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This paper evaluates the potential of maximizing genetic gain in dairy cattle breeding
by optimizing investment into phenotyping and genotyping. Conventional breeding
focuses on phenotyping selection candidates or their close relatives to maximize
selection accuracy for breeders and quality assurance for producers. Genomic selection
decoupled phenotyping and selection and through this increased genetic gain per year
compared to the conventional selection. Although genomic selection is established
in well-resourced breeding programs, small populations and developing countries still
struggle with the implementation. The main issues include the lack of training animals
and lack of financial resources. To address this, we simulated a case-study of a
small dairy population with a number of scenarios with equal available resources yet
varied use of resources for phenotyping and genotyping. The conventional progeny
testing scenario collected 11 phenotypic records per lactation. In genomic selection
scenarios, we reduced phenotyping to between 10 and 1 phenotypic records per
lactation and invested the saved resources into genotyping. We tested these scenarios
at different relative prices of phenotyping to genotyping and with or without an
initial training population for genomic selection. Reallocating a part of phenotyping
resources for repeated milk records to genotyping increased genetic gain compared
to the conventional selection scenario regardless of the amount and relative cost of
phenotyping, and the availability of an initial training population. Genetic gain increased
by increasing genotyping, despite reduced phenotyping. High-genotyping scenarios
even saved resources. Genomic selection scenarios expectedly increased accuracy
for young non-phenotyped candidate males and females, but also proven females.
This study shows that breeding programs should optimize investment into phenotyping
and genotyping to maximize return on investment. Our results suggest that any dairy
breeding program using conventional progeny testing with repeated milk records can
implement genomic selection without increasing the level of investment.

Keywords: genomic selection, dairy breeding program, small populations, optimized investment, return on
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INTRODUCTION

This paper evaluates the potential of maximizing genetic gain in
dairy cattle breeding by optimizing investment into phenotyping
and genotyping. Breeding programs strive to maximize genetic
gain, which is a function of selection intensity, accuracy
of selection, genetic variation, and generation interval. The
conventional dairy breeding program uses an expensive and
time-consuming progeny test. Genomic selection (Meuwissen
et al., 2001; Schaeffer, 2006) achieves the same genetic progress
faster and cheaper through a substantially reduced generation
interval, increased accuracy of selection for young animals, and
increased selection intensity of males (Schaeffer, 2006; Obšteter
et al., 2019). Despite lower accuracy of sire selection compared to
the conventional selection, genomic selection doubles the rate of
genetic gain per year in dairy cattle (Wiggans et al., 2017).

All breeding programs operate with a limited resources
allocated to breeding activities with the aim to maximize
return on investment. Genomic selection is now a de-facto
standard in leading breeding programs but is still challenging to
implement in small national breeding programs or in developing
countries. While leading breeding programs can service some
small national breeding, developing countries require tailored
breeding goals that will respond to the rapidly rising demand for
a sustainable dairy production in local environment (Ducrocq
et al., 2018; Marshall et al., 2019; Mrode et al., 2019). We
hypothesize that these breeding programs need to evaluate
priorities and could optimize the allocation of resources for
phenotyping and genotyping to maximize return on investment.
We base this hypothesis on the following simple examples
(Supplementary Table S1).

The accuracy of conventional (pedigree-based) estimates
of breeding values increases with increasing heritability and
increasing number of phenotypic records per animal or its closest
relatives (e.g., Mrode, 2005). For example, for a female-expressed
trait with 0.25 heritability, the accuracy as a function of the
number of repeated records per lactation (n) is 0.89 (n = 10),
0.81 (n = 5), 0.70 (n = 2), and 0.62 (n = 1). The corresponding
accuracies for 100 sires tested on the total of 10,000 daughters
are, respectively, 0.98 (n = 10), 0.97 (n = 5), 0.96 (n = 2), and 0.93
(n = 1).

The accuracy of genome-based estimates of breeding values
similarly increases with increasing heritability and increasing
number of phenotypic records per genotyped animal. It also
increases with increasing training population, decreasing genetic
distance between training and prediction individuals, and
decreasing number of effective genome segments (Daetwyler
et al., 2008; Goddard, 2009; Clark et al., 2011; Goddard et al.,
2011). Following the previous example, assume 10,000 effective
genome segments, 0.25 heritability, and a training population
of 10,000 cows. The accuracy of genomic prediction for non-
phenotyped animals as a function of the number of repeated
records per lactation in the training population (n) is 0.76
(n = 10), 0.71 (n = 5), 0.63 (n = 2), or 0.56 (n = 1). These
examples show diminishing returns with repeated phenotyping
and a scope for optimizing return on investment in genomic
breeding programs.

The accuracy of genomic prediction as a function of the
number of genotyped and phenotyped cows (N) and the number
of repeated records per lactation (n) is then 0.84 (N = 20,000,
n = 5), 0.90 (N = 50,000, n = 2), or 0.93 (N = 100,000,
n = 1). While these genomic prediction accuracies are lower than
those generated with progeny testing, shorter generation interval
enables larger genetic gain per unit of time (Schaeffer, 2006).

Previous studies also explored the value of adding females
to the training population (Van Grevenhof et al., 2012;
Gonzalez-Recio et al., 2014). They concluded that accuracy has
diminishing returns with increasing the number of genotyped
and phenotyped animals in the training population, hence
additional females are most valuable when training population
is small. However, real breeding programs involve overlapping
generations, individuals with a mix of phenotype, pedigree, and
genotype information, various selection intensities, and other
dynamic components. Thus, evaluating the optimal allocation
of resources into phenotyping and genotyping is beyond these
simple examples.

