness

trait and various physiological data. However, many of the

findings were based on costly and immobile brain imaging

devices (e.g., functional magnetic resonance imaging DeYoung

et al., 2009; Jiang et al., 2018 and magnetic resonance imaging

DeYoung et al., 2010; Liu et al., 2013), which were hardly

applied into practice. One feasible solution is to use

electroencephalograph (EEG), which is wearable, relatively

inexpensive, and high-temporal. By reason of the connection

between personality traits and emotional experience, most

EEG-based studies of the Big Five focused on task-state EEG

signals (De Pascalis et al., 2004; Speed et al., 2015; Suzuki et al.,

2019; Li et al., 2020a,b). Accordingly, among these works,

emotional-related materials (e.g., emotional videos and words)

were used as a stimulus for all the Big Five traits (De Pascalis

et al., 2004; Speed et al., 2015; Suzuki et al., 2019; Li et al.,

2020a,b). However, as mentioned above, openness had its

particularity, that is, it was more connected with intelligence

and cognitive ability than with emotional factors (DeYoung

et al., 2005; Lluís-Font, 2005), which resulted in inconsistent

statistical results in emotional-related studies (De Pascalis et al.,

2004; Zhao et al., 2017). Hence, for a reliable and accurate

paradigm to detect one’s openness, cognitive control paradigms

such as go/no-go task (or emotional go/no-go task Megías

et al., 2017, considering the emotional influence on openness)

might be more suitable (Amodio et al., 2007; Tottenham

et al., 2011). Nevertheless, neither emotional-related tasks nor

cognitive control tasks could directly reflect the openness trait

(including but not limited to imagination, cognitive exploration,

and intelligence, especially the tendency to process abstract

inputs).

According to the behavioral characterization of openness, it

is not hard to find that openness partly reflects the ability and

tendency to seek and comprehend complex patterns of abstract

information (i.e., individuals with high openness are better at

understanding abstract symbols and paintings) (Rawlings, 2000;

Feist and Brady, 2004; DeYoung, 2015). Some findings from

the neuroscience theory might support this view. The present

research study based on personality neuroscience speculated

that openness might be related to the dorsolateral prefrontal

cortex (DeYoung et al., 2005; Adelstein et al., 2011). This region

was thought to be involved in high-level cognitive processes,

such as integration, abstraction, and evaluation. Privado et al.

(2017) proposed that auditory and visual information processed

by temporal and occipital regions might be transferred to

the frontal lobes for applying these processes involved with

facets belonging to the openness trait, such as imagination or

intellectual curiosity. From the perspective of behavioral data,

the correlation between the openness dimension of the Big Five

and other well-known personality models could also give us

some inspiration. For instance, statistical results showed that

openness was positively correlated with “intuition”—one type

from sensing-intuitive dimension of the Myers-Briggs Type

Indicator (MBTI) (McCrae and Costa, 1989; Furnham, 1996).

In MBTI model, intuitive individuals corresponding to highly

open individuals prefer abstract information (e.g., symbols,

metaphors) and underlying patterns (Martin, 2001). In light

of the above, it is suggested that abstract visual stimulus, such
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as abstract symbols, could reflect one’s openness from both

behavioral data and the neuroscience theory.

1.2. Mixed-reasoning task

EEG enjoys its portability and relatively inexpensive

cost than other neuroimaging techniques. In this paper,

we proposed a mixed-reasoning task, consisting of two

counterbalanced intellectual-related tasks—symbolic reasoning

task and deductive reasoning task (more like a verbal

intelligence task which pays more attention to vocabulary

and comprehension), as a more explainable EEG-based

assessment of openness. The main reason why we introduced a

counterbalanced deductive reasoning task into the experiment

was that general intelligence (G) was commonly subdivided

into fluid intelligence (Gf ) and crystallized intelligence (Gc).

Although openness has been shown to be more strongly

associated with Gc than Gf , both of the two facts substantially

contributed to one’s openness (Ackerman and Heggestad, 1997;

Ashton et al., 2000; DeYoung et al., 2005). Generally speaking,

symbolic reasoning tasks were widely used to measure fluid

cognitive ability.

