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Received: 20 February 2022

Accepted: 10 March 2022

Published: 12 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Study on Fire Behavior, Thermal Stability and
Degradation Kinetics of Thiol-Ene with
Poly(aminopropyl/phenyl)silsesquioxane
Jiangbo Wang

School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China;
jiangbowang@nbut.edu.cn; Tel.: +86-0574-87081240

Abstract: In this article, the flame retardant poly(aminopropyl/phenyl)silsesquioxane (PA) was
incorporated into thiol-ene (TE), to obtain a flame-retardant thiol-ene (FRTE) composite. The cone
calorimeter (CONE) measurement results showed that, compared with neat TE, the peak of heat
release rate (PHRR) and total heat release (THR) of FRTE have decreased by almost 23.7% and
14.5%, respectively. Thermogravimetric analysis (TGA) results further confirmed that the flame
retardant PA could induce the initial thermal degradation of TE, and increased the amounts of
residual char. Moreover, the activation energies of FRTE were calculated through the Kissinger
and Flynn–Wall–Ozawa methods. Compared with the neat TE, the activation energies of FRTE
were raised by the addition of PA. It indicated that the flame retardant PA promoted cross-linking
reactions of TE, to form a compact char layer and retarded further the thermal degradation of the
polymer matrix.

Keywords: flame retardancy; poly(aminopropyl/phenyl)silsesquioxane; thiol-ene; kinetics; activation
energy

1. Introduction

UV-photopolymerization is a simple and efficient way of generating cross-linked net-
works. Due to the advantages of solvent-free, environment-friendly, all active ingredients,
and rapid curing under UV irradiation, UV-curing film has strong potential application in
the field of coatings. A wide variety of monomers (including multifunctional acrylate and
methacrylate monomers) have been found to undergo rapid photopolymerization under
UV light, with the right amount of photoinitiator [1–3]. However, there are still many
problems in the above monomer systems, such as the fact that it is unstable in oxygen,
has uneven crosslinking, large internal stress in polymerization, is easy to cause volume
shrinkage, and so on [4–8].

Thiol-ene (TE) photopolymerization is a novel photopolymerization, based on click
chemistry, which is different from the step-growth reaction mechanism of an acrylate-based
photopolymerization system. It has the characteristics of uniform cross-linking network, gel
point delay, low volume shrinkage and low stress, which overcome the defects of previous
conventional photopolymerization systems. In addition, the rate of the thiol-ene addition
reaction is very fast, which is almost equal to the photopolymerization of acrylate under
inert conditions. Conventional radical addition polymerization is difficult to carry out in
the presence of oxygen, but the thiol-ene reaction is different from this. It can occur in the
presence of oxygen and will not be affected. [9–13]. However, the thiol-ene polymer, like
most organic polymers, is deficient in flame retardancy. Therefore, adding some additional
substances into thiol-ene is necessary to reduce its flammability [14,15].

Halogen flame retardance, the earliest used flame retardant, is an important kind of
organic flame retardant at present. With low price and additional excellent stability and
compatibility, it has become one of the most used flame retardants in the world [16,17].
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However, the halogen gas released from the combustion of halogen containing polymers
will generate corrosive, harmful gas (hydrogen halide), when combined with water vapor,
causing corrosion to some equipment and buildings. Halogen flame retardants will release
strong carcinogens, such as dioxin and benzofuran, after combustion, affecting normal
human metabolism and seriously damaging the environment [18–20].

The use of halogen-free flame retardants has become the development trend of polymer
flame retardants. As a high-efficiency, smokeless, low-toxicity and pollution-free flame
retardant, the phosphate flame retardant has attracted the interest of many researchers. At
present, remarkable achievements have been made in synthesis and application. However,
most phosphate flame retardants also have some disadvantages, such as high volatility,
poor heat resistance, poor compatibility, and dripping during combustion. Inorganic flame
retardants mainly include hydroxide (aluminum hydroxide, magnesium hydroxide), red
phosphorus, tin series and borate (zinc borate) [21–24]. Inorganic flame retardants not only
have a flame retardant effect, but also have a smoke suppression effect, and can inhibit the
formation of hydrogen chloride. Inorganic flame retardants are widely used because they
are non-toxic and non-corrosive. Today, with the increasing requirements of environmental
protection, inorganic flame retardants show strong competitiveness and development
potential. The disadvantage is that inorganic flame retardants generally have relatively
large addition and low flame-retardant efficiency, which seriously damage other properties
of the polymer matrix. As reported in the literature, polysiloxane has been demonstrated
as an effective and ‘environment friendly’ flame retardant, for various polymers. Silicon,
due to its low surface energy, migrates easily to the surface of the polymer matrix during
combustion. Thus, the thermal degradation of the polymer can be effectively prevented,
by forming a protective layer with excellent heat resistance [25–28]. However, as far as
we know, no one has studied the effect of polysiloxane to enhance the fire behavior and
thermal property of the thiol-ene system.

