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Abstract: Neovascular retinal degeneration is a leading cause of blindness in advanced countries.
Anti-vascular endothelial growth factor (VEGF) drugs have been used for neovascular retinal diseases;
however, anti-VEGF drugs may cause the development of chorioretinal atrophy in chronic therapy as
they affect the physiological amount of VEGF needed for retinal homeostasis. Hypoxia-inducible factor
(HIF) is a transcription factor inducing VEGF expression under hypoxic and other stress conditions.
Previously, we demonstrated that HIF was involved with pathological retinal angiogenesis in
murine models of oxygen-induced retinopathy (OIR), and pharmacological HIF inhibition prevented
retinal neovascularization by reducing an ectopic amount of VEGF. Along with this, we attempted
to find novel effective HIF inhibitors. Compounds originally isolated from mushroom-forming
fungi were screened for prospective HIF inhibitors utilizing cell lines of 3T3, ARPE-19 and 661W.
A murine OIR model was used to examine the anti-angiogenic effects of the compounds. As a
result, 2-azahypoxanthine (AHX) showed an inhibitory effect on HIF activation and suppressed Vegf
mRNA upregulation under CoCl2-induced pseudo-hypoxic conditions. Oral administration of AHX
significantly suppressed retinal neovascular tufts in the OIR model. These data suggest that AHX
could be a promising anti-angiogenic agent in retinal neovascularization by inhibiting HIF activation.

Keywords: fairy chemicals; hypoxia-inducible factor; oxygen-induced retinopathy; retinal
neovascularization; vascular endothelial growth factor; 2-azahypoxanthine

1. Introduction

Vascular diseases of the retina, including diabetic retinopathy, age-related macular degeneration,
retinopathy of prematurity and vessel occlusions, are major causes of vision loss worldwide [1,2]. It is
well known that the ischemia-mediated overexpression of vascular endothelial growth factor (VEGF)
plays a central role in the development of these diseases. The interruption of VEGF signaling has been
a good pharmacological target for the treatment of neovascular retinal diseases [3,4]. Thus, anti-VEGF
therapies have been widely used to treat pathological angiogenesis in the retina [5]. However, although
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the small doses used for these diseases and the intravitreal route of the administration may limit
systemic side effects, the drugs in chronic therapies can penetrate into blood circulation and alter the
systemic or local VEGF levels which may be required for normal vascular and neuronal maintenance [5].
Therefore, many researchers have aimed to develop novel treatments that will help to prevent or
suppress pathologic ocular neovascularization without affecting the systemic or local physiological
amount of VEGF, or at least minimizing the adverse effects of the current therapies.

Hypoxia-inducible factor (HIF) is a transcriptional factor that regulates various genes for adaptation
to cellular hypoxia [6]. Under normoxic conditions, the α subunit of HIF is immediately hydroxylated
by prolyl hydroxylase (PHD) and ubiquitinated by von Hippel–Lindau protein. Then, ubiquitinated
HIF becomes degraded [6]. Under hypoxic conditions, the activity of PHD decreases resulting in HIF
stabilization, then, the stabilized HIF translocates to the nucleus to bind the hypoxia response element
(HRE) inducing hypoxia-responsive gene expressions such as VEGF, B-cell lymphoma 2 interacting
protein 3 (BNIP3) and phosphoinositide-dependent kinase 1 (PDK1) [7,8]. Therefore, the inhibition
of HIF activation under pathologic hypoxic conditions can represent a promising approach to target
pathological VEGF expression.

We previously reported that HIF inhibitors, from anti-cancer drugs to natural marine
products, suppressed retinal neovascularization and ectopic VEGF expression in murine models
of oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) [9–11].
Moreover, another HIF inhibitor, halofuginone—a synthetic derivative of febrifugine isolated from
hydrangea—exerted a retinal neuroprotective effect on a murine ischemia–reperfusion model [12].

Mushrooms have been consumed extensively in human’ daily diets and are considered as a
delicacy with high nutritional and functional values [13]. They are of interest because of their medicinal
attributes [13]. A mushroom, Hericium erinaceus, was reported to possess a wide range of therapeutic
features such as antioxidant [14], anti-tumorigenic [15] and endoplasmic reticulum stress modulatory
activities [16], and hericenones and erinacines found from this fungus are promising candidates for
dementia therapies [17]. Ganoderma lucidum has been used as a general preventive medicine for
thousands of years in eastern Asia. Extracts of Ganoderma lucidum exhibited immunomodulatory
activity against hypoxia/reoxygenation-mediated neuronal injuries [18]. More than 10,000 species of
mushrooms exist in nature [17]; however, most of them have not been studied yet in terms of the
bioactive compounds they produce or possess.