The symbolic reasoning tasks aimed to examine an

individual’s sensitivity to symbolic and abstract stimulus while

the deductive one focused on one’s capacity to capture details

and facts. We chose Raven’s Advanced Progressive Matrices

(RAPM, Raven and Court, 1938) as the symbolic stimulus source

and Law School Admission Test (LSAT)’s logical reasoning

questions as the deductive reasoning source.

Raven’s Advanced ProgressiveMatrices asked participants to

think logically, based on the rules associated with the symbols

in the matrix diagram. RAPM was often used to assess thinking

ability, observational ability, and symbolic perceiving ability.

Using RAPM as a stimulus can prompt subjects to undertake

symbolic reasoning, thus stimulating brain perception (Zhang

et al., 2021). The LSAT Logical Reasoning section asked subjects

to choose the right answer about logical relationships after

reading and comprehending the given passages. This section

aimed to examine the subject’s ability to analyze logic from

literal description. Given the reason that the questions were

based on brief arguments drawn from a wide variety of

daily sources (e.g., newspapers, magazines, publications, and

advertisements), applying the LSAT Logical Reasoning section

to deductive reasoning could minimize the influence of the

specialized knowledge.

1.3. Task-related power of EEG alpha
band

More demanding tasks at hand were accompanied by

increases in the power of the alpha band (8-13 Hz) (hereinafter

referred to as alpha synchronization) which were interpreted

as a kind of top-down control that spontaneously happened in

mental activities, including attention distribution and memory

formation (Cooper et al., 2003; Fink et al., 2006; Benedek et al.,

2011; Jaarsveld et al., 2015). The research studies on both verbal

(Fink and Neubauer, 2006) and non-verbal (Jaarsveld et al.,

2015) intellectual-related-tasks also revealed the relationship

between TRP of alpha band and human intelligence. It was

worth noting that, besides human intelligence, TRP of alpha

band was also speculated to reflect cognitive flexibility—the

ability to break conventional rules and experiences (Fink

et al., 2006), which was, to a great extent, conformed to the

characteristics of openness. It indicated that TRP of alpha

band (especially for the intellectual-related tasks) might index

one’s openness. So far, although abundant works reported the

relationship between TRP of alpha band and human intelligence

or creativity, very few studies have applied such a conclusion to

analyze the underlying relationship between alpha power and

openness trait.

Specifically, the alpha band is usually subdivided into lower

(8–10 Hz) and upper (10–12 Hz) alpha bands. The TRP in

the upper alpha band was more sensitive to our tasks, as the

tasks were more associated with imagination and reasoning

(Niedermeyer and da Silva, 2005), while the lower band was

thought to reflect attention mobilization (Klimesch, 1999).

Hence, only the upper alpha band was considered in this paper.

1.4. Classification of one’s openness

In this paper, one’s openness trait was divided into three

levels (see Section 2), and a deep learning model was proposed.

Over the past years, models based on convolutional neural

networks have shown outstanding performance in capturing

the underlying complex features of EEG signals. Especially,

Lawhern et al. proposed a compact CNN-based model named

EEGNet and proved its generalization ability under different

BCI paradigms (e.g., sensorimotor rhythm, motor imagery)

(Lawhern et al., 2018). EEGNet could directly learn from the

original EEG signals without extracting features. However, ANN

architecture (e.g., EEGNet) belonged to the second generation

neural network, which meant the neurons “spiked” at a fixed

frequency. This was not consistent with the real mechanism of

the human brain. In light of this, the model using a learning

method could encode EEG signals into precisely timed spike

trains, which might better learn from the temporal and spatial

variations of data.

A spiking neural network (SNN) represents information as

binary events (spikes) (Zhan et al., 2021), and thus is thought to

correspond more to the biological neuron model. The neurons

of SNN fire when the membrane potential accumulates to

a set firing threshold. Therefore, SNN provides a promising

capacity to model complex information processing in the brain
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(Beyeler et al., 2013; Kulkarni and Rajendran, 2018; Zhan

et al., 2021). Recent studies have proved that SNN had a

better performance in multiple EEG tasks, such as brain disease

diagnosis (Ghosh-Dastidar and Adeli, 2007; Capecci et al.,

2015; Doborjeh et al., 2015), motor imagery signal classification

(Carino-Escobar et al., 2016; Mashford et al., 2017; Niranjani

and Sivachitra, 2017), and P300 signal classification (Goel et al.,

2006, 2008).