The above examples suggest that repeated phenotyping could
serve as an internal financial reserve to enable dairy breeding
programs to implement genomic selection and maximize return
on investment. In dairy breeding the most repeatedly and
extensively recorded phenotypes are milk production traits.
There are different milk recording methods that differ in
the recording frequency (International Committee for Animal
Recording, 2017). The recording interval ranges from daily
recording to recording every 9 weeks, which translates to between
310 and 5 records per lactation. The different recording methods
have different costs, which vary considerably between recording
systems, countries, and even their regions. For example, some
organizations require payment of a participation fee plus the cost
per sample, while others include the fee in the sample cost, or
cover the costs in other ways. There is also a huge variability in
the way dairy breeding programs are funded. Some are funded
by farmers and breeding companies while in some countries data
recording or breeding are subsidized by state or charities. There
are also situations where farmers do not record phenotypes and
all genetic progress is generated in “research” nucleus herds.

The aim of this study was to evaluate the potential
of maximizing genetic gain by optimizing investment into
phenotyping and genotyping in dairy breeding programs.
Although studies exist that aimed to optimize the allocation
of resources to genotyping and phenotyping in plant breeding
programs (Lorenz, 2013; Riedelsheimer and Melchinger, 2013;
Lin et al., 2017), no such studies exist for animal or dairy breeding
programs. In animal breeding, studies did explore economic
efficiency of genomic selection, but with respect to other goals: to
maximize imputation accuracy (Huang et al., 2012); to optimize
selection accuracy with respect to economic efficiency (Azizian
et al., 2016); to maximize discounted profit or monetary genetic
gain (König et al., 2009; Thomasen et al., 2014a); or to evaluate
the cost-efficiency of genotyping females (Thomasen et al.,
2014b). Since milk production traits are example of repeated
phenotypes with diminishing returns, we aimed to optimize
investment into milk recording and genotyping. To this end
we have compared a dairy breeding program with conventional
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progeny testing and several genomic breeding programs under
equal financial resources. To implement genomic selection, we
reduced the number of milk records per lactation and invested
the saved resources into genotyping. We compared the breeding
programs in a case-study of a small cattle population where
implementing genomic selection is challenging. The results show
that reallocating a part of phenotyping resources to genotyping
increases genetic gain regardless of the cost and amount of
genotyping, and the availability of an initial training population.

MATERIALS AND METHODS

The study aimed to evaluate the effect of different investment
into phenotyping and genotyping with a simulation of a case-
study of a small dairy breeding program. The simulation
mimicked a real dairy cattle population of ∼22,500 animals
analyzed in Obšteter et al. (2019). Here we evaluated 36 genomic
selection against the conventional selection scenario, all with
equal available resources, but varying extent of phenotyping and
genotyping. The conventional selection scenario implemented
progeny testing and collected 11 phenotypic records per lactation,
while genomic selection scenarios reduced phenotyping and
invested the saved resources into genotyping. The genomic
selection scenarios differed in (i) the number of phenotypic
records per lactation; (ii) the relative cost of phenotyping
and genotyping;, and (iii) the availability of an initial training
population. All scenarios were compared on genetic gain and
accuracy of selection.

Simulation of the Base Population,
Phenotype, and Historical Breeding
The simulation mimicked a small dairy cattle breeding program
of ∼22,500 animals with ∼10,500 cows. The introduction of
effective genomic selection in such populations is challenging
due to costs of assembling a training population and limited
number of training animals. We used this population as a case-
study to optimize investment into phenotyping and genotyping.
The dairy breeding program aimed at improving production
traits, which we simulated as a single polygenic trait. We used a
coalescent process to simulate genome comprised of 10 cattle-like
chromosomes, each with 108 base pairs, 1,000 randomly chosen
causal loci, and 2,000 randomly chosen marker loci. We sampled
the effects of causal loci from a normal distribution and use them
to calculate animal’s breeding value (ai) for dairy performance
(yijkl), which was affected also by a permanent environment (pi),
herd (hj), herd-year (hyjk), herd-test-day (htdjkl), and residual
environmental (eijkl) effects:

yijkl = ai + pi + hj + hyjk + htdjkl + eijkl.

We sampled permanent environment effects from a normal
distribution with zero mean and variance equal to the base
population additive genetic variance (σ2

a). We sampled herd,
herd-year, and herd-test-day effects each from a normal
distribution with zero mean and variance of 1/3 σ2

a. Finally, we
sampled residual environment effects from a normal distribution
with zero mean and variance of σ2

a. This sampling scheme gave
a trait with 0.25 heritability and 0.50 repeatability. With the

simulated genome and phenotype architecture we have initiated
a dairy cattle breeding program and ran it for 20 years of
conventional selection with progeny-testing based on 11 cow
phenotypic records per lactation. The detailed parameters of the
simulation are described in Obšteter et al. (2019). In summary,
in the breeding program we selected 3,849 out of 4,320 new-born
females. We selected 139 bull dams out of cows in the second,
third, and fourth lactation. We generated 45 male calves from
matings of bull dams and progeny tested sires (elite matings). Out
of these we chose 8 for progeny testing of which 4 were eventually
selected as sires for widespread insemination of cows. We made
all selection decisions based on pedigree-based estimates of
breeding values. The 20 years represented historical breeding and
provided a starting point for evaluating future breeding scenarios,
which we ran for additional 20 years.

Scenarios
We evaluated 36 genomic selection scenarios with varying
extent of phenotyping and genotyping against the conventional
selection scenario, all with equal available resources. The
conventional selection scenario continued the breeding scheme
from the historical breeding. It used progeny testing and 11
phenotypic records per lactation (named C11), corresponding to
the standard ICAR recording interval of 4 weeks (International
Committee for Animal Recording, 2017). We assumed that this
scenario represented the total resources for generating data.
We then created genomic selection scenarios by distributing
resources between phenotyping and genotyping–we reduced
phenotyping and invested the saved resources into genotyping.
In genomic selection scenarios we selected females as in the
conventional selection scenario and males on genomic estimates
of breeding values. The number of genomically tested candidate
males varied according to the genotyping resources in a specific
scenario. We selected 5 males with the highest genomic estimates
of breeding value as sires for widespread insemination of cows.
We evaluated the genomic selection scenarios with a varying
number of phenotypic records per lactation, relative cost of
phenotyping to genotyping, and the availability of an initial
training population.