In this study, we screened compounds isolated from mushroom-forming fungi for their effect
on HIF activity. Furthermore, we explored the therapeutic potential of the strongest candidate,
2-azahyphxanthine (AHX), on a murine model of retinal neovascular degeneration.

2. Materials and Methods

2.1. Animal

Mice were purchased from CLEA Japan (Tokyo, Japan) and housed in a temperature-controlled
environment with free access to food and water under a 12 h light–dark cycle. All animal experimental
protocols were approved by the Ethics Committee on Animal Research of the Keio University School
of Medicine (approval number #16017-1). Procedures adhered to the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research in accordance with the international standards of
animal care and use in the ARRIVE (Animal Research: Reporting in Vivo Experiments) guidelines
(http://www.nc3rs.org.uk/arrive-guidelines).

2.2. Cell Culture

Murine cell lines of fibroblast 3T3 and cone photoreceptor 661W were cultured in DMEM
(Cat #08456-36, Nacalai Tesque, Kyoto, Japan) media supplemented with 10% FBS and 1%
streptomycin-penicillin at 37 ◦C under an atmosphere containing 5% CO2. A human cell line of retinal
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epithelial ARPE-19 was cultured in DMEM/F-12 (Cat #C11330500BT, Gibco, NY, USA) media with the
same supplements as above. These cell lines were continuously maintained for in vitro experiments.

2.3. Compounds from Mushroom-Forming Fungi

Synthetic AHX and midazole-4-carboxamide (ICA) were kindly supplied by K. Okamoto (Ushio
ChemiX Co. Ltd., Shizuoka, Japan). 2-aza-8-oxo-hypoxanthine (AOH) was prepared from AHX
by microbial conversion [19]. Erinacine A was isolated from mycelia of Hericium erinaceus [20].
Hericenones C, D and E were obtained from fruiting bodies of Hericium erinaceus [21]. Grifolin and
neogrifolin were obtained from fruiting bodies of Albatrellus confluens [22,23]. All samples were stocked
in a freezer (−20 ◦C) for drug screening assays.

2.4. Luciferase Assay

A luciferase assay was performed as previously described [12]. Briefly, 3T3, 661W and ARPE-19 cell
lines were transfected with a HIF-luciferase reporter gene construct (Cignal Lenti HIF Reporter, Qiagen,
Venlo, Netherlands). The HIF-luciferase construct encodes a firefly luciferase gene under the control
of the HRE which binds HIF. The cell lines were also co-transfected with a cytomegalovirus-renilla
luciferase construct as an internal control and seeded at 1.0 × 104 cells/well/70 µL (3T3 and ARPE-19) or
0.8 × 104 cells/well/70 µL (661W) in a white sterile HTS Transwell-96 receiver plate (Corning, NY, USA).
At 24 h of cell stabilization, the cells were treated with CoCl2 (200 µM, cobalt (II) chloride hexahydrate,
Wako, Saitama, Japan) to activate HIF. To evaluate the inhibitory effects of test compounds (1 mg/mL)
against HIF activation, the cells were co-treated with each compound and CoCl2. After incubation for
24 h at 37 ◦C in a 5% CO2 incubator, luminescence was measured using a Dual-Luciferase Reporter
Assay System (Promega, Madison, WI, USA). 1 mM of Topotecan (Cayman Chemical, Ann Arbor,
MI, USA) and 1 mM of doxorubicin (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) were used for
expected HIF inhibitory positive controls.

2.5. Quantitative PCR

Total RNA from 661W cells was dissolved in TRI reagent (MRC Global, Cincinnati, OH, USA)
and transferred to Econospin columns for RNA extraction and collection (GeneDesign, Osaka, Japan).
The columns were washed with buffer RWT and RPE (Qiagen, Hilden, Germany), and the RNA samples
were analyzed by ND-2000 spectrophotometer (Thermo Fisher Scientific, DE, USA) to determine the
quantity and quality of the samples. RT-PCR was performed using ReverTra Ace qPCR RT Master Mix
with gDNA remover (TOYOBO, Osaka, Japan). Real-time PCR was performed using THUNDERBIRD
SYBR qPCR Mix (TOYOBO, Osaka, Japan) with a Step One Plus Real-Time PCR system (Applied
Biosystems, Waltham, MA, USA). The primers used are listed in Table 1. The fold change between
levels of different transcripts was calculated by the ∆∆CT method.