However, the limitation of the SNN-based model for EEG

tasks was that pure SNN architecture was time-consuming

to be trained because the update of weights was based on

unsupervised learning rules (e.g., Caporale et al., 2008) in most

of the previous studies. On the other hand, the number of spikes

were found to decrease rapidly in deep layers (Srinivasan et al.,

2020). This made a deep SNN architecture hard to converge (an

SNN architecture distinguished different categories by output

spikes, so inadequate spikes were not significant to distinguish

different categories). In view of the above, we proposed a hybrid-

SNN-ANN model based on EEGNet, named Spike-EEGNet in

this paper.

1.5. Hypotheses

All in all, it was expected that openness would be

contextualized by the mixed-reasoning task, through both EEG

signals and behavioral data. Specifically, we hypothesized that

openness was associated with two variables—accuracy and

TRP of alpha band. We assumed that openness would be

positively correlated with the performance of two reasoning

tasks (symbolic and deductive). Regarding the physiological

signals, we hypothesized that higher openness would result

in stronger alpha synchronization in both tasks. Concerning

the classification model, we expected that a hybrid-SNN-ANN

architecture would have a better performance than pure ANN

architecture, without sacrificing much time.

2. Methods

2.1. Label one’s openness

The Chinese Big Five Personality Inventory brief version

(CBF-PI-B, Wang et al., 2010) was used to measure participants’

openness. The questionnaire was a 6-point Likert scale including

40 items, 8 measures for each trait. The internal consistency

coefficients (Cronbach’s alpha: extraversion = 0.80, openness

= 0.78, neuroticism = 0.81, conscientiousness = 0.81, and

agreeableness = 0.76) and the factors correlated with relevant

dimensions of NEO-PI-R (extraversion = 0.76, openness =

0.66, neuroticism = 0.74, conscientiousness = 0.85, and

agreeableness = 0.36) both indicated that CBF-PI-B had good

psychometric properties, which could be adopted in relevant

research (Wang et al., 2010).

Most previous studies on EEG-based assessment of

personality were mainly based on binary classification and

reported a substantial accuracy (Farnadi et al., 2016; Zhao

et al., 2017). A binary classification meant, in short, that all

individuals scoring below the threshold were classified as a low

type and those scoring above the threshold were classified as the

opposite type. However, this kind of classification was limited to

its statistical meaning. A mountain of evidence has revealed that

the overall scores of personality scales were actually distributed

in a centrally peaked manner, which was more similar to a

normal distribution than a bimodal distribution. It indicated

that the majority of people actually lay near the middle of the

scale (Howard and Howard, 1995; Bess and Harvey, 2002;

Chamorro-Premuzic et al., 2005; Fleeson and Gallagher, 2009),

rather than near both end of the scale.

In this work, the openness recognition task was defined as

a ternary classification task. In view of a normal distribution

of scores on all the Big Five dimensions (Howard and Howard,

1995; Fleeson and Gallagher, 2009), we made a division based on

the mean scores (µ) and standard deviation (σ ) for the openness

dimension of all the participants: scoring below µ − σ as low

openness, between µ − σ and µ + σ as medium openness,

above µ + σ as high openness. As shown in Figure 1, a gap

was observed between the score in the range (2.8, µ − σ ),

meaning that the participants scoring below µ − σ could be

regarded as a “cluster.” Besides, the distribution of scores in

range (µ − σ , µ + σ ) could be regarded as the main modality

of the whole distribution (Shapiro-Wilk Test, p > 0.05) and the

rest could be thought of as the minor modality. In conclusion,

defining the problem as a ternary classification task was

relatively reasonable.

2.2. Participants

CBF-PI-B questionnaires were distributed to 100 college

students from the University of Shanghai for Science and

Technology, and 95 were collected. These 95 students were

then divided into three groups according to their levels of

openness, using the method we mentioned above. For each

level of openness, 8 students voluntarily participanted in

further experiments. Thus, this study examined 24 healthy

volunteer participants (12 male; age range = 20 − 31

years, mean age = 24.42 years). All participants were

native Chinese speakers, right-handed, with normal vision

or corrected to normal. All were free of neurological and

psychiatric disorders. No subjects had taken medicines and

no habitual drinkers or smokers. Written informed consent

was obtained from each participant before the investigation.