In genomic selection scenarios we reduced the number of
phenotypic records per lactation to between 10 and 1. Three
of them followed ICAR standards of 9, 8, and 5 records per
lactation, corresponding to recording intervals of 5, 6, and 9
weeks. Additionally, we tested the non-standard 10, 2, and 1
records per lactation. We named the scenarios as “GX” with X
being the number of records per lactation. Genomic selection
scenarios next varied the relative cost of phenotyping ($P) to
genotyping ($G). The cost of phenotyping was the cost of
11 phenotypic records per lactation. The cost of genotyping
was the cost of genotyping one animal. We applied quantity
discount to the cost of phenotyping–by increasing the number
of records per lactation, the cost per record decreased by 6%.
For example, if the price per record was €1 when collecting
only one record per lactation, the cost per record dropped to
€0.94 when collecting two records per lactation. Conservatively
we kept the cost of genotyping constant. Based on a survey of
several breeding programs, milk recording organizations, and
genotyping providers we have considered three ratios of the
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cost of phenotyping vs. the cost of genotyping, $P:$G (CRV
Netherlands, 2020; CRV New Zealand, 2020; ICBF, 2020; LIC,
2020; Progressive Genetics, 2020; personal communication).
The 2:1 ratio represented costly phenotyping, 1:1 equal cost
of phenotyping and genotyping, and 1:2 represented costly
genotyping. The reduction in the number of phenotypic records
per lactation and $P:$G dictated the resources available for
genotyping and hence the number of genotyped animals
(Table 1). For example, assuming that the cost per milk record
is €1.78 when we collect 11 phenotypic records per lactation,
the total cost per lactation sums to €19.55 (€1.78 ∗ 11). This
represents $P. When we collect 10 phenotypic records per
lactation, the cost per record increases to €1.89, which sums to the
total cost of €18.91 per lactation. This second scenario saves €0.64
(€19.55–€18.91) per lactation that can be go toward genotyping.
Applying this to our simulated populations with 10,852 active
cows, we therefore save €6,945 which suffices for genotyping 356
animals every year when $P:$G = 1:1.

We invested the saved resources into genotyping females
and males in ratio 7:1 based on our previous work (Obšteter
et al., 2019). To update the training population, we genotyped
a designated number (Table 1) of randomly chosen first-parity
cows. This maximized the accuracy of genomic prediction, since
it reduced genetic distance between training and prediction
population, prevented the loss of investment with culled heifers,
and minimized the time to obtain a phenotype linked to
a genotype. To maximize the genetic gain, we genotyped
a designated number (Table 1) of male calves with the
highest parent average, including all male calves from elite
matings. In scenarios where the resources for genotyping
females were larger than the cost of genotyping all first-
parity cows, we did not reallocate the excess of resources
to genotyping males for consistency (we saved resources
in those cases).

Lastly, we created scenarios with and without an initial
training population for genomic prediction. When we assumed
an initial training population was available, we genotyped all
active cows (10,852) and elite sires (80) before the first genomic
selection of males. When an initial training population was not
available, we yearly genotyped a designated number of first-parity
cows until the training population reached 2,000 cows. Once

we reached this goal, we started to genotype both females and
males as specified in Table 1. At that point we started genomic
selection of males.

Estimation of Breeding Values
We selected animals based on their breeding values estimated
from a pedigree or single-step genomic repeatability model
with breeding value, permanent environment, and herd-year as
random effects. We did not fit the herd-test-day effect as data
structure of this small population did not enable its accurate
estimation. Since we simulated dairy performance, we included
only the phenotypic information of the female animals. We
estimated breeding values once a year with blupf90 (Misztal
et al., 2018) with default settings. We updated the training
population every year with newly genotyped first-parity cows
and candidate males. We kept the first parity cows in the
training population through their subsequent lactations, hence
the training population also included multiparious cow. We also
kept the candidate males so the training population included all
elite sires. In the estimation we included all available phenotypic
and pedigree records for all active, phenotyped, or genotyped
animals, and additional three generations of ancestral pedigree
data. Three additional generations is the default option in blupf90
and have been shown to improve convergence without harming
prediction accuracy (Pocrnic et al., 2017). We used at most 25,000
genotype records due to a limit in the academic software version.
When we accumulated more than 25,000 genotyped animals,
we removed genotypes of the oldest animals in favor of the
latest genotyped cows and male selection candidates. We did not
remove any phenotypic information.

Analysis of Scenarios
All scenarios had equal available resources. We compared the
scenarios based on their final genetic gain, which indicated
return on the investment, accuracy of selection, and selection
intensity. We measured the genetic gain as an average true
breeding value by year of birth and standardized it to have zero
mean and unit standard genetic deviation in the first year of
comparison. We measured the accuracy of breeding values as
the correlation between true and estimated breeding values. We
measured the accuracy separately for four groups of animals: (i)

TABLE 1 | Number of genotyped animals per year by scenario and relative cost of phenotyping to genotyping ($P:$G).