Table 1. Primer list.

Name Direction Sequence (5′ → 3′) Accession Number

Hprt Forward TCAGTCAACGGGGGACATAAA
NM_013556.2

Reverse GGGGCTGTACTGCTTAACCAG

Hif-1α Forward GGTTCCAGCAGACCCAGTTA
NM_001313919.1

Reverse AGGCTCCTTGGATGAGCTTT

Hif-2α Forward CTGAGGAAGGAGAAATCCCGT
NM_010137.3

Reverse TGTGTCCGAAGGAAGCTGATG

Vegf Forward CCTGGTGGACATCTTCCAGGAGTACC
AY707864.1Reverse GAAGCTCATCTCTCCTATGTGCTGGC

Bnip3 Forward GCTCCCAGACACCACAAGAT
NM_009760.4

Reverse TGAGAGTAGCTGTGCGCTTC

Pdk1
Forward GGCGGCTTTGTGATTTGTAT

NM_172665.5
Reverse ACCTGAATCGGGGGATAAAC
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2.6. Western Blotting

Proteins from 661W cells were homogenized in lysis RIPA buffer (Thermo Fischer Scientific,
Waltham, MA, USA) containing protease inhibitor cocktail (Roche Diagnostics, Basel, Switzerland).
After BCA assay for protein concentration, SDS loading buffer was added to the protein lysates and
the lysates were heated at 95 ◦C for 3 min. The heated lysates were fractionated in 10% SDS-PAGE,
transferred to PVDF membranes and then blocked with 5% nonfat dry milk for 1 h. The membranes
were incubated with primary antibodies, anti-HIF-1α (1:1000, Cat #36169, Cell Signaling Technology,
Danvers, MA, USA), anti-HIF-2α (1:1000, Cat #NB100-122, Novus Biologicals, Centennial, CO, USA)
or anti-β-Actin (1:5000, Cat #3700, Cell Signaling Technology, Danvers, MA, USA) at 4 ◦C overnight.
Membranes were washed with TBST several times, and incubated with HRP-conjugated secondary
antibodies (1:5000, GE Healthcare, Princeton, NJ, USA) for 2 h at room temperature. Signals were
detected using an ECL kit (Ez WestLumi plus, ATTO, Tokyo, Japan). Protein bands were visualized via
chemiluminescence (ImageQuant LAS 4000 mini, GE Healthcare, Chicago, IL, USA) and quantified
using NIH ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.7. Oxygen-Induced Retinopathy Model and Administration of a Compound from Mushrooms

An oxygen-induced retinopathy (OIR) model was produced as previously described [11]. Briefly,
postnatal day 8 (P8) mice (six male and five female pups) were exposed to 85% O2 for 72 h in an
oxygen supply chamber with their nursing mothers. After oxygen exposure, the mice were placed back
in room air until P17. The pups received oral administration of AHX (300 mg/kg/day) or ultrapure
water as a vehicle once a day from P12 to P16. For the oral administration, a thin tube filled with
AHX or ultrapure water was inserted into the pups’ mouths and AHX or ultrapure water was gently
administered toward their esophagi. At P17, the mice were sacrificed, and the eyes were enucleated.
The enucleated eyes were fixed for 15 min in 4% paraformaldehyde (PFA) solution. Retinal whole
mounts were post-fixed in 4% PFA for 1 h. After several times of washing with PBS, the retinal whole
mounts were stained with isolectin GS-IB4 from Griffonia simplicifolia conjugated with Alexa Fluor 594
(Invitrogen, Carlsbad, CA, USA) at 4 ◦C for 3 days. After encapsulation, retinal vessels in the retinal
whole mounts were observed with a fluorescence microscope (BZ-9000, KEYENCE, Osaka, Japan).
Photographs of the retinal whole mounts were obtained at 10 x magnification and merged into a
single using BZ-II Analyzer (KEYENCE, Osaka, Japan). The number of pixels in neovascular tufts and
vaso-obliterations was measured using the lasso and magic wand tools in Photoshop (Adobe, San Jose,
CA, USA), of which method is the most widely used [24].