Each participant was paid a small fee for participating in

the study.
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FIGURE 1

The distribution of participant’s openness score.

2.3. Task

Participants were asked to complete the symbolic

reasoning task and deductive reasoning task in turn. In

each task, the estimated completion time was limited

to 40 min in order to reduce fatigue and cognitive load

caused by lengthy and single reasoning (Wascher et al.,

2016). Thus, four blocks of 6 trials were conducted for

both tasks.

As discussed above, RAPM and LSAT Logical Reasoning

questions were applied to the symbolic reasoning task and

deductive reasoning task separately. In each trial of the symbolic

reasoning task, participants were asked to fill in vacant positions

using the appropriate options. What is noteworthy is that

only Sections D and E of RAPM were chosen [RAPM has 60

questions, which are divided into five equal sections (Sections

A, B, C, D, E), with increasing difficulty]. Because there are

8 options for each question from Section D to E, compared

with only 5 choices for LSAT Logical Reasoning questions,

three wrong choices for each RAPM questions were removed to

ensure that the expected value of the right choice in both tasks

was equal.

In each trial of the deductive reasoning task, participants

were asked to choose the best answer from 5 choices about

the facts mentioned in or inferred from the given passage. All

questions were translated to the subject’s common language.

2.4. Procedure

Before the experiment, participants sat comfortably in

an electrically shielded room, approximately 100 cm from a

computer screen. They were instructed about the rules and the

meaning of the symbols in the tasks and given one practice trial

for each task.

During the formal tasks, each block began with the

appearance of an instruction related to the task type on the

screen. Participants were asked to press “Enter” until they fully

read and comprehend the instruction. After a 10-s fixed cross

presentation at the center of the screen, the question and choices

were presented on the screen.

In the deductive reasoning task, passages were presented

at the upper center and followed by five vertically-presented

choices. In the symbolic reasoning task, symbolic patterns were

presented at the upper center and five laterally-presented choices

were beneath it. Participants were asked to make a response

by pressing the “1” or “2” or “3” or “4” or “5” key consistent

with the given choices on the keyboard with their left or right
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FIGURE 2

(A) Experimental procedure of the two tasks. RT denotes reaction time, (B) examples according to the type of reasoning task—symbolic

reasoning on the left-hand side and deductive reasoning on the right-hand side.

index finger after they fully understood and reflected. In other

words, the reasoning time was not limited, thus eliminating the

mental workload caused by the time limitation. The question

and choices remained visible on the screen for 500 ms after the

participant pressed the button, and then were replaced by the

feedback, which was presented at the center of the screen for

1,000 ms. After a 5-s fixed cross, the subsequent trial began.

The procedure and example trials of the two tasks are shown

in Figure 2. Question display and behavioral data acquisition

were conducted using E-Prime 2.0 (Psychology Software Tools,

Inc., Pittsburgh, PA, USA). Participants were asked to take a

break between the blocks.

2.5. EEG recordings

The Emotiv Epoc+ (Emotiv Systems, San Francisco, USA)

was used for EEG recordings. The Emotiv Epoc+ was a wireless

headset with flexible plastic arms that held 14 AgCl/Ag sensors

placed at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,

andAF4 (plus CMS/DRL references, P3/P4 locations), according

to the International 10–20 system. The signals were high-pass

filtered at 0.16 Hz and pre-amplified using a low-pass filter

at 83 Hz. The EEG was then downsampled to 128 Hz, using

the Emotiv Xavier TestBench software (Emotiv Systems, San

Francisco, USA). All sensors were adjusted until the software

control panel showed “green” before the onset of the experiment,

which represented that the electrode impedance required by the

software was reached (in the 10–20 k� range).

2.6. Synchronizing the EEG and
behavioral data

Because the Emotiv systems do not have its own

synchronizing equipment, a Python script using a Python

package named pynput (https://github.com/moses-

palmer/pynput) was written to synchronize the EEG and

behavioral data. Pynput created its own thread to record

keyboard and mouse events in millisecond Unix time. In order

to reduce the possibilities of serial port conflicts, TestBench

software for EEG recording and E-Prime 2.0 for behavioral

data were run parallelly on two computers. The two same

scripts were run on these two computers separately. Both of the
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computers were networked to proofread time in real time. After

pressing a button or clicking to start EEG recording, the time

t1 was recorded. Similarly, after pressing a button or clicking

to start the experiment, the time t2 was recorded. The time

difference1t between two systems could be calculated as t2− t1.