Relative cost Scenario

G10 G9 G8 G5 G2 G1

$P:$G = 1:2 160 F 350 F 590 F 1,610 F 3,230 F 3,850 F

22 M 50 M 85 M 235 M 465 M 565 M

$P:$G = 1:1 310 F 700 F 1,180 F 3,230 F 3,850 F 3,850 F

45 M 100 M 165 M 465 M 925 M 1,125 M

$P:$G = 2:1 620 F 1,400 F 2,360 F 3,850 F 3,850 F 3,850 F

90 M 200 M 335 M 925 M 1,845 M 2,245 M

Scenarios are named “G” for genomic, followed by the number of phenotypic records per lactation. For the $P:$G we compared the cost of phenotypic records per
lactatio ($P) to the cost of one genotype ($G). The number of phenotypic records and the $P:$G dictated the number of genotyped animals. We genotyped females (F)
and males (M) in 7:1 ratio. We genotyped the females to update and increase the training population and males for selection.
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candidate males (genotyped and non-phenotyped); (ii) proven
males (currently used in artificial insemination); (iii) candidate
females (non-genotyped and non-phenotyped);, and (iv) proven
females (all active phenotyped cows and bull dams). We also
computed the intensities of male selection. In conventional and
genomic selection sires are selected in two stages. The first
stage selects males for progeny or genomic testing. The second
stage selects elite sires. We computed the intensities of two-
stage selection (i) by integrating standard bivariate distribution

f
(
x, y, ρ

) 1
2π
√

1−ρ
e
−1

2(1−ρ) (x2y2
−2ρ·x·y)as i =

∫ x
Tx

∫ y
Ty f (x,y,ρ)·x·dy·dx

p2
,

where x is the parent average, y is the genomic breeding value,
and ρ is the correlation between the variables (Young, 1964;
Jopson et al., 2004). We computed the correlation ρ by dividing
the scenario-specific accuracy of parent average by the accuracy
of genomic prediction. Tx is the standardized cut-off for the
proportion of all new-born male calves selected for genomic
testing (p1) based on parent average in the first selection stage.
Ty is the standardized cut-off for the proportion of all newborn
males selected as sires (p2) based on genomic breeding values in
the second selection stage. We repeated simulation of the base
population and each scenario 10 times and summarized them
with mean and standard deviation across the replicates. We used
Tukey’s multiple comparison test to test the significance of the
difference between means.

RESULTS

Genomic selection scenarios increased the genetic gain compared
to the conventional selection scenario regardless of the number of
phenotypic records per lactation, relative cost of phenotyping to
genotyping, and the availability of an initial training population.
Genomic selection scenarios with an initial training population
achieved up to 143% higher genetic gain than the conventional
selection scenario, despite reduced phenotyping. Genetic gain
increased with increasing investment into genotyping. Genomic
selection scenarios increased accuracy for non-phenotyped
candidate males and females, and proven females. Scenarios
without an initial training population showed the same trends for
genetic gain and accuracy. Although these scenarios had a slightly
smaller genetic gain due to delayed implementation of genomic
selection, they still increased the genetic gain of the conventional
selection scenario by up to 134%. We present these results in
more details in the following sub-sections separately for settings
with and without an initial training population available.

Genetic Gain With an Initial Training
Population
Genomic selection scenarios with an initial training population
increased the genetic gain of the conventional selection
scenario using the same resources. The genetic gain increased
with increasing investment in genotyping, despite reduced
phenotyping (Figure 1 and Supplementary Table S2). We show
the corresponding intensities of sire selection in Supplementary
Table S3. In the $P:$G = 1:1 setting, the genomic selection
scenarios increased the genetic gain of the conventional selection

scenario between 79 and 143%. By reducing the number of
phenotypic records from 11 (C11) to 10 per lactation (G10),
we saved resources for genotyping 355 animals per year (45
candidate males). This small change increased male selection
intensity from 0.10 to 0.26 and coupled with a shorter generation
interval increased the genetic gain by 79% (from 3.01 to 5.41). By
reducing the number of phenotypic records to nine or eight per
lactation (G9 or G8), we, respectively saved resources to genotype
800 or 1,345 animals per year (100 or 165 candidate males). This,
respectively increased male selection intensity to 0.39 or 0.49,
and genetic gain by 109 or 120% (from 3.01 to 6.30 or 6.62). We
achieved the highest genetic gain, between 135 and 143% of the
conventional selection scenario (between 7.07 and 7.33), when we
collected between five and one phenotypic records per lactation
(G5, G2, and G1). In these three scenarios we saved resources for
genotyping between 3,230 and 3,850 (all) cows and between 465
and 1,125 candidate males per year, and achieved male selection
intensity between 0.77 and 0.92.

Changing the relative cost of phenotyping to genotyping did
not change the trend in genetic gain. In the G10 scenario of
the $P:$G = 1:2 setting we yearly genotyped 182 animals (22
candidate males) and increased the genetic gain by 80% (from
3.01 to 5.43). In the G10 scenario of the $P:$G = 2:1 setting
we yearly genotyped 710 animals (90 males candidates) and
increased the genetic gain by 116% (from 3.01 to 6.50). When we
maximized the investment into genotyping (G1), we genotyped
between 565 and 2,245 candidate males and all females. This
achieved a comparable genetic gain, between 136 and 143% of
the conventional selection scenario, regardless of the relative cost
of phenotyping to genotyping and male selection intensities.

The high-genotyping scenarios achieved the observed
genetic gain without using all the resources (marked bold
in Supplementary Table S2). In these scenarios the resources
designated to genotyping females exceeded the cost of genotyping
all females. These savings could cover 11 phenotypic records
per lactation for between additional 169 and 5,950 animals, or
between 85 and 11,900 additional genotypes.

In Figure 1 we also show the growth of the training population
for genomic prediction. The training population started with
∼10,000 individuals and grew until reaching 25,000 individuals.
The increase was not linear through all generations, since the
procedure for choosing the training animals changed when
the training population exceed 25,000 (only latest females and
candidate males included).

