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Abstract: Crosstalk between the gut microbiome and the host plays an important role in animal
development and health. Small compounds are key mediators in this host–gut microbiome dialogue.
For instance, tryptophan metabolites, generated by biotransformation of tryptophan through com-
plex host–microbiome co-metabolism can trigger immune, metabolic, and neuronal effects at local
and distant sites. However, the origin of tryptophan metabolites and the underlying tryptophan
metabolic pathway(s) are not well characterized in the current literature. A large number of the
microbial contributors of tryptophan metabolism remain unknown, and there is a growing interest
in predicting tryptophan metabolites for a given microbiome. Here, we introduce TrpNet, a com-
prehensive database and analytics platform dedicated to tryptophan metabolism within the context
of host (human and mouse) and gut microbiome interactions. TrpNet contains data on tryptophan
metabolism involving 130 reactions, 108 metabolites and 91 enzymes across 1246 human gut bacterial
species and 88 mouse gut bacterial species. Users can browse, search, and highlight the tryptophan
metabolic pathway, as well as predict tryptophan metabolites on the basis of a given taxonomy profile
using a Bayesian logistic regression model. We validated our approach using two gut microbiome
metabolomics studies and demonstrated that TrpNet was able to better predict alterations in in indole
derivatives compared to other established methods.

Keywords: tryptophan metabolism; gut microbiome; co-metabolism; genome-scale metabolic model;
network; indole derivatives

1. Introduction

The gut microbiome is a community of metabolically active microorganisms inhabiting
all niches along the intestines that coevolves with its host. Growing evidence has shown
that the gut microbiome plays a critical role in animal development and health [1]. Dis-
ruptions in microbiome composition, termed dysbiosis, are implicated in various diseases
including gastrointestinal diseases [2], infectious diseases [3], metabolic diseases [4,5], and
neurological disorders [6]. Dysbiosis leads to a shift in the production of various microbial
metabolites which then influence the physiology and immune status of the host [7]. Among
these bioactive metabolites, short-chain fatty acids (SCFAs, produced by bacteria from
fermenting dietary fibers), secondary bile acids (originated in liver and transformed by gut
microbiome), and tryptophan-derived metabolites are most well known.

Microbes can degrade tryptophan to a range of indoles including indolelactate (ILA),
indoleacetic acid (IAA), indolealdehyde (IAld), indoleacrylic acid (IA), and indolepro-
pionate (IPA). These can activate the aryl hydrocarbon receptor (AhR), a transcription
factor widely expressed by cells in the immune system, regulate intestinal homeostasis [8],
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initiate an immune response [9], and control oxidative stress defense [10]. AhR activation
is associated with multiple diseases such as inflammatory bowel disease (IBD) [11], type 2
diabetes [12], and central nervous system (CNS)-related disorders [13].

To understand the health impact of tryptophan metabolites in host–microbiome inter-
actions, it is essential to have detailed knowledge of tryptophan metabolism. Researchers
can find related reactions and enzymes in several databases including Kyoto Encyclopedia
of Genes and Genomes (KEGG) [14], BioCyc [15], Small Molecule Pathway Database (SM-
PDB) [16], and WikiPathways [17]. Among them, SMPDB and WikiPathways are mainly
concerned with host tryptophan metabolism, while KEGG and BioCyc provide very lim-
ited information on tryptophan degradation across the gut microbiome. In particular, the
origins of tryptophan metabolism are assigned at the enzyme level, and it is difficult to
obtain the reactions and metabolites of a single species or from the microbial community.
Moreover, not all tryptophan metabolites can be found in these databases. For instance, IPA,
an important neuroprotective antioxidant produced by the human gut microbe represented
by Clostridium sporogenes, is currently missing in KEGG.

Predicting metagenomic functions on the basis of microbiome composition has at-
tracted great attention in recent years. Current tools, such as PICRUSt [18] and Tax4Fun [19],
focus on enzyme- and pathway-level predictions and cannot be directly used to understand
the biological effects driven by metabolites. In addition, the bias and missing information in
their underlying databases pose inherent limitations on more focused analyses, such as on
microbial tryptophan metabolism. To elucidate the microbial contributors for tryptophan
metabolites, it is necessary to have a dedicated resource covering all the existing reactions
in tryptophan degradation.

