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The propagation of epileptiform events is a highly interesting phenomenon from the

pathophysiological point of view, as it involves several mechanisms of recruitment of

neural networks. Extensive in vivo and in vitro research has been performed, suggesting

that multiple networks as well as cellular candidate mechanisms govern this process,

including the co-existence of wave propagation, coupled oscillator dynamics, and

more. The clinical importance of seizure propagation stems mainly from the fact that

the epileptic manifestations cannot be attributed solely to the activity in the seizure

focus itself, but rather to the propagation of epileptic activity to other brain structures.

Propagation, especially when causing secondary generalizations, poses a risk to patients

due to recurrent falls, traumatic injuries, and poor neurological outcome. Anti-seizure

medications (ASMs) affect propagation in diverse ways and with different potencies.

Importantly, for drug-resistant patients, targeting seizure propagation may improve the

quality of life even without a major reduction in simple focal events. Motivated by

the extensive impact of this phenomenon, we sought to review the literature regarding the

propagation of epileptic activity and specifically the effect of commonly used ASMs on it.

Based on this body of knowledge, we propose a novel classification of ASMs into three

main categories: major, minor, and intermediate efficacy in reducing the propagation of

epileptiform activity.

Keywords: epileptic seizure, seizure propagation, seizure propagation mechanism, anti epileptic drug,

classification of medications

INTRODUCTION

Epilepsy is a common neurological disorder, affecting over 65 million people worldwide (1). It is
frequently related to cognitive and memory deficits causing significant morbidity (2, 3). In focal
epilepsy, the “epileptogenic zone” was first defined as the cortical region sufficient for initiating
seizures, that its removal is necessary for complete abolition of seizures (4). Later, the definition
was further reduced to the minimal resection or inactivation of cortical tissue for seizure freedom
(5). On the other hand, from other perspectives in the field it was proposed that the “epileptogenic
zone” is not simply the “what-to-remove-area” (6). In other words, it was supposed that the
epileptogenic zone may not fully overlap with the cortical area needed to be resected according
to anatomo-electro-clinical correlations (6). Notably, epileptic clinical manifestations do not result
solely from the activity in the seizure onset zone, but rather depend mainly on the propagation
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of epileptic activity to other structures, a process which in some
of the cases extends to secondary generalization. Therefore,
propagation of epileptic activity has a critical role in determining
the severity of seizures and the resulting disability.

To date, it is still not fully understood why some focal
seizures evolve to secondary generalization while others do
not, even within the same patient. Pre-clinical studies suggest
that the initiation and propagation of epileptic activity are
dictated by different cellular and network mechanisms (7–11).
The propagation process is variably affected by different anti-
seizure medications (ASMs), which most commonly inhibit
it, but in certain cases might even paradoxically enhance the
phenomenon and hence induce secondary generalization (12).
These well-known facts emphasize the importance of considering
the effect of specific ASMs on this phenomenon in medical
treatment planning.

The semiology regarding seizure propagation is largely region-
dependent. Networks in the hippocampus, dentate gyrus, and
entorhinal cortex were found to be highly correlated with
seizure propagation (13–16). Other crucial regions for seizure
propagation include the prefrontal cortex (and especially the
orbitofrontal cortex) and others. The frontal lobe is believed to
be largely involved in the propagation and especially in the inter-
hemispheric spread of seizures initiated in the mesial temporal
lobe (17). Importantly, specific neural circuits were identified for
their crucial role in seizure propagation such as Papez’s circuit.
Therefore, parts of these regions are possibly candidate goals
for neurostimulation to minimize the propagation of epileptic
activity (18, 19).

Knowledge of propagation pathways is vital in the
management of pre-operative patients. First, lateralization
of epileptic activity is largely influenced by propagation.
False lateralization of seizure onset in some temporal lobe
epilepsy patients might be the result of abnormal or unexpected
propagation patterns. In such patients, the ictal activity was
demonstrated to strongly propagate to the contralateral temporal
lobe but failed to propagate in the ipsilateral side misleading
the determination of lateralization of seizure onset by scalp
EEG (20). Moreover, it was demonstrated that variable types of
propagation of ictal activities correlate with surgical outcome
(21). For example, contralateral propagated ictal activity,
bitemporal asynchrony, and switch of lateralization were
proposed to be correlated with poor long-term seizure outcome.
Hence, cautious analysis of ictal propagation patterns may
provide useful biomarkers to predict surgical outcome (22, 23).