Thus, if a time stamp recorded by E-Prime was T millisecond

after onset, its real time stamp should be T + 1t. The script was

set to terminate automatically after capturing the specific events

in order to reduce memory load.

2.7. EEG data preprocessing and
quantification of task-related alpha
power

EEGdata analysis was performed using the EEGLAB toolbox

(Delorme and Makeig, 2004) running under Matlab 7.8.0 (The

Mathworks Inc.). The EEG data was bandpass filtered from 0.1

to 50 Hz using a linear finite impluse response (FIR) filter.

The order and transition bandwidth was set to 9 and 0.35 Hz,

respectively. The processed EEG signals were then filtered for the

upper alpha frequency band (10 to 12 Hz) by employing a fast

Fourier transform (FFT) filter applied to Hanning time windows

of 1,000 ms with 900 ms overlap. Power estimates were obtained

by squaring filtered EEG signals, and then band power values

(µV2) were averaged for each single trial (Jaarsveld et al., 2015).

The TRP changes of single trial for each electrode position i in

the alpha band were quantified according to the formula:

TRP(i) = log[Powi,activation]− log[Powi,reference] (1)

by following the method of Pfurtscheller (1999). For each trial,

the 5-s time interval during the presentation of the fixation cross

was served as a reference interval, and the activation interval

was defined as 1-s time interval before a response was made.

For both the reference and activation intervals, EEG data were

carefully checked for artifacts, and artifactual epochs caused by

muscle tension, eye blinks, or eye movements were excluded

from further analysis. For each task, the TRP changes of the

alpha band for each participant were averaged to minimize

noise. Thus, a positive value of TRP represented the alpha

synchronization from reference interval to activation interval

while a negative value reflected power decrease (hereinafter

referred to as alpha desynchronization).

2.8. Statistics

For behavioral data (response time and accuracy), a two-

way repeated-measures analysis of variance (ANOVA) was

performed, with openness level (low vs. medium vs. high) as

between-subject factors and type of task (symbolic reasoning vs.

deductive reasoning) as within-subject factors.

Regarding TRP measurements, a two-way repeated-

measures analysis of variance (ANOVA) was performed

separately on each task, with openness level (low vs. medium

vs. high) as between-subject factors and brain areas [AF3,4

(anterior frontal), F3,4, F7,8 (frontal), FC5,6 (fronto central),

T7,8 (temporal), P7,8 (parietal), and O1,2 (occipital), where

odd and even numbers indicate the left and right hemisphere,

respectively] as within-subject factors. Post-hoc analysis

of the interaction was computed with Tukey HSD multi-

comparison. Pearson correlation coefficients were calculated

when appropriate. The alpha level of significance was set at

0.05 throughout the process. Significantly, in RAPM, one

participant was excluded for EEG analysis in each group,

while two participants were excluded in LSAT, due to excessive

artifacts and/or noise caused by long wear of the Emotiv Epoc+

(the saline injected into the sensors might run off). Thus, 7

participants for each level of openness in RAPM and 6 in LSAT

were used for analysis.

2.9. Spike-EEGNet

The original EEGNet consists of five blocks (input, 2 − D

convolution, depthwise 2 − D convolution, separable 2 − D

convolution, and classification block). In this paper, we only

transformed the neurons in the 2− D convolution block into IF

neurons, in order to ensure the spikes propagate to deeper layers.

The preprocessed data of one activation interval (1-s time under

128 Hz, with 14 channels) was defined as the input. The input

was firstly scaled to [−1, 1] across channels, and then fed into

the Poisson generator for T time steps. Specifically, at each time

step, each scaling data entered was compared with the generated

random number. If the scaled data were greater than the random

number, an output spike was fired. The plus-minus sign of the

scaled data was also reserved for the output spike. The output

spike was then fed into the 2 − D convolution block with IF

neurons. The membrane potential V of the IF neurons in 2− D

convolution block was updated using the following formula:

V[t + 1] = V[t]+ w ∗ o[t] (2)

where w represented the synaptic weights of 2 − D convolution

block, o[t] represented the output spike generated from the

Poisson generator at discrete timestep t. Once the membrane

potential reached the set threshold Vth, it emitted an output

spike and reset to zero. The algorithm was repeated over all the

timesteps, and the membrane potential after the last timestep

was fed into the following blocks, as the original EEGNet did.