The rapid advancements in omics technologies and bioinformatics have joined forces
to systematically decipher the function of gut microbiome. For instance, metagenomics
and metabolomics led to the discovery of thousands of microbe-derived small molecules,
as well as the genes associated with their productions [20]. Meanwhile, genome-scale
metabolic models (GEMs) aim to accurately capture an organism’s metabolism by integrat-
ing information obtained from genome annotation, biochemical reaction, manual curation,
and literature review. High-quality GEMs are now available for numerous microorgan-
isms and serve as good resources for large-scale investigations of microbial tryptophan
metabolism [21]. Several recent studies have employed GEMs to infer the relationships be-
tween phenotypic differentiation and metabolic capacities [22], to predict drug targets [23],
and to understand tryptophan-metabolizing microbes involved in murine diarrhea [24].
The tryptophan metabolism pathways can be extracted from the GEMs to help understand
the tryptophan metabolism distribution across the gut microbiome.

Here, we introduce TrpNet (https://www.trpnet.ca) which systematically collects the
metabolites, reactions, and enzymes involved in tryptophan metabolism with specific atten-
tion to their microbial producers. TrpNet currently describes the tryptophan degradation
pathways across ~5000 bacterial species including most known gut microbial species. Users
can easily navigate TrpNet to find the origins of tryptophan metabolites or to generate
tryptophan metabolism networks for selected microbes. Lastly, TrpNet allows researchers
to predict tryptophan metabolites from any given taxonomic profiles on the basis of a
Bayesian logistics regression model.

2. Results

The overall workflow for the development of TrpNet is shown in Figure 1. The details
of key steps are described in the subsequent sections.

https://www.trpnet.ca
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ported to be produced by brain cells in certain cases and may play specific roles in the 
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ferent way through the kynurenine pathway. For instance, gut species Burkholderia cepacia 
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2.1. Literature Search and Intestinal Tryptophan Metabolism

We define the tryptophan metabolism pathway as a set of reactions that transfer
tryptophan to an end product without further searchable reactions or breakdown of trypto-
phan until the energy metabolism. To enumerate the metabolic reactions and metabolites
regarding tryptophan biotransformation in microbes and their mammalian hosts, we man-
ually searched and compared over 300 biochemical and metabolomic research papers on
tryptophan metabolites, 37 reviews published in the last 5 years, and 14 public databases.

As shown in Figure 2, tryptophan metabolism generates 29 bioactive metabolites via
three major pathways—indole pathway, serotonin pathway, and kynurenine pathway. The
indole pathway, converting tryptophan into indole derivatives, including AhR ligands,
predominates in gut microbes, while the serotonin and kynurenine pathways predomi-
nate in mammalian hosts. However, the origins of some tryptophan metabolites, whether
microbe-derived or host-derived, are inconsistent across previously published reviews.
In addition, most reports focused on the indirect roles of the gut microbiome in modu-
lating kynurenine and serotonin production through non-tryptophan metabolites such
as butyrate, an important SCFAs derived from gut microbes [25]. The direct production
of kynurenines and serotonin by gut microbes is not well characterized. For instance,
serotonin was termed as a host-limited metabolite [26], yet our investigation showed that
several species such as Lactococcus lactis, Lactobacillus plantarum, and Klebsiella pneumoniae
produced serotonin in a similar way to their mammalian host via aromatic amino-acid
decarboxylase (AAAD) [27–29]. Another important neurotransmitter, tryptamine, was
traditionally regarded as a microbial metabolite produced by Clostridium, Ruminococcus,
Blautia, and Lactobacillus through tryptophan decarboxylases [13]. However, it is also
reported to be produced by brain cells in certain cases and may play specific roles in
the mammalian brain [30]. In addition, some gut microbes can degrade tryptophan in
a different way through the kynurenine pathway. For instance, gut species Burkholderia
cepacia was reported to convert tryptophan to 2-amino-3-carboxymuconate semialdehyde,
which was further enzymatically degraded to pyruvate and acetate via the intermediates
2-aminomuconate and 4-oxalocrotonate rather than the known mammalian pathway which
transforms 2-aminomuconate to 2-ketoadipate and, ultimately, glutaryl-coenzyme [31].
Compared with the most recent reviews [26,32–34] on the bioactive tryptophan metabolites,
we updated the origin of all collected tryptophan metabolites including three inconsistent
annotations of the kynurenines according to the current literature searches. The results
were further cross-validated and enhanced with the information obtained from mining the
GEMs, as described below.
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2.2. Curation of Genome-Scale Metabolic Models