Although intervention by surgery and neurostimulation are
of much interest in epilepsy management, the most common
and established seizure treatment method is the use of ASMs.
Therefore, in this literature review we summarize the main
proposed mechanisms and the variable effects of common ASMs
on seizure propagation and secondary generalization.

Mechanisms of Propagation
In general, seizures evolve through three main phases; initiation,
propagation, and termination, each of which is dictated by
different mechanisms (8, 24). Seizures propagate across different
brain regions via diverse spatiotemporal patterns. It is still

unclear how exactly an epileptiform event recruits cortical
circuits. Most probably, propagation is influenced by multiple
mechanisms rather than a single mechanism. This statement is
supported by the fact that the speed of propagation in vivo as
well as in vitro can largely vary over several orders of magnitude
(0.1–100 mm/s). Such a range cannot be explained by a single
mechanism. According to the nucleus-shell model, focal seizures
are generated from a pacemaker/seizure nucleus. Then, they
propagate to other parts of the brain creating the first shell,
presented clinically as a focal onset seizure with/without loss of
awareness. A second shell may also develop, presented as a focal
onset seizure to a bilateral tonic-clonic seizure (25).

Many models were proposed for the spatiotemporal dynamics
of seizure propagation (26, 27). All seizures, even the primary
generalized, are thought to propagate from initial ictal zones after
originating in local microcircuits. Interestingly, this propagation
is dependent on the network dynamics reflected in critical
junctions or chokepoints (28). Based on data from patients
with drug-resistant epilepsy, two main mechanisms for seizure
propagation were suggested: wave propagation and coupled
oscillator dynamics. These mechanisms coexist and can interact
with each other. For example, the slow propagation of an
ictal wave front was related to fast oscillations dampening
the propagation. On the other hand, the fast propagation of
epileptiform activities was dependent on coupled oscillator
dynamics (29).

At the network level, seizure propagation is thought to be
based on abnormalities of synchronization. First, the strong
synchronizing activity of the epileptogenic zone largely affected
the surrounding tissue (30). Second, the surrounding tissue had
a limited ability to contain the incoming abnormal epileptic
activity thus allowing the seizure to propagate (31). Third,
antagonist activity of synchronization and desynchronization
nodes caused enhancement of the propagation (32). Interestingly,
the spread of epileptiform activities in neocortical slices was
shown to be opposed by powerful feedforward inhibition. The
strength of this feedforward inhibition was reversely correlated
with the speed of spread (33). This feedforward inhibition
decreased in effectiveness after repeated epileptiform events
(9, 34).

GABAergic activity is largely involved in seizure propagation
(35, 36). Selective parvalbumin (Pv)-positive inhibitory
interneurons activation in vitro (by optogenetics), distant
from the seizure focus, caused propagation blocking and
shortening of seizure duration. On the other hand, excitation
of these Pv interneurons at the epileptic focus did not prevent
the ictal generation even resulting in its promotion. This is
possibly achieved by inducing post-inhibitory rebound spiking
in pyramidal neurons due to the increase in the high level of
chloride causing local hyper-synchronization (37–39). Therefore,
selective manipulations of GABAergic neurons may result in
contradictory results; not only anti-epileptic but also ictogenic
effects. This is believed to be mainly because of the disturbed
chloride homeostasis in different phases of seizure activity
(39). Furthermore, experimental observations in animal models
suggested that GABAergic projections from the substania
nigra to regions like the pedunculopontine nucleus and the
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piriform cortex are important in the process of the propagation
of epileptic activity (40, 41). High frequency oscillations of
somatosensory evoked potentials (SEP-HFOs) were suggested
to potentially help assess the neurophysiological properties of
ASMs (42). More specifically, GABAergic tone was proposed to
be correlated with late component high frequency oscillations
(lHFOs) (43). The number of ASMs used, in patients with focal
epilepsy, correlated with the magnitude of reduction in lHFOs in
the affected hemisphere possibly supporting the role of cortical
GABAergic activity in the propagation of epileptic activity (42).