It was noteworthy that because the spike train generated from

IF neurons was discontinuous, the gradients of the IF neurons

were approximated as 1
Vth

, based on the method of Lee et al.

(2020). The forward and backward propagation algorithm of

Spike-EEGNet is described in Algorithm 1.
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Require: Mini-batch of scaled input (X) - target

(Y) pairs, total number of discrete time-steps

(T), synaptic weights of 2-D convolution block

with IF neurons(wS), outputs in SNN block

(oS), ANN outputs (oA), membrane potential(V),

firing threshold (Vth), other ANN blocks

nonlinearity(f), wights of other ANN blocks

(wA), loss fuction (Loss)

1: Initialize V[t] = 0

2: // Forward propagation of 2-D convolution block

with IF neurons

3: for t = 1 to T do

4: oS[t] = PoissonGenerator(X)

5: V[t] = V[t − 1]+ w ∗ os[t]

6: if V[t] > Vth then

7: oS[t] = 1; V[t] = 0

8: end for

9: // Forward propagation of other blocks

10: oA = f (wA ∗ V[T])

11: // Backward propagation of other blocks

12: 1wA =
∂Loss
∂oA

∂oA
∂wA

13: // Backward propagation of 2-D convolution

block with IF neurons

14: 1wS =
∂Loss
∂oS[T]

∂oS[T]
∂V[T]

∂V[T]
∂wS

, where ∂oS[T]
∂V[T] =

1
Vth

Algorithm 1. Forward and backward propagation of Spike-EEGNet for

an Iteration.

In RAPM, 504 samples were available for training and

testing (7 participants in each group, 24 time-intervals for each

participant), while 432 in LSAT (6 participants in each group,

24 time-intervals for each participant). For each task, 80% of

samples were split for training, while 20% for testing. Accuracy,

precision, recall, and F1 score were chosen as the criteria to

evaluate the performance of the model. The standard results

were averaged after 5-fold cross validation.

The architecture of Spike-EEGNet is shown in Table 1. The

firing threshold Vthand timestep T were set to 2 and 16 in

both datasets.

3. Result

3.1. Self-reported openness score

The distribution of 95 individual scores is shown in Figure 1.

Shapiro-Wilk Test was applied before further analysis in order

to guarantee the normality assumption (p > 0.05). There was

no significant difference between the scores of male participants

and those of female participants. The mean scores and SD for

the openness traits dimension were 3.75 and 0.71, respectively.

Therefore, according to our classification, individuals with low

openness were quantified as those scoring below 3.04, while high

openness individuals obtained scores over 4.46.

3.2. Accuracy

As shown in Figure 3A, for medium and high openness,

higher accuracy was obtained in symbolic reasoning tasks

than in deductive reasoning tasks. In symbolic reasoning task,

accuracy appeared to be positively correlated to openness.

In addition, no significant difference could be visualized for

deductive reasoning tasks. Statistical comparisons supported

these observations. The two-way repeated measures ANOVA

revealed significant main effect of openness [F(2,42) =

14.67, p < 0.0001], significant main effect of task [F(1,42) =

187.20, p < 0.0001], and significant interaction [F(2,42) =

11.94, p < 0.0001]. Post-hoc analysis of interaction showed

higher accuracy in medium and high openness groups than

in low openness group in symbolic reasoning task (both p <

0.001), and higher accuracy in symbolic reasoning task than in

deductive reasoning task in both medium and high levels of

openness (both p < 0.001). Further, regarding the symbolic

reasoning task, a significant strong correlation between the

openness score and accuracy was found (Pearson’s r = 0.45, p <

0.05, Figure 3B). Results showed there was no significant

difference among openness levels in deductive reasoning tasks.

3.3. Reaction times

Regarding RTs, the two-way repeated measures ANOVA

revealed a significant main effect of task [F(1,42) = 64.46, p <

0.0001, Figure 4], indicating that deductive reasoning tasks cost

more time than the symbolic one. Although in the deductive

reasoning task, the RTs of high and low openness groups seemed

to be higher than those of the medium openness group, no

significance was found.