Thus, in this paper, poly(aminopropyl/phenyl)silsesquioxane (PA) was incorporated
into thiol-ene to enhance the flame retardancy of the composites. We chose PA because the
phenyl groups, in their structure, have excellent char-forming properties. Additionally, the
amino group forms nitrogen during combustion, which also has a flame-retardant effect.
Then, the fire behavior and thermal degradation behavior of siliconized-modified thiol-
ene were investigated by cone calorimeter measurement and thermogravimetric analysis
(TGA), respectively.

2. Materials and Methods
2.1. Materials

Trimethylolpropane tris(3-mercaptopropionate) (3T) was supplied by Bruno Bock
Chemische Fabrik GmbH & Co. (Marschacht, Germany). Tetramethylammonium hydrox-
ide (TMAOH) and phenyltriethoxysilane (PTES) were supplied by Alfa Aesar Chemical
Reagent Co. Ltd. (Tewksbury, MA, USA). Sigma-Aldrich Reagent Co. Ltd. (St. Louis,
MO, USA) supplied 2,2-Dimethoxy-2-phenylacetophenone (DMPA), pentaerythritol allyl
ether (TAE), (3-aminopropyl)triethoxysilane (APS) and ethyl alcohol (EtOH) were all used
as received.

2.2. Synthesis of Poly(aminopropyl/phenyl)silsesquioxane (PA)

As shown in Figure 1, the synthesis of PA was based on previous publications and the
specific method was as follows [29,30]: EtOH (75 mL), distilled water (25 mL) and TMAOH
(1 mL) were added into a 250 mL flask. Then, PTES and APS at different molar ratios were
mixed in the above solution, accounting for 10 wt% of the total. Stirring was stopped after
8 h and left overnight. The supernatant was removed and the precipitate condensate was
collected. It was then pumped and filtered with EtOH/distilled water (3/1 by volume)
and washed with anhydrous EtOH. The product was dried in vacuum for 20 h at room
temperature to obtain PA.
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2.3. Preparation of TE Composites

For the composite preparation, 1 wt% DMPA was first dissolved in 3T and ultrasound
was performed for 30 min. Then, equal amounts of TAE with 3T and PA (5 wt% of the
total amount) were added to the mixture and stirred evenly. The mixture was further
mixed with an ultrasonic device and the bubbles were removed (30 min). TE/PA (FRTE)
composites were prepared by UV curing after pouring the mixture onto the glass substrate.
For comparison, TE was prepared under the same technological conditions.

2.4. Characterization and Measurement

Cone calorimeter measurement was carried out using an FTT Conical Calorimeter
(Fire Testing Technology Ltd., East Grinstead, West Sussex, UK) according to ASTM E1354.
The heat flux was 50 kW/m2 and the specimen size was 100 × 100 × 3 mm3. All specimens
were measured in three groups and then averaged. Thermogravimetric analysis (TGA)
was performed on the Q5000 TA Thermogravimetric Analyzer (TA Instrument Corp.,
New Castle, DE, USA). In a nitrogen atmosphere, about 10 mg of the sample was heated
from 50 ◦C to 600 ◦C at 10 ◦C/min heating rate.

2.5. Thermal Degradation Theory

When studying the thermal transformation kinetics of solid chemical reactions, it is
generally based on the following reaction rate [31,32]:

r =
da
dt

= k f (a) (1)

where, r is the degradation rate, a is the conversion degree, t is the time, k is the rate constant,
f(a) is the reaction model. It is generally assumed that k obeys the Arrhenius equation:

k = A exp(−E/RT) (2)

where, A is the pre-exponential factor, E is the activation energy, R is the universal gas
constant and T is the temperature.

The influence relationship between degradation rate and temperature and sample
weight change can be expressed as:

da
dt

= A f (a) exp(−E/RT) (3)

Equation (3) can also be used in its integral form. Under isothermal conditions, the
integral form is:

ln t = E/RT − ln[A/g(x)] (4)
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For non-isothermal degradation, Equation (3) becomes:

da
dT

= (A/β) f (a) exp(−E/RT) (5)

where, β is the heating rate (β = dT
dt ), g(x) is the mechanism integrated forms (g(x) =

a∫
0

da
f (a) ).