Interestingly, in vitro studies suggested that seizure
propagation might potentially transform the target region
into an independent epileptogenic focus that was capable of
generating spontaneous and evoked seizures. This was shown
to depend on NMDA receptors and excitatory shifting of the
GABAergic synapses because of changes in the reversal potential
of chloride (44, 45).

At the cellular level, besides previously discussed mechanisms
related to GABAergic activity, additional important mechanisms
were described. These include NMDA receptors upregulation
and high voltage-activated calcium currents (46). Moreover,
AMPA and Kainate (KA) receptors seem to be largely involved in
seizure propagation as well (47–49). Increased expression of KA
receptors in aberrant sprouts was proposed (47). This implies that
upregulation of KA receptors promote propagation of epileptic
activity. Additional possible mechanisms that were linked with
seizure propagation include high extracellular potassium levels
inducing regenerative potentials and enhancing synchronous
activity of principle cells (37, 50–52). Other mechanisms were
found to be related to the endocannabinoid system. Changes in
the cannabinoid receptor availability in regions like the insula
and dentate gyrus proved to be important for seizure propagation
(53, 54).

Anti-seizure Medications
In general, ASMs are believed to suppress seizure generation
as well as propagation. However, the relative influence of each
ASM on these processes is not fully understood. The following
is a review of the possible effects of commonly used ASMs on
seizure propagation Table 1.

Valporic Acid (VPA)
VPA is widely used for all seizure types despite the uncertainty
of its mechanism of action (50). Possible mechanisms
include increased GABAergic activity, suppressing excitatory
neurotransmission, and modification of monoamines. VPA
is considered the first-line therapy in patients with idiopathic
generalized epilepsy, except in women of childbearing potential.
Acting onmultiple targets is possibly crucial for the generation as
well as the propagation of seizures; VPA has anti-epileptic effects
on several steps of seizure organization. In the model designed
by Appelgate et al., VPA-treated mice did not exhibit significant
propagation of seizures. All VPA-treated mice demonstrated
forebrain seizures without signs of propagation to other regions
(55). In vitro studies showed that VPA decreased the propagation
speed of epileptiform events that initiated from CA3a–b and

propagated bi-directionally to CA1 and CA3c (56). Similarly,
in a hemoconvulsant flurothyl (FE) mice model, VPA showed
an increasing effect on the threshold of FE-induced clonic
convulsion and a blocking effect on the propagation (57).

Furthermore, epileptiform events in VPA-resistant patients
hadmore extensive cortical involvement comparedwith events in
VPA-sensitive patients (58). This possibly implies the importance
of VPA in suppressing propagation. However, it is difficult
to determine whether this difference in propagation resulted
from the ineffectiveness of VPA in these patients, a more
severe epileptic disorder, or both of them. This wider cortical
involvement in VPA-resistant patients included mainly bilateral
insula and frontal regions.

Using the photoparoxysmal response phenomenon, VPA
had a prominent effect on duration, amplitude, morphology,
and propagation pattern of visually induced epileptic events.
However, VPA had a much smaller effect on the frequency of
epileptic events occurrence. The conclusion was that VPAmainly
reduces the spread of epileptic activity from the trigger site rather
than affecting the trigger mechanism (59, 60).

Interestingly, a retrospective study of 250 patients with
refractory focal seizures with impaired awareness, demonstrated
that withdrawal of VPA affected seizure propagation rather than
seizure onset or initiation (25).

Taken together, VPA is believed to have a major effect on the
propagation of seizures.

Carbamazepine (CBZ)
CBZ is a first-generation ASM acting mainly on voltage-gated
sodium channels, especially at the open as well as the fast
inactivation phases (95, 96). It is widely used for focal as well
as generalized tonic-clonic seizures. Wu et al. suggested that
CBZ is more likely to affect neural excitability rather than the
propagation of seizures (61). According to previous studies,
sodium channels blockers and especially CBZ were proposed
to raise the seizure threshold at the focus, and only exert mild
effects on seizure propagation (65, 66). Similar results were
reported by Arzy et al. Topographic analysis of the EEG of
patients with first generalized seizure without an identified lesion
in the MRI, demonstrated that CBZ administration caused a
decrease in gamma-power signal (62). These findings may imply
CBZ-causing modifications within local cortical circuits. The
conclusion was that CBZ has an anti-epileptic effect mainly on
seizure initiation rather than propagation.