2.8. Statistical Analysis

Analyses of data from all experiments were performed with GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA). Statistical significance was calculated using a two-tailed Student’s
t-test or one-way ANOVA followed by a Bonferroni post hoc test. p-values of less than 0.05 were
considered statistically significant.

3. Results

3.1. AHX Showed an Inhibitory Effect on HIF Activity

Nine compounds originally from mushroom-forming fungi were obtained (see the “Materials and
Methods” and Appendix A, Figure A1) and screened for HIF inhibitory activity via HIF luciferase
assay (Table 2). 200 µM of CoCl2 was used to induce HIF activation, and 1 mM of topotecan and
1 mM of doxorubicin were used as expected positive controls for HIF inhibition. A relatively high
dose of each compound (1 mg/mL) was chosen for gross examination. At the first screening, 3T3 cell
line was used, as this cell line has been widely used for the general understanding of roles of HIF,
and the development of a HIF-luciferase reporter stable cell line is easily available [25]. At the first
screening in 3T3 cells, AHX and AOH showed significant inhibitory effects on HIF activation induced
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by CoCl2 (Table 2). We proceeded to the next stage by using in vitro cell models for ophthalmic
drug development [26]. Thus, ARPE-19 cell line (human retinal pigmented epithelium cells) and
661W cell line (mouse immortalized cone photoreceptor cells with some features of retinal ganglion
precursor-like cells) were chosen [27,28]. Through the second screening in ARPE-19 cells, we found
that AHX only showed a statistically significant HIF inhibitory effect. At the third final screening in
661W cells, the HIF inhibitory effect of AHX was also confirmed.

Table 2. Screenings of hypoxia-inducible factor (HIF) inhibitors from mushrooms.

Name 1st Trial in 3T3 2nd Trial in
ARPE-19

3rd Trial in
661W

Fold
Change ± SD p-Value Fold

Change ± SD p-Value Fold
Change ± SD p-Value

Topotecan 0.96 ± 0.26 0.855 0.84 ± 0.01 0.002 ** 0.81 ± 0.11 0.074
Doxorubicin 0.30 ± 0.06 0.014 * 1.10 ± 0.09 0.135 0.71 ± 0.05 0.006 **

AHX 0.39 ± 0.06 0.021 * 0.39 ± 0.03 <0.001 *** 0.42 ± 0.07 0.001 **
AOH 0.35 ± 0.03 0.016 * 0.93 ± 0.04 0.091 0.85 ± 0.08 0.086
ICA 1.02 ± 0.32 0.939

Erinacine A 1.50 ± 0.16 0.054
Hericenone C 1.25 ± 0.11 0.224
Hericenone D 0.79 ± 0.04 0.276
Hericenone E 0.67 ± 0.04 0.115

Grifolin 0.76 ± 0.06 0.223
Negrifolin 0.82 ± 0.03 0.338

The fold change in HIF activity was compared with the value of CoCl2-induced HIF activity. Statistically significant
inhibitory effects of compounds from mushrooms are shown in bold typeface (* p < 0.05, ** p < 0.01, *** p < 0.001).
AHX: 2-azahypoxanthine; AOH: 2-aza-8-oxo-hypoxanthine; ICA: midazole-4-carboxamide.

After the gross screenings, we treated all the cell lines with 1 mg/mL AHX again to clarify
the inhibitory effects of HIF and also examined the dose dependency of HIF inhibition by AHX
treatment (Figure 1). AHX treatment at 0.3, 3 and 30 µg/mL significantly inhibited the HIF activity in a
dose-dependent manner in 3T3 and 661W cells (Figure 1A,C). In contrast, the inhibitory effect of HIF
activity in low-dose AHX treatment was not observed in ARPE-19 cells (Figure 1B). Next, we examined
whether AHX had an inhibitory effect on HIF stabilization at protein levels (Figure 2). Even though
HIF-2α expression was not changed, HIF-1α expression was significantly stabilized in 661W cells after
6 h incubation of 200 µM CoCl2. However, the stabilized HIF-1α was not significantly reduced by
1 mg/mL AHX treatment (Figure 2) although the inhibition of HIF activation by AHX was constantly
observed (Figure 1C). These results indicate that AHX might have an inhibitory effect on the DNA
binding of HIF-1α, suppressing the induction of HIF-1α target gene expressions rather than inhibiting
HIF-1α stabilization.
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Figure 1. Inhibitory effects of AHX isolated from mushrooms on HIF activation. Quantitative analyses 
of the HIF-reporter luciferase assays using (A) 3T3, (B) ARPE-19 and (C) 661W cells (n = 3–6 per group) 
showed that AHX inhibited HIF activity induced by 200 µM CoCl2 in all of the cell lines. *** p < 0.001, 
## p < 0.01, ### p < 0.001 compared with no treatment and 200 µM CoCl2 treatment, respectively. Bar 
graphs are presented as the mean with the ± standard error of the mean. The data were analyzed 
using one-way ANOVA followed by a Bonferroni post hoc test. 