3.4. TRP of the alpha band in RAPM

Figure 5A shows the TRP of the alpha band at 7 brain areas

in RAPM. We could observe that compared with the other

two groups, the alpha synchronization of the high openness

group was significantly stronger, mainly over frontal areas (F7/8,

F3/4 electrodes).

Statistical comparisons on TRP supported these

observations. The two-way repeated measures ANOVA

revealed a significant main effect of openness level

[F(2,126) = 5.41, p < 0.01] and a significant main effect

of brain area [F(6,126) = 4.87, p < 0.01]. No significant

interaction was found. Post-hoc analysis of main effects showed

that the difference in TRP between openness levels was
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TABLE 1 Spike-EEGNet architecture.

Block Layer Numbers of filters size of filter Output Remarks

1 Input (14,128)

Poisson generator (14,128)

2 2D convolution with IF neurons 8 (1,64) (8,14,128) Padding= same

BatchNorm (8,14,128)

3 Depthwise 2D convolution 16 (14,1) (16,1,128) Padding= valid

ELU activation (16,1,128)

Average pooling (1,4) (16,1,32)

Droupout (16,1,32) p = 0.5

4 Separable 2D convolution 16 (1,16) (16,1,32) Padding = same

BatchNorm (16,1,32)

ELU activation (16,1,32)

Average pooling (1,8) (16,1,4)

Droupout (16,1,4) p = 0.5

5 View (64)

Dense (3)

Softmax (3)

FIGURE 3

(A) Participants’ accuracy according to the type of reasoning task—symbolic reasoning on the left-hand side and deductive reasoning on the

right-hand side, (B) Pearson’s correlation scores computed between the openness scores and accuracy in the deductive task, according to the

openness level—low, medium, and high openness corresponding respectively to green, pink, and blue bars/dots.

significant over F7/8, F3/4 (both p < 0.05). No significance was

found in other areas.

3.5. TRP of the alpha band in LSAT

Figure 5B shows the TRP of the alpha band at 7 brain areas

in LSAT. In contrast to the RAPM, we could observe markedly

stronger alpha synchronization in the low openness group than

the other two groups mainly over anterior frontal and frontal

areas (AF3/4, F7/8 electrodes).

Statistical comparisons on TRP supported these

observations. The two-way repeated measures ANOVA

revealed a significant main effect of openness level

[F(2,105) = 9.12, p < 0.01] and a significant main effect

of brain area [F(6,105) = 8.91, p < 0.01]. No significant

interaction was found. Post-hoc analysis of main effects showed

that the difference in TRP between openness levels was

significant over AF3/4, F7/8 (both p < 0.05). No significance

was found in other areas.

3.6. Classification performance

We compared the performance of original EEGNet and

Spike-EEGNet on our two datasets separately. Figure 6 shows
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FIGURE 4

Participants’ RTs according to the type of reasoning task—symbolic reasoning on the left-hand side and deductive reasoning on the right-hand

side, according to the openness level—low, medium, and high openness corresponding, respectively, to green, pink, and blue bars.

FIGURE 5

Task-related power (TRP) changes in the upper alpha band over seven channel pairs, (A) in RAPM, (B) in LSAT, according to the openness

level—low, medium, and high openness corresponding, respectively, to green, pink, and blue dots.

the results of the original EEGNet and Spike-EEGNet on

accuracy, precision, recall, and F1 score. It could be seen

that, in RAPM dataset, Spike-EEGNet achieved recognition

accuracy of 90.6%, a precision of 88.2%, a recall of 85.3%,

and an F1 score of 85.8%. Meanwhile, Spike-EEGNet

achieved a recognition accuracy of 92.2%, a precision of

87.4%, a recall of 89.6%, and an F1 score of 88.5%. Spike-

EEGNet achieved a better performance on all criteria.
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FIGURE 6

The performance of Spike-EEGNet and the originial EEGNet on two datasets, (A) accuracy, (B) precision, (C) recall, and (D) F1

score—Spike-EEGNet and the originial EEGNet corresponding respectively to dark blue and orange histogram.

FIGURE 7

The training process of Spike-EEGNet and the originial EEGNet, (A) on RAPM dataset, (B) on LSAT dataset—Spike-EEGNet and the originial

EEGNet corresponding, respectively, to dark blue and orange broken line.