GEMs are knowledge-based stoichiometric-balanced metabolic networks containing
the entire set of metabolic reactions, genes, and metabolites in the target organism [35].
Current developments in systems biology allow for the large-scale reconstruction of GEMs
for numerous microorganisms. For instance, AGORA is a set of semiautomatically gen-
erated GEMs for 818 gut bacteria [36], and EMBL_GEMs is another large collection (5584
bacteria) for all reference and representative bacterial genomes of NCBI RefSeq [37] using
CarveMe [38]. The reconstruction tools for both AGORA (assembly of gut organisms
through reconstruction and analysis) and EMBL_GEMs were evaluated outstanding among
the general tools, especially in gap-filling the network [39].

A total of 6402 GEMs covering 41 phyla were collected from AGORA and EMBL_GEMs.
Most GEMs are at a strain level except for 73 at the species level and 333 models belonging
to same strains shared between the two datasets. GEMs were manually annotated accord-
ing to literature searches [40–44], of which 2114 models were labeled as the human gut
microbe covering 1380 species of 30 phyla, and 177 were part of the mouse gut microbiome
from 98 species of 10 phyla. The reactions, metabolites, and enzymes involved in microbial
tryptophan metabolism were extracted from GEMs. These include nearly 5000 species
belonging to 39 phyla and involve tryptophan metabolism covering 1246 species in the
human gut and 88 species in the mouse gut (Figure 3). The results were corroborated by
literature searches to reconcile inconsistencies between AGORA and EMBL_GEMs, as well
as to make the GEM data as complete as possible.
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Figure 3. Distribution of tryptophan metabolite production across the human gut microbiome. Each
branch indicates a microbe strain colored on the basis of their phyla (3HAA: 3-hydroxyanthranilate;
FKYN: formylkynurenine; HKYN: 3-hydroxykynurenine; IA: 3-indoleacrylate; IAA: indole-3-acetate;
IAAlD: indole-3-acetaldehyde; Iald: indole-3-carboxaldehyde; IAM: indole-3-acetamide; IE: indole-
3-ethanol; ILA: indolelactate; IPA: indolepropionate; IPY: indolepyruvate; KYN: L-kynurenine;
QA: quinolinate).

2.3. Development of a Database for Tryptophan Metabolism and Functional Prediction

Following two major procedures described above, the final tryptophan metabolism
pathway contains the entries for 130 reactions and 108 metabolites (excluding currency
compounds such as water, hydrogen, oxygen, etc.) linking to 91 enzymes and more than
5000 GEMs. We developed a user-friendly web-based database and visual analytics tool -
TrpNet (https://www.trpnet.ca/, accessed on 23 November 2021) to share this resource
with the community. Users can browse, search, and filter reactions, metabolites, or microbes
involved in tryptophan metabolism and visualize more detailed information and summary
tables in multiple formats. Whenever possible, different entries are hyperlinked to PubMed,
KEGG [14], BioCyc [15], and ModelSEED [21].

A main motivation of developing TrpNet is to help understand the relationship be-
tween the gut microbiome composition and the capacity for tryptophan metabolism. We
designed the interface and functions to allow users to easily obtain the distribution of
tryptophan metabolite production at different taxonomy levels. Figure 4 shows the pair-
wise distance between the phylogenetic tree from the dominant genus in the host gut and
the corresponding metabolic clusters, according to the presence or absence of tryptophan
metabolite production. It can be observed that phylogenetically close species may differ in
their capacities in metabolite production. These data will help to resolve some inconsis-
tencies between microbiome and metabolome divergence and the coexistence of specific
species [22,45]. For instance, Bacteroides were found to be relatively conservative while
Lactobacillus fluctuated in tryptophan metabolite production depending on whether they
produced indole derivatives. Human- and mouse-specific gut microbes differed in the
production of several AhR ligands such as IA, IAA, ILA, and IPA. This may help explain
the different affinities of human AhR and mouse AhR in selecting exogenous ligands as
reported in several studies [46,47] and shown in Figure S1.

https://www.trpnet.ca/


Metabolites 2022, 12, 10 6 of 16
Metabolites 2022, 11, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. Tanglegram between the dendrograms of phylogenetic and metabolic distance. The phy-
logenetic dendrogram generated by hierarchical clustering with complete linkage of the taxonomy 
rank of maximum likelihood tree. The dendrogram of metabolic distance was calculated on the basis 
of the presence or absence of tryptophan metabolite production. Lines are colored by genus and 
connect the same microbes. 