On the other hand, contradicting reports strengthened CBZ’s
role in diminishing seizure propagation as well. For example,
CBZ demonstrated a prominent effect on secondary generalized
seizures in patients with focal epilepsy (67). Furthermore, CBZ
was shown to inhibit seizure propagation rather than initiation
in a 25-year-old woman with non-lesional epilepsy and frequent
focal seizures with impaired awareness of frontal origins (68).
In addition, the proposed effect of CBZ on SCN1A implies its
possible negative effect on seizure propagation (69).

Interestingly, withdrawal from CBZ therapy was shown to
affect seizure propagation rather than initiation (97).
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Eslicarbazepine, a member of the dibenzazepine carboxamide
family like CBZ and oxcarbazepine (98), was shown to increase
EEG global connectivity in focal epilepsy patients, such that
it was not anymore significantly lower than healthy controls
(99). In other words, eslicarbazepine was shown to reverse the
pathological network re-organization caused by focal epilepsy.
It is difficult to estimate the exact effect of this medication
on seizure initiation or propagation due to lack of evidence
in the literature compared to CBZ. Nevertheless, we think the
described reversal of the network re-organization may be due to
suppression of local hyper-connectivity near the focus, implying
that eslicarbazapine has an effect on seizure focus.

To conclude, the relative efficacy of CBZ and perhaps other
members of its pharmacological group on propagation is still
not fully elucidated, as there are contradicting pieces of evidence
from pre-clinical as well as clinical studies. CBZ has a strong
effect on seizure initiation, but it may have a smaller effect on
seizure propagation.

Phenytoin (PTH)
Phenytoin is a first-generation ASM acting mainly on voltage-
gated sodium channels. It was shown to increase the threshold
for paroxysmal activity in response to electrical stimulation in
a dose-dependent manner. However, it did not influence the
duration or the severity of secondary generalized seizures (78).
Similar results were reported in the epileptic model of flurothyl-
initiated seizures in mice in which PTH lacked negative effects on
seizure propagation (55). Thus, phenytoin’s anti-seizure effect is
thought to be more specific for initiation rather than propagation
(67). Nevertheless, in some pre-clinical studies, PTH was shown
to also affect seizure propagation in addition to initiation (79).

These findings suggest only a minor role of PTH on
seizure propagation.

Lamotrigine (LTG)
Lamotrigine is a second-generation ASM. It has a relatively
broad spectrum of activities and is mainly used for treating
focal epilepsies with or without secondary generalizations (100).
The main mechanisms of action are via inhibiting the activity
of voltage-gated sodium and calcium channels (50, 101). Pre-
clinical studies demonstrated the effect of LTG in suppressing
seizure propagation in the rat amygdala kindling model (61).
In vitro results reported by Huang et al. suggested that
LTG prominently reduced the propagation of field potentials
in rat PFC (63). As elaborated before, seizure propagation
largely depends upon high-voltage-activated calcium currents.
Consequently, by diminishing those currents, LTG is thought
to inhibit propagation (46). Moreover, LTG was found to
largely dampen AMPA-receptor activity in the dentate gyrus
thus achieving negative effects on seizure propagation (102).
This region has a crucial role in regulating the propagation
of epileptiform activities in hippocampal circuits, acting as a
frequency-dependent filter for incoming paroxysmal activity
from the entorhinal cortex (64). Topographic analysis of the EEG
of patients with first generalized seizures (non-lesional according
toMRI) demonstrated that LTG administration caused a decrease

in gamma power which implies there were modifications within
local cortical circuits. The conclusion was that LTG, like CBZ,
mainly affects seizure initiation rather than propagation (62).

Interestingly, withdrawal from LTG therapy was shown to
affect seizure propagation rather than initiation (97).

Consequently, we conclude that LTG has an important
effect on seizure propagation, possibly because of anti-epileptic
mechanisms other than affecting voltage-gated sodium channels.
However, the relative influence of LTG on propagation compared
to initiation needs to be clarified by further research.