 
Figure 2. The inhibitory effect of AHX on HIF stabilization. The representative immunoblots and 
quantitative analyses (n = 4 per group) for HIF-1α, HIF-2α and β-Actin showed that only HIF-1α was 
stabilized in 661W cells under 200 µM CoCl2-induced pseudo-hypoxic conditions. Note that AHX did 
not significantly decrease the stabilized HIF-1α expression. * p < 0.05 compared with no treatment. 
Bar graphs are presented as the mean with the ± standard error of the mean. The data were analyzed 
using one-way ANOVA followed by a Bonferroni post hoc test. 
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of the HIF-reporter luciferase assays using (A) 3T3, (B) ARPE-19 and (C) 661W cells (n = 3–6 per group)
showed that AHX inhibited HIF activity induced by 200 µM CoCl2 in all of the cell lines. *** p < 0.001,
## p < 0.01, ### p < 0.001 compared with no treatment and 200 µM CoCl2 treatment, respectively.
Bar graphs are presented as the mean with the ± standard error of the mean. The data were analyzed
using one-way ANOVA followed by a Bonferroni post hoc test.
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quantitative analyses (n = 4 per group) for HIF-1α, HIF-2α and β-Actin showed that only HIF-1α was
stabilized in 661W cells under 200 µM CoCl2-induced pseudo-hypoxic conditions. Note that AHX did
not significantly decrease the stabilized HIF-1α expression. * p < 0.05 compared with no treatment.
Bar graphs are presented as the mean with the ± standard error of the mean. The data were analyzed
using one-way ANOVA followed by a Bonferroni post hoc test.
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3.2. Hypoxia-Responsive Gene Expressions Were Suppressed by AHX Treatment under CoCl2-Induced
Hypoxic Condition

We examined whether AHX suppresses HIF downstream-target hypoxia-responsive gene
expressions under CoCl2-induced hypoxic conditions (Figure 3). After 6 h incubation of 200 µM
CoCl2 in 661W cells, the downregulation of Hif-1α mRNA expression was detected due to a negative
feedback from the post-translational HIF-1α protein modification (Figure 3A) [9,29]. We could not
detect alteration of Hif-2α mRNA expression (Figure 3B). CoCl2 induced the upregulation of Vegf, Bnip3
and Pdk1 mRNA expressions as a result of HIF-1α activation (Figure 3C–E) [9,29]. The upregulated
mRNA expressions, especially Vegf and Pdk1, were suppressed by AHX treatment (Figure 3C,E).
Although the upregulated Bnip3 mRNA expression was not significantly reduced by AHX treatment,
its expression showed a decreasing tendency in a dose-dependent manner (Figure 3D). Under a normal
condition, Hif-1α and Hif-2α mRNA expressions showed a decreasing tendency by AHX treatment but
changes in their expressions were not dramatic (Figure 3A,B). Moreover, Vegf, Bnip3 and Pdk1 mRNA
expressions were not significantly altered by AHX treatment (Figure 3C–E).
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changes in (A) Hif-1α, (B) Hif-2α, (C) Vegf, (D) Bnip3 and (E) Pdk1 mRNA expressions were shown
after 6 h of AHX treatment under 200 µM CoCl2-induced pseudo-hypoxic condition in 661W cells by
quantitative PCR analyses (n = 3–6 per group). The upregulated Vegf and Pdk1 mRNA expressions
were suppressed by AHX treatment. ** p < 0.01, *** p < 0.001, # p < 0.05, ## p < 0.01 compared with no
treatment and CoCl2 treatment, respectively. Bar graphs are presented as the mean with the ± standard
error of the mean. The data were analyzed using one-way ANOVA followed by a Bonferroni post
hoc test.