Several computational tools such as PICRUSt2 [18] and Tax4Fun2 [19] are available 
for predicting functional profiles from 16S rRNA gene sequence data. Their performances 
are inherently limited by the known annotated enzyme groups which may not represent 
the metabolite generation. Specifically, public databases used in current tools are not tai-
lored for tryptophan metabolism, and this may lead to bias due to incomplete information. 
TrpNet provides a more complete tryptophan metabolism according to literature curation 
and GEMs that describe metabolism at strain level with the potential to predict unknown 
enzymatic reactions. Here, we explored whether we could better predict the microbial 
tryptophan metabolism using the TrpNet database. 

One constraint is that 16S rRNA data cannot reach the resolution of strain level but 
usually identify the microbiome at the genus level. To address this issue, we used a logistic 
regression model to estimate the tryptophan metabolite production potential of the inter-
ested genus depending on the metabolite distribution collected by TrpNet. This approach 
was used in previous studies [48–50] to model microbiome compositional data and to 
identify informative microbiome features. To acquire more accurate models for our pre-
diction, we fit Bayesian logistic regression models for each tryptophan metabolite accord-
ing to their distributions across the taxonomy levels. In this model, the human/mouse gut 
origin was included as a nonrandom covariate as tryptophan metabolite production dif-
fers by the niche. Tables 1 and 2 show the estimated odds ratios for the prevalence genus 
in producing bioactive indoles generated from mouse model and human model, respec-
tively. The models were firstly validated by randomly split TrpNet database, whereby 80% 
was used for training and 20% was used to evaluate the model performance. We found 
that genus levels provided relatively reliable results for different metabolites in general. 
Figure 5 shows the ROC curves of the prediction models comparing different taxonomic 

Figure 4. Tanglegram between the dendrograms of phylogenetic and metabolic distance. The
phylogenetic dendrogram generated by hierarchical clustering with complete linkage of the taxonomy
rank of maximum likelihood tree. The dendrogram of metabolic distance was calculated on the basis
of the presence or absence of tryptophan metabolite production. Lines are colored by genus and
connect the same microbes.

Several computational tools such as PICRUSt2 [18] and Tax4Fun2 [19] are available for
predicting functional profiles from 16S rRNA gene sequence data. Their performances are
inherently limited by the known annotated enzyme groups which may not represent the
metabolite generation. Specifically, public databases used in current tools are not tailored
for tryptophan metabolism, and this may lead to bias due to incomplete information.
TrpNet provides a more complete tryptophan metabolism according to literature curation
and GEMs that describe metabolism at strain level with the potential to predict unknown
enzymatic reactions. Here, we explored whether we could better predict the microbial
tryptophan metabolism using the TrpNet database.

One constraint is that 16S rRNA data cannot reach the resolution of strain level but
usually identify the microbiome at the genus level. To address this issue, we used a logistic
regression model to estimate the tryptophan metabolite production potential of the inter-
ested genus depending on the metabolite distribution collected by TrpNet. This approach
was used in previous studies [48–50] to model microbiome compositional data and to iden-
tify informative microbiome features. To acquire more accurate models for our prediction,
we fit Bayesian logistic regression models for each tryptophan metabolite according to their
distributions across the taxonomy levels. In this model, the human/mouse gut origin was
included as a nonrandom covariate as tryptophan metabolite production differs by the
niche. Tables 1 and 2 show the estimated odds ratios for the prevalence genus in producing
bioactive indoles generated from mouse model and human model, respectively. The mod-
els were firstly validated by randomly split TrpNet database, whereby 80% was used for
training and 20% was used to evaluate the model performance. We found that genus levels
provided relatively reliable results for different metabolites in general. Figure 5 shows the
ROC curves of the prediction models comparing different taxonomic levels in predicting
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IAA production. Please note that the performance measures are likely to be inflated as the
same database was used for calculating the parameters of the regression models.

Table 1. Odds ratio of dominate genera in mouse gut for bioactive indole generation (red:
p-value < 0.001; orange: p-value < 0.01, yellow: p-value < 0.05, blue p-value < 0.1 based on Wald test).