Accuracy With an Initial Training
Population
Compared to the conventional selection scenario, genomic
selection scenarios increased accuracy for young non-
phenotyped and genotyped candidate males, non-phenotyped,
and non-genotyped candidate females, and proven females,
but decreased accuracy for proven males (Figure 2 and
Supplementary Table S4). In the $P:$G = 1:1 setting, the
accuracy for young genomically tested candidate males ranged
between 0.90 and 0.91 regardless of the amount of phenotyping
and genotyping. This accuracy was between 0.53 and 0.54
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FIGURE 1 | Genetic gain and training population size by scenario and relative cost of phenotyping to genotyping ($P:$G) with an initial training population (TP). The
figure presents the means (lines) and 95% confidence intervals (polygons) across 10 replicates for the conventional (C) and genomic (G) selection scenarios, with
numbers indicating the number of phenotypic records per lactation. For the $P:$G we compared the cost of 11 phenotypic records per lactation to the cost of one
genotype.

higher compared to the pre-selection for progeny testing and
between 0.03 and 0.04 lower compared to the sire selection in
the conventional selection scenario. In contrast, the accuracy
for proven males decreased with decreasing investment into
phenotyping and was between 0.11 and 0.23 lower than in
conventional selection scenario. We observed the lowest
accuracy for proven males (0.63) when we invested the most into
genotyping (G1) and the highest (0.75) when we invested the
most into phenotyping (G10).

The accuracy for non-genotyped candidate and proven
females increased with increasing genotyping, despite reduced
phenotyping. We observed the highest accuracy for candidate
(0.55–0.57) and proven females (0.77–0.79) when we recorded
between five and one phenotypic record per lactation and
invested the rest into genotyping. Compared to the conventional
selection scenario, the genomic selection scenarios increased
the accuracy between 0.03 and 0.11 for candidate females, and
between 0.11 and 0.29 for proven females.

Changing the relative cost of phenotyping to genotyping
affected primarily the accuracy for candidate and proven females.
For the majority of scenarios we observed the highest accuracy
in the $P:$G = 2:1 setting, that enabled more genotyping.
We observed the largest difference of 0.06 for candidate and
0.12 for proven females when we changed the relative cost
of phenotyping from half to twice the cost of genotyping.
Changing the relative costs, however, did not change the
accuracy trends.

Scenarios Without an Initial Training
Population
Genetic Gain
Genomic selection scenarios without an initial training
population also achieved higher genetic gain than the
conventional selection scenario with equal available resources.
The trends were in line with what we observed with an initial
training population, that is, increasing genotyping increased
genetic gain despite reduced phenotyping (Figure 3). However,
all corresponding scenarios achieved between 2 and 28% smaller
genetic gain than when an initial training population was
available (Supplementary Table S2).

In the $P:$G = 1:1 setting, genomic selection scenarios
increased the genetic gain of the conventional selection scenario
between 51 and 131%. Compared to when we had an initial
training population, the corresponding scenarios achieved
between 2 and 16% lower genetic gain. This difference was
the largest when we invested the least into genotyping (G10).
In this scenario we needed 6 years to build a training
population of 2,000 cows and implement genomic selection,
since we only genotyped 355 cows per year. We observed the
smallest difference in the scenario that collected two phenotypic
records per lactations (G2) and implemented genomic selection
in the first year.

Changing the relative cost of phenotyping to genotyping
did not change the overall trend. In the $P:$G = 1:2 setting,
the genomic selection scenarios increased genetic gain of the
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FIGURE 2 | Accuracy by scenario with an initial training population and equal
cost of phenotyping and genotyping. The figure presents the means (lines) and
95% confidence intervals (error bars) across 10 replicates for the conventional
(C) and genomic (G) selection scenarios with numbers indicating the number
of phenotypic records per lactation. The cost of phenotyping was defined as
the cost of 11 phenotypic records per lactation, and the cost of genotyping as
the cost of one genotype. Conventional selection implemented two-stage
selection for males, hence we present the accuracy of pre-selection for
progeny testing (empty point) and the accuracy of sire selection (solid point).

conventional selection scenario between 31 and 126%. That was
between 4 and 28% less than corresponding scenarios with an
initial training population. In the $P:$G = 2:1 setting, the genomic
selection scenarios increased the genetic gain of the conventional
selection scenario between 86 and 134%, which was between
3 and 14% less than corresponding scenarios with an initial
training population.

Accuracy
Similar to the scenarios with an initial training population,
genomic selection scenarios without it increased the accuracy
for non-phenotyped candidate males and females, and proven
females (Figure 3 and Supplementary Table S4). In the
$P:$G = 1:1 setting the accuracy for candidate males ranged
between 0.84 and 0.91. In contrast to scenarios with an initial
training population, the accuracy increased with increasing
investment into genotyping. The accuracy for proven males
ranged between 0.64 and 0.74. Contrary to when we had an
initial training population, we observed no clear trend of either
increasing or decreasing accuracy with decreasing investment

into phenotyping. For candidate females the accuracy ranged
between 0.47 and 0.56, and for proven females between 0.56 and
0.76. For both the accuracies followed the trends of when we
had an initial training population, this is increasing genotyping
increased the accuracy.

Changing the relative cost of phenotyping to genotyping
affected the accuracy for non-genotyped candidate and proven
females, and candidate males. Decreasing the relative cost of
genotyping to phenotyping increased the accuracy in the majority
of the scenarios, particularly the low-genotyping ones.

DISCUSSION

Our results show that any dairy breeding program using
conventional progeny testing with repeated milk records
can implement genomic selection without extra costs. While
breeding programs have established funding for phenotyping,
not all of them have established funding for genotyping. We
show that by reallocating a part of phenotyping resources
into genotyping, breeding programs can implement genomic
selection and substantially increase genetic gain regardless of
the amount and cost of genotyping, and availability of an
initial training population. However, increasing investment in
genotyping has diminishing returns, which suggests that breeding
programs should optimize the investment into phenotyping and
genotyping to maximize return on investment for selection
and management. The results raise four discussion points: (1)
how optimizing the investment in phenotyping and genotyping
affects genetic gain; (2) how optimizing the investment in
phenotyping and genotyping affects accuracy; (3) implications
for dairy breeding programs;, and (4) limitations of the study.
We first discuss the results under equal cost of phenotyping
and genotyping, and an initial training population available.
We then discuss changes at different costs and no initial
training population.