3.3. Neovascularization in a Murine OIR Model Was Suppressed by AHX Administration

To assess the therapeutic effect of AHX on anti-retinal neovascularization, we orally administered
AHX to OIR mice and analyzed neovascular tufts and vaso-obliteration in retinal whole mounts
(Figure 4). AHX was administered according to the schedule depicted in Figure 4A. There was
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no dramatic difference in body weights between the two groups throughout the administration
period (Figure 4B). The AHX-administered retinas showed a significant decrease in neovascular tufts
compared with the vehicle (water)-administered retinas, while no significant difference was observed
in vaso-obliteration between the groups (Figure 4C,D). With higher-magnification of retinal images,
decreases in neovascular tufts could also be observed in the AHX-administered retinas (Figure 4C).
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the average body weights of the AHX-administered group (three male and three female pups) did
not significantly differ from those of the vehicle group (three male and two female pups) during
the administration period. (C) Representative images of retinal vascular whole mount (vehicle 1,
2 and AHX 1, 2) staining with isolectin B4 (neovascular tufts: red and vaso-obliteration: yellow),
and higher-magnification images (green) for neovascular tufts. Scale bars are 1000 and 200 µm,
respectively. (D) Quantitative analyses showed that areas of neovascular tufts (red) were suppressed
in the AHX-administered group (n = 6) in comparison with those in the vehicle-administered group
(n = 5), while no significant difference in vaso-obliteration (yellow) was observed between the groups.
* p < 0.05. Bar graphs were presented as mean with ± standard error of the mean. The data were
analyzed using a two-tailed Student’s t-test.

4. Discussion

AHX is one of the “fairy chemicals” (FCs) that were discovered to be a causing principle of the
mysterious natural phenomenon “fairy rings” [30,31]. Fairy rings are arcs of plant growth occurring
on the floor of grasslands surrounded by fungi, and these rings are formed by an interaction between
grasses and fungi [32]. AHX and ICA were found from a culture broth of the fungus Lepista sordida,
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and AOH was found as a metabolite of AHX in plants [31,33]. Recently, these compounds have
been classified as FCs [31]. Among the FCs, AHX showed a dramatic growth-enhancing activity
toward all of the plants tested, including crops such as rice and wheat, regardless of the families to
which they belong [34,35]. Therefore, AHX has been recommended for its promising practical uses in
agriculture [33]. Although AHX has been reported to be a photolytic degradation product from an
anti-tumor drug in mammalian studies [36–38], there has been no report on the therapeutic effects of
AHX in ophthalmology. This is the first report to apply AHX to anti-ocular degeneration.

HIF plays an important role in maintaining cellular homeostasis in response to changes in oxygen
status [6–8]. Angiogenesis is one of the most well-known hypoxic responses and is mediated by HIF [39].
Under pathological hypoxic conditions in the retina, HIF can be activated and lead to abnormal increases
in its downstream gene expressions, especially VEGF, finally causing retinal neovascularization.
Previously, pharmacological intervention such as the administration of digoxin [40], aloe-emodin [41],
topotecan or doxorubicin [11], acriflavine [42] and fish-derived products [10], suppressed pathological
retinal angiogenesis by inhibiting HIF activity and its downstream pathways including VEGF. In this
study, we found that AHX showed an inhibitory effect on HIF activity and a suppressive effect on Vegf
mRNA expression under CoCl2-induced hypoxic conditions. Furthermore, AHX suppressed retinal
neovascularization in the murine OIR model. In fact, more data are required to understand the in vivo
mode of action regarding the reduction in VEGF levels in the retina by AHX administration, which
needs to be further studied. Nonetheless, we suggest that HIF/VEGF inhibition can be a promising
approach for managing ocular neovascularization.