Levetiracetam (LEV)
The mechanism of action of LEV is largely unknown, but
it was hypothesized to target neurotransmission by acting on
SV2A, a pre-synaptic vesicle protein (70, 103). LEV is used
for most seizure types, with a relatively low interaction profile
with other medications or adverse effects. Pre-clinical studies of
temporal lobe epilepsy models, including rat amygdala kindling
and rat pilocarpine models, demonstrated that LEV has an effect
on seizure propagation rather than initiation (61, 104). This
effect is believed to stem from suppressing excitatory synaptic
transmission (61, 105). Similar results were obtained by inducing
non-convulsive seizures triggered by ischemic lesions in animal
models. Applying LEV caused a decrease in propagation of
non-convulsive seizures (71). Additional basic studies proposed
that LEV induced inhibition of excessive synchronized activity
between neurons without affecting normal neuronal excitability,
indicating the relatively selective influence of LEV on seizure
propagation (70, 72). LEV was also shown to modulate the pre-
synaptic P/Q-type voltage-dependent calcium channel reducing
glutamate release in critical regions for propagation like the
dentate gyrus (73) and to suppress hypersynchronous activity
between neurons in the CA3 areas of hippocampal slices (74).

Clinical studies showed similar results emphasizing the
large influence of LEV on seizure propagation. Larsson et al.
demonstrated that LEV significantly reduced the ratio of patients
with epileptic spikes propagations from 22/24 to 7/15 (75). This
may be due to the widespread expression of SV2A in the brain
especially at regions vital for activity spreading and propagation
including the dentate gyrus, entorhinal cortex, frontal cortex,
several thalamic nuclei, and mesencephalon (106–108).

To conclude, clinical as well pre-clinical research largely
supports the claim that LEV’s anti-epileptic effect is much
more prominent on seizure propagation rather than initiation
possibly because of excitatory neurotransmission inhibition and
modulation of regions critical for propagation.

Lacosamide (LCM)
Lacosamide consists of functionalized amino acids designed as
an anticonvulsive medication. LCM is effective in patients with
drug-resistant focal epilepsy (109, 110). LCM possesses anti-
seizure as well as antinociceptive potencies (111). LCMwas found
to enhance voltage-gated sodium channels’ slow inactivation
(111–113). Slow inactivation of sodium channels is crucial in
regulating firing properties and determining the basic excitable
features of neurons, including the threshold of action potentials,
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action potential bursts, and active backpropagation of action
potentials into dendritic regions (114, 115). LCM’s block of the
persistent sodium current (INaP) contributes to the suppression
of pathological activity, without affecting normal neural activity
(116). Moreover, other mechanisms were described including
inhibition of carbonic anhydrase and effect on collapsin-response
mediator protein 2 (CRMP-2) which is involved in axonal
outgrowth and neuronal differentiation (116, 117). LCM was
demonstrated to decrease inter-ictal spikes and associated HFOs
in the pilocarpine models of mesial temporal lobe epilepsy
(MTLE) (118). Despite its effectiveness in preventing seizures in
the 6-Hz psychomotor seizure model, audiogenic seizure models,
and amygdala and hippocampal kindling models, LCM’s effect
was low against clonic seizures induced by pentylenetetrazole,
bicuculline, or picrotoxin in rodents (85, 111, 119).

Importantly, Wu et al. suggested that LCM is more likely to
affect neural sensitivity rather than the propagation of seizures in
a rat amygdala kindling model (61).

In a metanalysis published by Hemery et al., LCM
demonstrated a significant reduction in secondary
generalizations compared to the placebo. Notably, there was
a trend of lower efficacy for preventing secondary generalized
seizures compared with other seizures types, yet this trend was
not statistically significant (7, 85). This indicates a possible
inferiority of LCM in preventing propagation and secondary
generalizations compared to preventing other types of seizures.

To conclude, LCM’s efficiency in preventing seizure
propagation is relatively low, compared to initiation.