Predictors IA Indole IAAlD IAM IAA ILA IPA Tryptamine
Bacteroides 0.8786 310.4118 1.5256 0.5621 2.9424 69.0048 0.8515 0.1484

Bifidobacterium 0.8712 0.0421 0.4879 0.6081 1.0597 103.1476 0.8393 8.5582
Clostridium 413.0681 2.2526 1.6328 106.6308 0.8401 89.0063 638.3164 3.473
Desulfovibrio 0.9738 1.5226 1.2451 0.8139 14.9215 0.8931 0.9676 0.3856
Enterococcus 0.9225 2.1667 0.8861 0.7017 0.0392 0.6446 0.9017 1.0872
Escherichia 0.936 241.1231 0.087 0.7997 3.9424 226.036 0.9161 9.0402

Eubacterium 0.9783 3.7121 0.622 0.8615 16.7253 0.8792 0.9723 0.4817
Lactobacillus 0.8536 0.0324 1.9794 0.5087 1.765 36.9424 0.8227 0.4338
Mouse.gut 2.5942 2.2931 1.1424 0.937 1.8319 6.9211 2.9119 0.4471

Parabacteroides 0.9668 0.1841 0.9344 0.8384 1.2605 13.8291 0.9569 0.4585
Prevotella 0.9145 1.6855 0.7029 0.5947 0.473 0.7286 0.8969 0.1589

Ruminococcus 0.9718 0.7449 0.4029 0.8035 7.2895 0.8861 0.9651 0.3699
Streptococcus 0.8959 0.6288 0.7287 0.5533 0.527 0.6756 0.8749 19.0245

Table 2. Odds ratio of dominate genera in human gut for bioactive indole generation (red:
p-value < 0.001; orange: p-value < 0.01, yellow: p-value < 0.05, blue p-value < 0.1 based on Wald test).

Predictors IA Indole IAAlD IAM IAA ILA IPA Tryptamine
Bacteroides 0.8855 1595.5832 1.4595 0.5265 2.6489 79.5618 0.8575 0.1214

Bifidobacterium 0.9025 0.0371 0.7658 0.5674 0.7158 175.3057 0.8781 5.5164
Clostridium 414.0254 1.8606 1.2366 91.4966 1.6268 81.5643 606.5603 2.8663
Desulfovibrio 0.9683 1.55 0.6004 0.79 47.2592 0.8512 0.9593 0.3552
Enterococcus 0.9478 2.561 1.2673 0.7037 0.0322 0.7858 0.9333 0.9879
Escherichia 0.9639 318.856 0.081. 0.7677 4.0763 607.7244 0.9531 4.6206

Eubacterium 0.981 2.0208 1.2466 0.8559 10.5365 0.9035 0.9753 0.463
Human.gut 21.3204 1.4413 0.7778 342.7406 2.1685 20.4853 37.332 1876.3277
Lactobacillus 0.8757 0.1256 2.4492 0.5055 1.5343 52.7602 0.8462 0.412
Parabacteroides 0.976 0.1964 1.3015 0.8271 1.681 28.2969 0.9687 0.4121

Prevotella 0.9479 3.5273 2.0026 0.7035 1.294 0.7879 0.9332 0.2527
Ruminococcus 0.9663 0.6021 0.3477 0.7784 4.9819 0.8487 0.9562 0.3397
Streptococcus 0.8871 0.451 0.7435 0.5304 0.3467 0.6357 0.8596 18.3925

A network visualization page was implemented to allow users to search metabolites
of interest in the network or to customize the tryptophan metabolism network according to
a user-specified list of microbes (Figure 6). The result can be highlighted against the whole
network or downloaded as a table. Another key feature of TrpNet lies in the annotation for
the origin beyond the enzyme level. Reactions and metabolites were individually checked
against the literature to label them as host-derived or microbial-derived, to help decipher
the host–microbe interactions and co-metabolism.
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2.4. Case Studies
2.4.1. Myocardial Infarct (MI) Case Study

Disturbed tryptophan metabolism is known to alter the host inflammation status
and affect many diseases including heart diseases such as myocardial infarction (MI) with
an increased ratio of KYN/TRP [51]. To understand gut microbiome and host MI status
with tryptophan metabolism, we collected 16 cecal samples from 16 mice (8 with MI and
8 control) day 3 post MI. Each sample was processed for 16S rRNA bacterial sequencing
and untargeted metabolomics based on LC–MS and MS/MS. As it has been reported that
females and males have differences in the risk of MI, we included data from male mice in
our case study to exclude any additional effects of sex [52].