(1) Kissinger method [33]

The equation of the Kissinger method can be expressed as follows:

ln(
β

T2
max

) = ln(
AR
E

)− E
RTmax

(6)

where, Tmax is the temperature of the peak rate.
The temperature of peak rate is determined by the DTG curves at different heating

rates. Then draw with 1/Tmax as the abscissa and ln(β/T2
max) as the ordinate and fitting

a straight line. The activation energy can be calculated from the slope of the line by the
Kissinger equation.

(2) Flynn–Wall–Ozawa method [34,35]

The equation of the Flynn–Wall–Ozawa method is as follows:

lg(β) = lgAE/g(a)R − 2.315 − 0.457
E

RT
(7)

As can be seen from the above equation, variable lg(β) is linearly proportional to
variable 1/T. The activation energy for any particular degree of degradation can be
obtained by calculating the slope of the lg(β) − 1/T plots.

3. Results and Discussion
3.1. Flame Retardancy

There are many traditional fire hazard testing methods, but most of them use small
instruments to test the performance, which is far from the actual situation when a fire
occurs. The cone calorimeter is mainly based on the principle of oxygen consumption for
testing. It provides a way to measure multiple different parameters in the same experiment.
It has been shown that the cone calorimeter test results have a very good correlation with
the parameters obtained from large-scale fire tests. Thus, it can be used to predict the
burning behavior of materials in real fires [36]. The cone calorimeter of TE composites is
presented in Figure 2. It could be obtained that the peak of heat release rate (PHRR) for the
neat TE reached 2152.4 kW/m2, which presented a very sharp heat release rate (HRR) curve
and the combustion was complete after 321 s. Compared with neat TE, the incorporation
of 5 wt% PA led to a strong reduction in PHRR, which reached a value of 1642.8 kW/m2

and the PHRR was reduced by nearly 23.7%. The reduction in HRR was accompanied by a
prolongation of burning time (from 321 to 409 s). Moreover, it was clear that the total heat
release (THR) evidently decreased (from 188.0 to 160.7 MJ/m2) for the FRTE composite,
compared with the neat TE matrix.

The Flame Retardancy Index (FRI) was always used to evaluate the flame retardancy
of resin systems [37,38]. The calculation equation of FRI is as follows:

FRI =

[
THR ×

(
PHRR

TTI

)]
TE[

THR ×
(

PHRR
TTI

)]
FRTE

(8)

As shown in Table 1, the FRI value of PA was 2.31 after calculating the relevant
parameters, which exhibited “good” flame retardancy performance.
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Table 1. The parameters obtained from the cone calorimeter measurement.

Sample PHRR
(kW/m2)

THR
(MJ/m2) TTI (s) FRI Flame Retardancy Performance

TE 2152.4 188.0 102.5 - -
FRTE 1642.8 160.7 154.5 2.31 good
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The morphology of the char residue in the cone calorimeter after combustion is
presented in Figure 3. It can be seen that the neat TE was fully burned and there was
practically no residue (Figure 3a). In contrast, the amount of FRTE residue was large and
the color was light yellow (Figure 3b). It was particularly important that the residue formed
a compact and continual char layer. This obviously helps prevent the passage of heat
and combustible substances in the fire and, finally, the flame retardancy of the polymer
was raised.
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3.2. Thermal Stability

The TGA/DTG curves for the degradation of the TE composites, at a heating ramp
rate of 10 ◦C/min in nitrogen, are presented in Figure 4, and the data are listed in Table 2.
It revealed that the onset degradation temperature (T5wt%) of FRTE was much lower than
that of neat TE. The T5wt% for TE was 345.7 ◦C, but 327.3 ◦C for the FRTE, indicating that
the onset degradation temperature of TE tended to decrease with the incorporation of PA.
The major degradation in the FRTE occurred between 300–500 ◦C, which was similar to
that of TE.
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Table 2. TGA data of TE composites.

Sample
Temperature (◦C) Peak Rate

(wt%/◦C)
Residue Char

(wt%)T5wt% Tmax

TE 345.7 385.9 1.95 1.33
FRTE 327.3 387.8 1.76 4.60

The char residues of the FRTE at 600 ◦C were higher than that of TE, and the amount
of solid residue shifted from 1.33 wt% (for TE) to 4.60 wt% (for FRTE) of the initial weight.
The phenyl groups in the structure had excellent char-forming properties and aminopropyl
groups could promote the crosslinking reactions during the thermal degradation process.
In addition to that, nitrogen could be formed from the amino group during combustion,
which also has a flame-retardant effect. This result further confirmed that the branched
silicone with aminopropyl and phenyl could induce the formation of the char layer, which
might play an important role for the flame retardancy of the FRTE composite [39,40].