Topiramate (TPM)
While the exact mechanism of action of topiramate is not
fully understood, it has several potential antiepileptic effects.
These include the inhibition of the post-synaptic AMPA and
kainate receptors (120, 121). Importantly, this effect exists at
clinically relevant concentrations (122). Additional mechanisms
include blockade of voltage-activated sodium and calcium
channels (123–125), and positive modulations on GABA-A
receptors (126). The effect of TPM on carbonic anhydrase
isoenzymes (127) is not believed to have a significant anti-
seizure contribution (128). TPM was described to act both
on the epileptic focus via increasing focal seizure threshold
and inhibiting seizure propagation (76). Clinical data proposed
that TPM strongly inhibited secondary generalizations in a
dose-dependent manner (77). Similarly, in a metanalysis from
2014 TPM was demonstrated to significantly reduce secondary
generalizations of focal seizures (7).

Taken together, TPM is thought to have a crucial effect on
both seizure initiation as well as propagation. Further research
is needed to explore the relative efficacy of TPM on each of the
two features.

Perampanel (PER)
PER is an AMPA receptor antagonist that inhibits excitatory
transmission by suppressing excitatory currents at the post-
synaptic membrane (129). PER failed to diminish epileptic
activity at focus but reduced the severity and duration of
seizures compared with other ASMs such as LEV, CBZ, VPA,

and others (129). These results emphasize the selective influence
of PER on inhibiting seizure propagation. In the rat amygdala
kindling model, PER was the only ASM checked to affect seizure
propagation both near the focus as well as the distant propagation
(61). Importantly, in a meta analysis from 2014, PER was
demonstrated to significantly reduce secondary generalizations
of focal seizures (7). PER was also demonstrated to cause
a prominent reduction in the secondary bilateral synchrony
in adolescents with epileptic disorders resistant to LEV (80).
Interestingly, the clinical effect of PER as an add-on therapy in
focal epilepsy patients was suggested to involve the glutamatergic
component of thalamo-cortical projections, as demonstrated by
its effect on measured early SEP-HFOs (42).

Consequently, PER is believed to have amore prominent effect
on seizure propagation rather than initiation. This effect may at
least partially result from the fact that AMPA receptors activity is
crucial for seizure propagation (81, 82).

Zonisamide (ZN)
ZN is a broad spectrum ASM. Its antiepileptic efficacy was
proven mainly as an adjunctive therapeutic agent in patients
with focal seizures. In vitro studies suggested that ZN blocks
repetitive firing of action potential via acting on voltage-
sensitive sodium channels and reduces voltage-sensitive T-type
calcium currents (130, 131). Moreover, the sulfamoyl group of
ZN was first believed to suppress seizures like acetazolamide,
through inhibition of carbonic anhydrase. However, this
mechanism was later abandoned as studies showed that ZN
must be administrated at doses 100–1,000 times of that of
acetazolamide to achieve similar effects (132, 133). In vivo studies
proposed that ZN suppresses the spread of focal seizures in
cats from the cortex to subcortical regions (86). Data from
kindled cats also suggested that ZN significantly dampened
seizure propagation to subcortical regions (87). Similarly,
ZN markedly attenuated seizures in regions of sensorimotor
cortices and the thalamus during limbic status epilepticus,
indicating its major influence on seizure propagation (88).
Furthermore, ZN was shown to scavenger excess NO thus
modulating cGMP. This ZN-induced intracellular cascade is
largely related to the propagation of epileptic activity (89,
90).

To conclude, ZN seems to inhibit seizure propagation more
than initiation.

Benzodiazepines (BZD) and Phenobarbiturates (PB)
GABAergic synaptic activity plays a fundamental role in
epileptogenesis in general and especially in the propagation,
generalization, and termination of seizures (35, 36). Experimental
observations in animal models suggested that GABAergic
projections from the substania nigra to regions like the
pedunculopontine nucleus and the piriform cortex are important
in the process of propagation of epileptic activity (40, 41).
The substantia nigra (SN) was demonstrated as a crucial site
of action of GABA agonist ASMs (134). GABAergic synaptic
enhancement is considered the main mechanism of action of
benzodiazepines and a crucial component in that of barbiturates.
Commonly used BZD include midazolam, diazepam, and
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TABLE 1 | Reports on the relative efficacy of each of the discussed ASMs on the propagation of epileptic activity.