DADA2 [53] was used to assign taxonomy to amplicon sequence variants (ASVs). After
filtering the 712 low-quality features, the remaining 304 ASVs were attributed to 69 genera
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dominated by Lachnospiraceae spp. And Ruminococcaceae spp. For metabolomics data,
XCMS [54] and metID [55] were used for spectrum processing and peak annotation. A
total of 24 microbial tryptophan metabolites were detected in LC–MS/MS, of which nine
metabolites were significantly different including IAA, IAM, IalD, and serotonin. Statistical
analyses of microbiome data were performed using MicrobiomeAnalyst [56]. Principal
component analysis (PCA) evaluation showed that male mice without an MI differed from
male mice post MI in microbiome composition. This was caused by a lack of Proteobacteria
and Verrucomicrobia, which are active tryptophan metabolites producers in the no MI
group (Figure S2).

Prediction models built on the TrpNet database were used to predict tryptophan
metabolite production as a function of the genus-level data. Figure 7 shows the prediction
result from the gut microbiome, as well as the comparison with metabolomics data and
related enzymes predicted by PICRUSt2. Tryptophan degradation of the MI group differed
significantly from their counterparts without MI, which may be explained by their diverse
gut microbiome composition. According to our prediction, the MI group is more likely
to produce greater amounts of tryptophan metabolites, including AhR ligands such as
indole, IAM, and IAA, supporting the metabolomics data. Previous evidence has suggested
that AhR activity is a critical modulator in the development and pathogenesis of the
cardiovascular system [57]. AhR knockout mice were reported to be more susceptible to
cardiac hypertrophy, vascular remodeling and systemic hypertension [58]. However, AhR
activation can also contribute to the formation and promotion of atherosclerosis through
inducing vascular inflammation [59]. Further studies are necessary in order to elucidate the
effects on MI progression triggered by microbial AhR ligands from tryptophan metabolism.
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Our prediction also shows increased activation of the kynurenine pathway post MI.
This suggests that gut microbes may directly contribute to the increased KYN/TRP ratio,
leading to the decreased level of beneficial serotonins and accumulation of neurotoxic KYN
metabolites during the disease process. In parallel, we performed analyses using PICRUSt2.
Only enzyme EC 4.1.99.1 relating to indole production was identified as significantly
increased in the MI group, similar to the prediction by TrpNet and metabolomics data.
Thus, TrpNet can serve as a better resource for exploring intestinal tryptophan metabolism.

2.4.2. IBD Case Study

Previous studies have demonstrated the key role of the gut microbiome in IBD, and
some highlighted the potential link to gut tryptophan metabolism [60]. The 16S rRNA and
metabolomics data were collected from 26 participants between age 6 and 19 randomly
selected from the Inflammatory Bowel Disease Multi-omics Database (http://ibdmdb.org,
accessed on 17 October 2021) [61]. For each data type, 20 samples from pediatric Crohn’s
disease (CD) patients and 20 from pediatric healthy controls were also included.

http://ibdmdb.org


Metabolites 2022, 12, 10 10 of 16

From the metabolomics data annotation, nine tryptophan-derived metabolites were
observed among which seven could be produced by the microbiome. IPA was significantly
decreased in the CD group. Regarding the ASV sequencing data, 147 ASVs were annotated
to 44 genera after filtering out the low-abundance features. However, there were no
significant differences observed regarding microbiome composition between the CD and
control group (Figure S3). TrpNet was then used for tryptophan metabolite prediction
for each sample using the established model. Figure 8 shows the predicted distribution
of tryptophan metabolites in comparison with metabolomics data and EC identified by
PICRUSt2. Our prediction found the alteration of IPA validated by metabolomics and the
obligatory intermediate IA in producing IPA from tryptophan. In contrast, PICRUSt2 did
not contain the information for IPA, and the enzyme for IA was not significantly different
between CD patients and healthy controls. Indole derivatives were predicted by TrpNet
to be more abundant in healthy people than in CD patients, which is consistent with a
previous report showing a reduction in AhR ligands by the microbiota in IBD patients. Most
metabolites did not show significant differences between the two groups, probably due
to the disperse microbiome structure. Interestingly, although indolepyruvate, which can
improve intestinal epithelial barrier function during challenges with inflammatory stimuli,
was not annotated by the metabolomics data, our prediction shows its decrease in CD
patients, replicating previous results [60]. Despite serotonin being found increased in the
CD group by metabolomics analysis, which was possibly due to the decreased expression
of SERT in the ileum and colon [62], there was no significant difference according to our
prediction. Similarly, the kynurenines were not different between the two groups using all
the methods. Consequently, we can envision that gut microbes may affect IBD processing
through tryptophan-derived AhR ligands such as IPA and IPY.
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3. Discussion