Genetic Gain With an Initial Training
Population
Genomic vs. Conventional Selection
Implementing genomic selection by optimizing the investment
in phenotyping and genotyping increased genetic gain compared
to the conventional selection, mainly due to reduced generation
interval in sire selection paths. This improvement is in agreement
with previous theoretical studies (Schaeffer, 2006; Pryce et al.,
2010; Obšteter et al., 2019). Empirical studies confirm this; in
the US Holstein population the generation interval for the sires
of sires and sires of dams paths recently decreased between
25 and 50% compared to the conventional selection (García-
Ruiz et al., 2016). Van Grevenhof et al. (2012) also showed that
when genomic selection halves the generation interval, a training
population with ∼2,000 individuals with own performance or
∼3,500 individuals with 10 progeny gives comparable response as
conventional selection for a trait with intermediate heritability.

Another major advantage of the genomic selection scenarios
was increased intensity of sire selection. A costly and lengthy
progeny-testing limits the number of tested candidate males in
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FIGURE 3 | Genetic gain, training population size, and accuracy by scenario without an initial training population (TP) and equal cost of phenotyping and genotyping.
The figure presents the means (lines or points) and 95% confidence intervals (polygons or error-bars) across 10 replicates for the conventional (C) and genomic (G)
selection scenarios with numbers indicating the number of phenotypic records per lactation. The cost of phenotyping was defined as the cost of 11 phenotypic
records per lactation, and the cost of genotyping as the cost of one genotype.The red line marks the condition of required 2,000 training animals to start genomic
selection. Conventional selection implemented two-stage selection for males, hence we present the accuracy of the pre-selection for progeny testing (empty point)
and the accuracy of sire selection (solid point).

conventional selection. Genomic selection significantly reduces
the cost of testing (Schaeffer, 2006) and thus allows for
testing more candidate males. In the US Holstein population,
genomic selection improved the selection differential for all traits,
particularly for traits with low heritability, such as health and
fertility (García-Ruiz et al., 2016).

Increasing the Investment Into Genotyping
Genetic gain increased with increased investment into
genotyping. This was mainly due to higher intensity of sire
selection, since more resources for genotyping allowed us to test
more candidate males while selecting the same number. A larger
investment into genotyping also increased the update and total
size of the training population, which increased the accuracy of
female selection (we discuss this in the next sub-section).

The genetic gain had diminishing return relationship with
investment into genotyping. This has important implications
for dairy breeding programs, since they use phenotypes also
for management, and we discuss this separately. In our study,
investing resources of more than six phenotypic records into
genotyping did not significantly improve the genetic gain. There
are three reasons for this. First, increasing female training
population has diminishing return relationship with genetic
gain (Van Grevenhof et al., 2012; Gonzalez-Recio et al., 2014).
Since scenarios with an initial training population started with
∼10,000 genotyped and phenotyped cows, enlarging the training

population had a marginal effect. Consequently, the accuracy of
sire selection in genomic selection scenario was high regardless
of the amount of genotyping. Second, increasing investment
into genotyping did not proportionally increase the size of
the training population due to the limit of 25,000 animals
of the training population. And third, the intensity of sire
selection had diminishing return with increasing number of
genotyped candidate males. This agrees with Reiner-Benaim
et al. (2017) that showed an increased genetic gain with
increasing the number of tested candidate males, but with a
diminishing return. While they achieved the maximum profit
with four selected sires out of 1,721 tested candidates, they
achieved 99 or 90% of the maximum profit with, respectively,
740 or 119 tested candidates. The same three reasons enabled
comparable maximum genetic gain regardless of the relative
price of phenotyping to genotyping. In general, selecting
less than 2% of the tested males and updating the training
population with at least 35% of first-parity cows resulted in the
maximum genetic gain.

While genetic gain increased with the number of cows in
training population, it did not increase with the number of
repeated records. The scenarios with the largest genetic gain
therefore had a training population with many cows and few
repeated records (Supplementary Figure S1). However, since we
used the single-step genomic prediction, the phenotypes of the
non-genotyped animals contributed to the estimation as well.
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Effectively, all scenarios thus operated with the same number of
phenotyped animals.

We should emphasize, that some of the high-genotyping
scenarios achieved the observed genetic gain at a lower total cost,
since they could not use all the saved resources for genotyping
females in the studied population. The saved resources could
be invested back into phenotyping females for milk production
or novel traits, genotyping more candidate males, or other
breeding actions.

Accuracy With an Initial Training
Population
Despite reduced phenotyping, genomic selection scenarios
increased the accuracy for young non-phenotyped calves and
cows. When the accuracy of parent average is already high,
genomic prediction increases primarily the accuracy of the
Mendelian sampling term. But when the accuracy of parent
average is low, such as for the offspring of parents with little or
no own or progeny information, genomic information increases
accuracy both for the parent average and the Mendelian sampling
term (Daetwyler et al., 2007; Wolc et al., 2011).

Accuracy for Males
For candidate males, genomic prediction more than doubled the
accuracy compared to the parent average used for pre-selection
of male calves for progeny testing. This is in agreement with
twofold accuracy increase in dairy (Schaeffer, 2006) and layers
(Wolc et al., 2011). Within the genomic selection scenarios,
the accuracy for candidate males was high regardless of the
amount of genotyping and phenotyping for two reasons. First,
the accuracy of their parent average was high, since we tested
offspring of elite matings. Second, starting with an initial
10,000 training population gave an adequate accuracy that was
additionally boosted by using all available information jointly
through the single-step genomic prediction. Using single-step
genomic prediction also removed the bias due to pre-selection
(Jibrila et al., 2020).