The development of ocular neovascularization involves complex pathological mechanisms.
There is an involvement of multiple interlinked functional and structural alterations by the abnormal
crosstalk between retinal neurons, glial cells (astrocytes and Müller glia) and vasculatures [43]. In the
central nervous system, neurons (alongside glial cells) act as oxygen sensors and vascular regulators by
interacting with vasculatures [44], and impairment of their crosstalk affects neurovascular homeostasis,
as observed in neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases [44,45].
When it comes to the eye, a previous study indicated that the partial actions of retina-derived and
astrocyte-derived VEGF could control the proliferation and migration of astrocytes, which is important
for retinal vascular development [46]. In addition, the activation of Hif-1α in retinal neurons or
Hif-2α in Müller glia played critical roles in retinal vascular diseases [46]. It is still unclear how
different cell types (neurons, glia and vascular cells) in the retina respond to hypoxia and interact
with each other to induce retinal neovascularization. In our OIR model, we previously demonstrated
no alteration in Hif-2α mRNA expression and a slight increase in Hif-2α protein expression in the
retina while Hif-1αmRNA and Hif-1α protein expressions showed dramatic increases with statistical
significances [11]. In addition, we found a significant reduction in neovascularization in the choroid in
neural retina specific-Hif-1α conditional knockout mice in comparison with that in control mice [29].
In this study, we demonstrated that Hif-1α in retinal neuronal cells could be responsive to hypoxic
stress but Hif-2α could not. Taken together, this implies that a Hif-1α/VEGF axis in retinal neurons
may be a main regulator for ocular neovascularization. However, another group suggested that
VEGF and HIF-2α in astrocytes may be essential for pathological neovascularization in their OIR
model [47]. The other group demonstrated that hematopoietic HIF-2α deficiency could reduce
pathological neovascularization through the modulation of endothelial cell death [48]. Therefore,
we think that more comprehensive studies regarding HIF subtypes as well as VEGF-producing cell
types and systemic vascular cell conditions may be needed for a better understanding of pathological
mechanisms for ocular neovascularization.

Hypoxia-responsive genes other than Vegf were also examined in this study. Interestingly,
Bnip3 expression was not dramatically reduced by AHX treatment while Vegf and Pdk1 expressions
showed the expected results. BNIP3 is a membrane-associated protein that is primarily localized to
mitochondria [49]. BNIP3 expression is induced by hypoxia and is closely related to hypoxia-induced
apoptosis in various cell types [50]. However, the regulation of BNIP3 induction by Hif-1α is still under
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investigation. A previous study reported that treatment with an inhibitor of the mitogen-activated
protein kinase (MAPK) pathway inhibited the activation of Hif-1α and its downstream target
genes [51]. However, this inhibitor had a less reductive effect on BNIP3 expression in primary
mouse hepatocytes [52]. Another study showed that hypoxia-induced upregulation of BNIP3 was not
dependent on HIF-1α activation [53]. In our study, even though Bnip3 expression was not significantly
reduced by AHX treatment, we could find a decreasing tendency of its expression. Taken together,
we consider that contributions of BNIP3 induction by HIF-1α activation under hypoxic conditions
could vary depending on cell types. This could be one of the reasons why AHX treatment dramatically
suppressed hypoxia-responsive genes such as Vegf and Pdk1, but not Bnip3.

To date, anti-VEGF drugs are the main pharmacological approach for neovascularization in retinal
degeneration [5]. However, long-term VEGF therapies may induce photoreceptor cell atrophy [54].
This is because long-term VEGF administration may suppress the physiological amount of VEGF,
which is essential for the normal function of retinal cells [55]. Based on our data, AHX may
minimize the alteration of a physiological amount of VEGF, only targeting pathological HIF activation
to reduce a pathological amount of VEGF. In addition, our examination for test material-related
toxicity demonstrated that repetitive administrations of AHX did not change the body weights of the
administered mice. Taken together, this implies that AHX may work on pathological conditions, and a
long-term AHX therapy approach with safety could be applicable. However, more detailed testing for
unexpected adverse effects of AHX needs to be undertaken for future practical uses.

Current anti-VEGF agents have a high cost for chronic treatments. In addition, the method of
administration is invasive. However, AHX can be easily and less-expensively synthesized [56] as it
endogenously exists in many crops including rice, wheat, corn, potato and so on [57,58], and an oral
administration of AHX is accessible, which is safer, easier to treat, patient-friendly and pain-free [59].
However, direct comparison analyses regarding the safety and effectiveness between these approaches
may need to be performed to increase our understanding.

5. Conclusions

In conclusion, we screened compounds that originated from mushroom-forming fungi as
prospective HIF inhibitors and demonstrated that AHX had a suppressive effect against pathological
retinal neovascularization in the murine OIR model. Furthermore, AHX suppressed upregulated
hypoxia-responsive gene expressions, especially VEGF. AHX could be useful as a promising drug for
neovascularization in ocular diseases.

6. Patents

The data in the current research are under consideration for a patent (application no. 2020-103954).
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