Tryptophan metabolism plays a central role in host physiologic and pathologic pro-
cesses. The balance among microbial tryptophan metabolism, supplementation, and micro-
bial modulation exerts a great impact on local gastrointestinal and circulating tryptophan
availability for its host and ultimately contributes to host health and disease. Hence, it is
important to fully characterize tryptophan metabolism within a host or within its resident
gut microbes. TrpNet, a first step toward addressing this gap, includes a collection of
all currently known reactions and metabolites relating to tryptophan according to com-
prehensive literature reviews and large-scale data mining across >5000 GEMs. However,
despite our intensive curation efforts, several reactions and metabolites are still left without
related literature reports. For example, no reaction details are currently available for several
tryptophan metabolites such as for Iald, an important AhR ligand.

One of the major challenges in microbiome studies is to determine the causal role that
the gut microbiome composition plays in specific phenotypes. This is difficult due to the
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complexity of host–microbe interactions and microbe–microbe interactions. TrpNet can
help decipher this co-metabolism by providing the detailed tryptophan metabolism within
specific microbial species according to GEMs and literature annotation. Many current
studies are based on 16S rRNA sequencing, making it essential to improve functional
prediction and maximize the information gained from these relatively low-resolution
taxonomic profiles. Here, we took an initial trial to predict tryptophan metabolism from
genus-level bacterial identification using a logit regression model based on the TrpNet
database. It should be noted that this prediction is limited by the current knowledge of the
tryptophan metabolism, as well as algorithm for GEM construction or function prediction.
Optimized methods are needed to improve the annotation of microbe to metabolite levels
for mechanical and therapeutical insights. For instance, an increased KYN/Trp ratio has
been reported as a potential biomarker for inflammation status, and supplementation of gut
species that can naturally produce AhR ligands such as Lactobacillus spp. could help recover
the AhR signaling. This microbe-based therapeutic approach was successfully applied
in a mouse model of colitis [11]. As the gut microbiome can also modulate tryptophan
metabolism indirectly by producing other small molecules such as bile acids, it will be
useful to gather the information of microbes involved in these relevant processes to further
improve TrpNet.

4. Materials and Methods
4.1. Literature Review

Review papers were searched from PubMed, Web of Science, and bioRxiv (www.
biorxiv.org/, accessed on 8 October 2021) using the search term “tryptophan metabolism
AND gut microbiome” since 2017. Those studies providing a global view of and tryptophan
metabolism and focusing on the host–microbe interaction were included. Furthermore,
for each tryptophan metabolite, research paper surveys were conducted to determine its
origin. These papers showed showing at least one of the sources of genetic, enzymatic, or
metabolic evidence in certain microbial species were prioritized.

4.2. GEMs Collection

A total of 818 GEMs in AGORA were collected from the Virtual Metabolic Hu-
man (VMH) database that can be accessed via the website (http://vmh.life, accessed
on 3 September 2021), and EMBL GEMs were download from the EMBL BioModels web-
site (https://www.ebi.ac.uk/biomodels, accessed on 3 September 2021). SBML files were
parsed using R studio (version 4.1.1). GEMs were first annotated to human and/or mouse gut
microbes on the basis of several large-scale studies and public gut microbiome databases. The
models without records were then manually searched in PubMed to annotate their habitat.

4.3. TrpNet Implementation

The web-based database was developed on the basis of the JavaServer Faces (JSF)
technology using the PrimeFaces framework (v11). The network visualization was imple-
mented using D3 (version 5.0).