In contrast, reducing phenotyping decreased the accuracy
of proven males. We believe this is due to two reasons. First,
since proven males are the very best animals, their breeding
values are close together in the tail of the distribution. Due
to small differences between the proven males, each additional
phenotypic record helps to differentiate them and thus increases
the accuracy. Second, as we invested more into genotyping, the
training population grew quicker and reached the limit of 25,000.
At this point we removed proven males’ in favor of proven
females’ genotypes, hence prediction for proven males depended
only on daughters’ data and no longer on their own genotype.
However, since this is the accuracy after the selection has already
been made, it is not of great interest for breeding.

Accuracy for Females
Genomic selection scenarios increased the accuracy for proven
females compared to the conventional selection scenario. Besides
increasing the accuracy of Mendelian sampling term, using
genomic information increases genetic connectedness between
individuals from different management units (Yu et al., 2017;

Powell et al., 2019). Increased connectedness in turn increases
the accuracy of prediction regardless of the heritability and
the number of causal loci or markers (Yu et al., 2018). This
improvement is important because we selected bull dams for elite
mating from proven females.

The accuracy for proven females increased with increasing
investment into genotyping, despite reduced phenotyping due
to three reasons. First, more proven females had both genomic
and phenotypic information, which increased the accuracy of
their estimated breeding values. Second, more genotyped proven
females increased genetic connectedness (Yu et al., 2018). And
third, investing more into genotyping translated into larger
training population and its yearly update. As shown by previous
studies (Van Grevenhof et al., 2012; Gonzalez-Recio et al., 2014),
the accuracy of genomic prediction increases with increasing
the size of a female training population. They showed that the
accuracy of 0.70 is achieved with∼20,000 animals as in our study.
Same studies shown that, as with genetic gain, accuracy had a
diminishing return with the size of the training population. We
observed plateau in accuracy when we invested more than six
phenotypic records (out of 11) into genotyping.

Accuracy for candidate females followed the trend for proven
females, but at lower values. Candidate females were not
genotyped nor phenotyped, hence their accuracy mainly reflected
the accuracy of their parent average. Increasing genotyping
increased the accuracy for proven females and in turn increased
the accuracy of candidate females’ parent average. The benefit of
this increase was not large, since the intensity of female selection
was low. However, there is potential for this benefit to be larger
with sexed semen and embryo transfer.

Scenario Without an Initial Training
Population
Genetic Gain
We also considered that some populations do not have access
to an initial training population and have to initialize one
themselves. These genomic selection scenarios still increased
genetic gain compared to the conventional selection scenario,
but achieved lower genetic gain than corresponding scenarios
with an initial training population available. Increasing the
investment into genotyping compensated for starting without
a training population in two ways. First, it shortened the time
to obtain the targeted 2,000 genotypes required to implement
genomic selection down to 1 year in high-genotyping scenarios.
Second, it shortened the time to build a training population
in which an additional record had negligible effect on accuracy
(Gonzalez-Recio et al., 2014).

Accuracy
Accuracy in scenarios without an initial training population
closely followed the trends of the corresponding scenarios with
an initial training population available. We observed minor
differences in the low genotyping scenarios that had reduced
accuracy for candidate and proven males. We attribute this to a
smaller training population. Buch et al. (2012) showed that for
new traits and large-scale recording, we can achieve 75% of the
maximum genomic accuracy within first 2–3 years of recording.
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In our study we shortened this period even more by including the
historical data through the single-step genomic prediction.

Implications
The results suggest that any dairy breeding program using
conventional progeny testing with repeated milk records can
implement genomic selection without extra costs by optimizing
the investment of resources into breeding actions. Here we
propose funding the genotyping with a part of resources for
milk recording, since we can manipulate the number of repeated
records. Breeding programs could reduce phenotyping for a
different trait that they record repeatedly and is perhaps less
crucial for management. They could also reallocate the funds
from another breeding action.

Additionally, we could optimize which individuals to genotype
and phenotype, as well as the computational costs. Selective
phenotyping was shown to increase the accuracy of genomic
prediction up to 20% with small sample sizes in plant
breeding (Heslot and Feoktistov, 2017; Akdemir and Isidro-
Sánchez, 2019). Similarly, selective genotyping of cows from the
distribution tails has been shown to increase the accuracy of
genomic prediction by 15% (Jenko et al., 2017). We expect this
would further increase the return on investment, but increase
the complexity of optimization. Regarding computing costs, the
problem of a large number of genotypes can be alternatively
solved by using methods with reduced computational costs.
Examples of such methods are the algorithm for proven and
young (Misztal et al., 2014) and singular value decomposition of
the genotype matrix (Ødegård et al., 2018). Also, as shown in our
study, we can achieve large genetic gain with a relatively small
training population of recent genotypes.

The economic efficiency of breeding programs strongly
depends on which stakeholders fund which breeding action.
Different programs have different investment schemes, often
complex. The scenarios presented in this paper are of little value
for programs where funding for phenotyping and genotyping
is disconnected. Similarly, optimizing the investment into
phenotyping is not of interest for breeding programs with
abundant use of automated milking systems where the cost
of phenotyping does not depend on the number of records.
However, in populations with small herds the use of automated
milking systems is limited. Further on, genomic selection could
benefit some settings more than others. For example, genomic
information is especially important for generating genetic
connectedness in systems with small herd sizes, geographically
dispersed farms, and limited use of artificial insemination, often
found in low- to mid-income countries (Powell et al., 2019). The
same benefits are expected for small ruminant programs that do
not actively exchange sires between herds (Kasap et al., 2018).