Major effect Intermediate effect Minor effect

Valporic acid (55–60) Lamotrigine (61–64) Carbamazepine (61, 62, 65–69)

Levetiracetam (70–75) Topiramate (7, 76, 77) Phenytoin (55, 67, 78, 79)

Perampanel (7, 80–82) Barbiturates (40, 41, 83, 84) Lacosamide (7, 61, 85)

Zonisamide (86–90) Benzodiazepines (40, 41, 83)

Cannabidiol (54, 91–94)

lorazepam. Each of them possesses a different pharmacokinetic
profile. BZD as well as barbiturates modulate GABA-A
receptor allosterically (135–137). Nevertheless, differences in
mechanisms of activity were reported. For example, BZD
increase the amplitude and the decay time of GABA-A-
mediated IPSPs currents in the post-synaptic membrane but
PB increase the mean open time of the chloride channel
(138–140). Furthermore, PB (but not diazepam) significantly
reduced the current of AMPA and kainate receptors (83).
In the latter in vitro study, diazepam was shown to even
aggravate propagating ictal-like events compared to PB that
inhibited them.

Notably, GABA-A receptors’ activity is modulated during
status epilepticus and chronic epilepsy contributing to the
resistance of ASMs. This modulation is possibly governed by
factors like changes in the electrochemical gradient of chloride
across the membrane and in its reversal potential (44, 45, 139,
141). In addition, changes are observed within the GABA-A
receptor subunits causing alternations in the intrinsic activity of
the receptor (139).

Interestingly, PB diminished the amplitude as well as the
propagation of seizures in neonates (84).

To conclude, modulating GABAergic activity by medications
like BZD and PB may affect seizure propagation. However,
because of the possible modulation on GABAergic activity
during chronic epilepsy, the total influence is complicated and
sometimes unexpected.

Cannabidiol (CBD)
CBD is a bioactive but non-psychotomimetic constituent of
cannabis sativa that is used to treat refractory epilepsy in
adults and children (142–144). The exact antiepileptic role of
the endocannabinoid system has not been fully clarified. CBD
administration is believed to enhance the activity of inhibitory
interneurons in regions critical for seizure propagation such as
the dentate gyrus (54).

The earliest pre-clinical experiments suggested that CBD
increased the afterdischarge threshold thus reducing the
afterdischarge amplitude, duration, and propagation in
electrically kindled, limbic seizures rats (145). In animal
models of temporal lobe epilepsy (pilocarpine and penicillin
models), CBD significantly reduced the percentage of severe
generalized seizures, indicating its selective negative effect
on the spread of epileptic activity (91). Moreover, CBD was
demonstrated to suppress LFP burst amplitude and duration in a
region-specificmanner in the hippocampus (an important region

for propagation and generalizations) (92). However, in the same
experiments of Jones et al., CBD had no important influence on
burst propagation speed, suggesting that the inhibition of seizure
propagation by CBD is more likely to be via selectively affecting
strategic or critical regions involved in propagation rather than
suppressing the spread of neural activity in general. Similarly,
CBD restored the normal state of excitability of the membranes
of PV interneurons in the hippocampus in temporal lobe
epilepsy models of kainic acid and lack of magnesium. Moreover,
the administration of CBD caused a reduction of EPSPs of
hippocampal excitatory pyramidal cells in a voltage-dependent
manner (93, 94).

To conclude, CBD has a large impact on seizure propagation
possibly by locally and selectively increasing the inhibitory tone
at regions critical for seizure propagation.

DISCUSSION

The propagation of seizures is a crucial and interesting issue from
both the basic pathophysiological and the clinical perspective.
Some ASMs demonstrate strong and even selective action
against seizure propagation, while others lack significant potency
regarding this aspect. Taken together, it seems reasonable to
consider this aspect in the medical management and prognosis
of epilepsy patients. Hence, we propose to classify ASMs into
three different groups: major, intermediate, and minor effect
on propagation Table 1, see figure.