4.4. Sample Collection for MI Case Study

The murine experiments were approved by the Lady Davis Facility Animal Care
Committee and followed the guidelines described by the Canadian Council on Animal
Care. Retired breeder male mice were purchased from Charles River, St. Constant, PQ,
Canada. Mice were housed in single cages on irradiated corn cob bedding in a vented rack,
fed an irradiated Harlan Teklad Global 2018 diet which contains no animal protein and
acidified tap water, and acclimated to the facility for 1 month before use. Surgery to create
an MI was performed by the Surgery Core of the Lady Davis Institute [63,64]. Samples of
cecal contents were collected day 3 post MI from a total of eight male mice, as well as from
eight male mice which did not experience MI surgery. DNA for 16S rRNA sequencing was
isolated using a Qiagen QIAamp PowerFecal DNA kit according to the manufacturer’s

www.biorxiv.org/
www.biorxiv.org/
http://vmh.life
https://www.ebi.ac.uk/biomodels
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instructions. DNA samples were quantified, purity was determined, and samples sent
to the McGill Genome Center. There, the bacterial V4 region was PCR-amplified from
bases 515F to 806R, sequenced using a MiSeq Reagent Kit v3 (600-cycle), and run on an
Illumina MiSeq. Data were processed and returned as amplified sequence variants (ASVs).
R package DADA2 v 1.20.0 [53] was used to determine the abundance and gut bacterial
species assignment. Gut metabolomics data from the same cecal contents were processed
using an Orbitrap Q-Exactive LC–MS system in both positive and negative mode using
a C18 column. MS/MS spectra were collected using data-independent acquisition (DIA).
Raw LC–MS spectra were processed by MetaboAnalyst v5.0 [65] to generate a peak list
table. About 150 MS1 peaks were found to be from potential tryptophan metabolites.
According to MS/MS data, 24 tryptophan metabolites were identified using the metID
package [52] (Table S1).

4.5. Sample Collection for IBD Case Study

The dataset of pediatric IBD stool samples was downloaded from the Integrative Hu-
man Microbiome Project Consortium (iHMP) [66]. For evaluation purposes, we randomly
selected individuals between age 6 and 19 for disease (diagnosed with Crohn’s disease)
and control groups. The information of the sample is listed in Table S2, and the original
data can be found at https://ibdmdb.org/ (accessed on 17 October 2021). The tryptophan
metabolites were extracted on the basis of annotation information provided by the authors
(Table S3).

4.6. Logistic Regression Model for Predicting Metabolite Profiles

The logistic regression model was used to infer the metabolic profile from known
taxonomy compositions. This method is from the generalized linear model family and can
learn probabilistic models to predict the outcome of a binary variable from one or more
response categorical or continuous variables. In our case, we aimed to predict tryptophan
metabolite production using taxonomy profile and host type. The algorithm involved four
key steps as described below.

1. Different taxonomy levels and their combinations were evaluated for their predictive
values. Models were ranked by Akaike information criterion (AIC). The genus level
combined with the host type was selected as the best predictor;

2. The models were further optimized by Bayesian logistic regression coupled with
a fast Pareto smoothed leave-one-out cross-validation for the penalized likelihood
estimation [67]. These models capture the metabolite production potential (PM, G)
for the underlying metabolite (M) of interest in every genus (G) for a given host type;

3. The predicted probability (PM,G) was multiplied by the genus abundance table ob-
tained from 16S rRNA sequencing data to compute the accumulated production
potential for each metabolite of interest for each sample;

4. The results of all samples were normalized by total sum scaling to be comparable
with metabolomics data.

5. Conclusions

Understanding molecular dialogues between the gut microbiome and the host is
critical for developing microbiome-based diagnostic and therapeutic approaches. In this
manuscript, we focused on improving our knowledge on tryptophan metabolism by inte-
grating information from >5000 GEMs, 14 databases, and >300 literature reports. Through
its user-friendly interface and interactive visualization, TrpNet provides the most up-to-
date information for researchers to study tryptophan metabolism within the context of host
and microbiome interactions. According to this information, we further developed an algo-
rithm for predicting the microbial tryptophan metabolism from the 16S rRNA abundance
profiles. Our two case studies demonstrated that our approach gives more accurate results
compared to other established methods. We hope that TrpNet will be a useful resource that

https://ibdmdb.org/
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allows researchers to better understand the gut microbial tryptophan metabolism in the
context of the gut microbiome for translational applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010010/s1. Figure S1. Observed distribution of tryptophan metabolites production
across the predominant genus in host gut. Microbial tryptophan metabolite production differs
according to their host niche, Figure S2. Comparation of microbiome composition between MI and
NO.MI group by (a) PCA plot and (b) bar plot, Figure S3. Comparation of microbiome composition
between CD patients and health control by (a) PCA plot and (b) stack bar plot, Table S1. Metabolite
annotation of MI case study, Table S2. IBD sample information, Table S3. Metabolite annotation of
IBD case study.
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