High cost of genotyping diminishes the benefit of the proposed
solutions. The relative cost of phenotyping to genotyping at
which genomic selection is not beneficial to conventional
selection depends on a number of factors: (i) the number of
females in the recorded population, since it dictates the savings
from reducing the phenotyping; (ii) the number of phenotypic
records the breeders are willing to sacrifice; (iii) the availability
of an initial training population;, and (iv) the ratio of genotyped

males and females. In our case, if $P:$G was 1:10, we would save
resources to genotype between 36 (10 phenotypic records) and
900 (one phenotypic record) animals. While such numbers of
genotyped animals could allow for efficient genomic selection if
we had an initial training population and genotyped only males,
it would probably not be viable if we had to build the training
population ourselves.

We did not account for the benefits of genotyping besides
genomic selection. Genomic information has additional value
for (i) parentage verification, parentage discovery, or correction
of parentage errors; (ii) management of monogenic diseases
and traits, which can prevent economic losses caused by
spreading lethal alleles or create economic gain by adding
value to the products; (iii) better monitoring and control of
inbreeding (Sonesson et al., 2012) and optimization of matings
(Obšteter et al., 2019); (iv) determination of animals’ breed
composition, which serves to identify the most appropriate
breed or cross-breed in a production system, or improve the
structure of the training population (Marshall et al., 2019).
Additional uses of genotypes increase the return on investment
beyond what we measured in this study. Another important
point to note is also, that while phenoypes serve to improve
a single trait, genotypes serve to improve the genetic gain for
all selected trait.

Limitations of the Study
Reducing the Number of Phenotypic Records
Balancing phenotyping and genotyping can lead to conflicts
between managing production (short-term goal) and achieving
genetic gain (long-term goal). Producers use phenotypic records
to manage animals’ health, reproduction and feed composition,
which affect the success of dairy cattle production in the short-
term. Besides managing production, milk recording is also
important from an environmental perspective (Verbiè et al.,
2019), but so is genetic improvement. In general, about half of
phenotypic improvement is due to management and half due to
selection (Dekkers and Hospital, 2002).

The ownership of the data that drives dairy improvement is
a matter of discussion in many breeding programs. When data
collection is subsidized, the data are usually free for management
and genetic improvement. Finding optimal frequency of
recording for management and genetic improvement in such
systems is crucial for optimal return on investment. When data
collection is paid by producers, they can be available to breeding
organizations for free or at a cost. Depending on the cost breeding
organizations can save some resources by purchasing smaller
number of repeated phenotypes per individual and genotype
more selection candidates instead.

While genotype data is currently largely used for selection,
the same data could also support management (predicting feed
requirements, disease liability, etc.). Therefore, evaluating the
value of phenotype and genotype data is complex and beyond
the scope of this study. One possible way forward would be
to compare variance between herd-test day effects and genetic
variance to contrast the value of managing production and
genetic gain in addition to comparing phenotypic and genetic
trends (Dekkers and Hospital, 2002).

Frontiers in Genetics | www.frontiersin.org 10 February 2021 | Volume 12 | Article 637017

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637017 February 9, 2021 Time: 11:38 # 11

Obšteter et al. Genomic Selection for Dairy Programs

In practice, test day records are also used to compute the 305
day milk yield (International Committee for Animal Recording,
2020). The longest sampling interval tested in our study and
still approved by ICAR was 9 weeks, which yielded five records
per lactation. Previous studies showed that the correlation of
predicting 305 day milk using five records per lactation with using
either weekly or 11 records per lactation was between 0.98 and
0.99 (Pool and Meuwissen, 1999; Berry et al., 2005). However,
some studies showed that prediction using less than 11 records
can yield substantial bias (Gantner et al., 2008).

Single Additive Trait
We simulated milk yield as a single polygenic trait with additive
genetic as well as herd, permanent environment, and residual
environmental effects. We did not simulate nor account for
non-additive genetic effects that also affect dairy performance
(Fuerst and Sölkner, 1994; Ertl et al., 2014; Jiang et al., 2017).
We note that we simulated permanent environment effects,
which capture non-additive genetic effects and other individual
specific environmental effects. The simplified simulation of the
phenotype affected the observed accuracies that were higher than
recorded in practice. We also simulated milk yield in different
lactations as a single trait with constant heritability, whereas
genetic correlation between different lactations and through the
lactation is not unity (Meyer, 1984; Swalve and Vleck, 1987; Dong
and van Vleck, 1989). If genetic correlation is less than one,
the repeatability of the phenotype decreases and the value of a
repeated record and its contribution to accuracy diminishes.

We simulated a trait with heritability of 0.25, since
the majority of production traits recorded repeatedly show
intermediate heritability. Previous studies also provide insights
in how changing the heritability of the phenotype would affect
the results. On one hand, at a lower heritability we would need
more females in the training population until the contribution
of additional female was negligible (Gonzalez-Recio et al.,
2014). On the other hand, genomic selection is less affected
by the heritability than conventional selection and hence more
beneficial for traits with low heritability (Lillehammer et al., 2011;
García-Ruiz et al., 2016).

Genomic Selection of Females
We did not use genomic selection for females, nor did we
use reproductive technologies such as sexing semen or embryo
transfer. This would further decrease the generation interval,
increase selection intensity on female side, and in turn increase
genetic gain of genomic selection scenarios even more (Pryce
et al., 2010; García-Ruiz et al., 2016). Such an implementation
of genomic selection requires only a minor modification of the

design used in this study–genotyping heifers instead of first-
parity cows. However, if breeding program funds are used in
an optimal sense, we would still suggest genotyping phenotyped
females, while farmers can at extra genotype heifers. Since most
females are kept it probably would not make difference in terms
of training population, and would slightly increase genetic gain.
Reproductive technologies require a larger modification and
investment. Some of the scenarios saved resource and could
invest into these technologies.
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