Figure 7 shows the training process of two models on

two datasets.

4. Discussion

In this paper, we expected openness could be contextualized

by behavioral performance and EEG signals in two kinds of

reasoning tasks. We assumed that openness would be positively

correlated with accuracy and RTs. We hypothesized that higher

openness would result in stronger alpha synchronization in

both tasks.

As we expected, the accuracy of the RAPM task was generally

correlated to one’s openness, at least measuring by the O

scale of CBF-PI-B. The result was consistent with those of

previous studies (DeYoung et al., 2005; Voronin et al., 2016).
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The only point unlike the previous studies using NEO-PI

scale, openness was more modestly associated with RAPM

(the Pearson’s r between openness scale and RAPM was

round 0.3, p < 0.01) in this work. This might be ascribed

to the otherness of different scales. However, with regard to

the accuracy in deductive reasoning, no significant difference

was found among levels of openness. We suggested that it

might be attributed to the difficulty of the LSAT. This could

be also evident from the significant difference between the

RTs of the two tasks. Another possible reason was that the

deductive reasoning task, which was designed to evaluate one’s

Gc, was more or less contaminated by Gf . After all, it was a

reasoning-based comprehensive task. Even so, the significant

difference between the accuracy of the two tasks in high and

medium openness groups indicated that their being sensitive to

cognitive ability (fluid vs. crystallized) was different. Regarding

the RTs in each task, in agreement with previous studies,

openness did not correlate with the overall computational speed

(Bates and Shieles, 2003; Voronin et al., 2016). This indicated

that levels of openness might not substantially influence an

individual’s attention and concentration during relatively long-

time reasoning.

In both reasoning tasks, the difference in alpha

synchronization among openness levels was mainly showed

in (anterior) frontal areas. Thus, the following discussion was

restricted in these areas. In RAPM, our results supported

the position that higher openness groups displayed stronger

alpha synchronization in certain areas, presumably indicated

that higher openness individuals had more original ideas

in capturing the underlying patterns between geometric

components, based on the theory of Jaarsveld et al. (2015).

In LSAT, however, the reverse applied. For the low openness

group, this could be interpreted as a reduced excitability

level of neurons in verbal understanding than in symbolic

understanding, while in high openness group the opposite

was found (Jung-Beeman et al., 2004). Such opposite results

were also found among typical divergent thinking tasks

(usually involving high internal processing demands, e.g.,

LSAT) and typical convergent thinking tasks (often involving

higher bottom-up processing, e.g., RAPM) (Benedek et al.,

2011; Jaarsveld et al., 2015). In light of this, during deductive

reasoning, low openness individuals presumably had better

internal processes of retrieval and recombination of semantic

associations of the stimulus concept, thereby reducing the need

for further bottom-up processing of the stimulus (Benedek

et al., 2011).

Concerning the classification model, as we expected, a

hybrid-SNN-ANN architecture could improve the performance

of the pure ANN architecture. Surprisingly, Spike-EEGNet

reached a stable accuracy faster than the original EEGNet. It

is noteworthy that the hybrid-SNN-ANN architecture will be

more energy-consuming than the pure ANN one, due to the

reasoning phase among the given timesteps. The reasoning

phase is nonparallel. It was suggested to reduce the timesteps if

necessary. In this work, the timestep was set to 16 throughout.

A longer reasoning timestep might improve the performance

because the initial spike generated from the Poisson generator

would be more approximate to the true distribution.

5. Conclusion

In this paper, we proposed a mixed-reasoning-task to index

one’s openness trait of the Big Five. RAPM was applied to

the symbolic reasoning task, and LSAT was applied to the

deductive reasoning task. We found that individuals from the

high openness group displayed a stronger alpha synchronization

over the frontal area in the symbolic reasoning task, while the

reverse applied in the deductive reasoning task. The results

indicated that the differentiation of individuals’ openness trait

could reflect in alpha synchronization of the frontal area in these

two kinds of reasoning tasks.

We proposed a hybrid-SNN-ANN model named Spike-

EEGNet, based on the original EEGNet. In both datasets, Spike-

EEGNet had a better performance. This result was highly

significant for the further exploration of using hybrid-SNN-

ANN architecture for EEG tasks.
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