The first group includes levetiracetam, valporic acid,
zonisamide, perampanel, and cannabidiol. There are abundant
data in literature supporting their negative modulation of
propagation as a major or main mechanism compared to
initiation. The intermediate group includes lamotrigine,
topiramate, barbiturates, and benzodiazipenes. In this group of
drugs there is either sparse evidence in the literature supporting
their effect on propagation, or evidence showing that they have
a more potent effect on initiation rather than propagation. The
third group includes carbamazepine, phenytoin, and lacosamide.
This group consists of drugs that affect seizure propagation as a
minor mechanism, if at all.

ASMs suppress propagation of epileptic activity by two
possible mainmechanismsTable 2, see figure. First, they diffusely
inhibit excitatory synaptic transmission in various ways. Second,
some of these medications seem to have selective influence on
brain regions critical for seizure propagation, such as structures
within the hippocampal formation and prefrontal cortex (see
Figure 1). Part of these regions are believed to further enhance
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TABLE 2 | Proposed ASMs methods to control the propagation of epileptic activity.

ASM Inhibiting excitatory synaptic transmission Selectively inhibiting regions important for

propagation of epileptic activity

Valporic acid (50) + -

Levetiracetam (70, 73, 103, 105–108) + +

Perampanel (61, 81, 82, 129) + -

Topiramate (120, 121, 123–125) + -

Zonisamide (86, 87, 89, 90, 130, 131) + +

Lamotrigine (50, 63, 64, 100–102) + +

Cannabidiol (54, 92–94) - +

Barbiturates and benzodiazepines Unknown Unknown

FIGURE 1 | ASM mechanism from synapse to network level. (A,B) Suggested mechanisms of action of relevant ASMs at excitatory (A) and inhibitory (B) synapses.

(C,D) Propagation of seizures from the initiation zone to two other types of zones: zones critical for enhancing further propagation (orange circles); and the regular

endpoint of seizure zones lacking further propagation capabilities (black circles). Suppressing propagation can be achieved by two main strategies: via general

inhibition of excitatory synaptic transmission (C); or selective inhibition of the activity at critical propagation zones (D). VA, valporic acid; LEV, levetiracetam; PER,

perampanel; LTG, lamotrigine; ZN, zonisamide; CBZ, carbemazapine; PTH, phenytoin; LCM, lacosamide; TPM, topiramate; CBD, cannabidiol; BZD, benzodiazepines;

PB, phenobarbiturates. Illustrated by Sari Eran Herskovitz.
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propagation from the seizure initiation zone while others are
described as filters or regulating gates (16, 17). For example, this
filtering feature was observed in the dentate gyrus and was shown
to be governed mainly by intrinsic properties of granule cells
and slow inhibitory post-synaptic potentials (16). However, as
the mechanisms of seizure propagation remain elusive, it is still
difficult to obtain signals properly quantifying this process and
thus anatomically correlating it.

Future research is needed to verify our conclusions and
to further investigate this important phenomenon from many
aspects. For example, large retrospective or observational
prospective studies following up patients for a long time may
help in addressing this issue by assessing changes in propagation
(extracted from clinical and anamnestic signs) resulting from
raising or lowering the dosage of a specific ASM. Moreover,
data from video-EEG or intra-cranial EEG monitored patients
can further uncover this important issue. In these situations,
abrupt or gradual cessation of ASMs is usually applied in order
to exaggerate seizure’s provoking as a part of routine pre-
operational work-up. Finally, additional pre-clinical studies are
also required to further decipher the cellular as well as the
network mechanisms of ASMs in terms of effect on propagation.
Possible directions include experiments using novel and valuable
technologies in the field of neuroscience, such as simultaneous

recordings from hundreds of neurons in different brain regions
or depths using the novel neuropixels technique, two-photon
calcium imaging, and more.

Taking all this into account, we conclude that ASMs may
affect propagation with variable potencies enabling us to
categorize them into medications with major, intermediate, and
minor effects. Additionally, medications influencing excitatory
synaptic transmission (such as perampanel and levetiracetam)
or those selectively affecting regions strategically critical for
propagating epileptic activity (like cannabidiol) are to be
considered to have a more potent influence on the propagation
of seizures (see Figure 1). We believe it is of great importance
to be aware of this effect in order to achieve proper
personalized anti-epileptic management and for improving
patient quality of life.
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