3.3. Thermal Degradation Kinetics

The TGA and DTG curves of the TE composites, at the heating rates of 5, 10, 20
and 40 ◦C/min, are shown in Figures 5 and 6. The curves revealed the different profiles,
depending on heating rate, and two weight-loss stages occurred during degradation,
which was consistent with the literature report [41]. The first major degradation in the
TE composites emerged in a temperature range of 300–450 ◦C, whereas the second stage
degradation was observed above 450 ◦C. The temperature of the peak rate (Tmax) of the
TE composites increased progressively as the heating rate increased. Generally, with the
increase in heating rate, the time required for the sample to reach a certain temperature is
shortened. Therefore, it could be seen from Figure 5 that, when the heating rate gradually
increased from 5 ◦C/min to 40 ◦C/min, the TGA curve of the sample also moved to a
higher temperature.

Figure 7 presents the Kissinger plots of ln(β/T2
max) versus 1000/Tmax for TE compos-

ites. The kinetic parameters of the first stage in thermal degradation, calculated by the
Kissinger method, are summarized and compared in Table 3.



Polymers 2022, 14, 1142 7 of 11

Polymers 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

layer, which might play an important role for the flame retardancy of the FRTE composite 

[39,40]. 

Table 2. TGA data of TE composites. 

Sample 
Temperature (°C) Peak Rate 

(wt%/°C) 

Residue Char 

(wt%) T5wt% Tmax 

TE 345.7 385.9 1.95 1.33 

FRTE 327.3 387.8 1.76 4.60 

3.3. Thermal Degradation Kinetics 

The TGA and DTG curves of the TE composites, at the heating rates of 5, 10, 20 and 

40 °C/min, are shown in Figures 5 and 6. The curves revealed the different profiles, de-

pending on heating rate, and two weight-loss stages occurred during degradation, which 

was consistent with the literature report [41]. The first major degradation in the TE com-

posites emerged in a temperature range of 300–450 °C, whereas the second stage degra-

dation was observed above 450 °C. The temperature of the peak rate (Tmax) of the TE com-

posites increased progressively as the heating rate increased. Generally, with the increase 

in heating rate, the time required for the sample to reach a certain temperature is short-

ened. Therefore, it could be seen from Figure 5 that, when the heating rate gradually in-

creased from 5 °C/min to 40 °C/min, the TGA curve of the sample also moved to a higher 

temperature. 

  

(a) (b) 

Figure 5. TGA curves of TE (a) and FRTE (b) composites. 

  

(a) (b) 

Figure 5. TGA curves of TE (a) and FRTE (b) composites.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

layer, which might play an important role for the flame retardancy of the FRTE composite 

[39,40]. 

Table 2. TGA data of TE composites. 

Sample 
Temperature (°C) Peak Rate 

(wt%/°C) 

Residue Char 

(wt%) T5wt% Tmax 

TE 345.7 385.9 1.95 1.33 

FRTE 327.3 387.8 1.76 4.60 

3.3. Thermal Degradation Kinetics 

The TGA and DTG curves of the TE composites, at the heating rates of 5, 10, 20 and 

40 °C/min, are shown in Figures 5 and 6. The curves revealed the different profiles, de-

pending on heating rate, and two weight-loss stages occurred during degradation, which 

was consistent with the literature report [41]. The first major degradation in the TE com-

posites emerged in a temperature range of 300–450 °C, whereas the second stage degra-

dation was observed above 450 °C. The temperature of the peak rate (Tmax) of the TE com-

posites increased progressively as the heating rate increased. Generally, with the increase 

in heating rate, the time required for the sample to reach a certain temperature is short-

ened. Therefore, it could be seen from Figure 5 that, when the heating rate gradually in-

creased from 5 °C/min to 40 °C/min, the TGA curve of the sample also moved to a higher 

temperature. 

  

(a) (b) 

Figure 5. TGA curves of TE (a) and FRTE (b) composites. 

  

(a) (b) 

Figure 6. DTG curves of TE (a) and FRTE (b) composites.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6. DTG curves of TE (a) and FRTE (b) composites. 

Figure 7 presents the Kissinger plots of 
2

maxln( / )T versus 1000/ maxT for TE compo-

sites. The kinetic parameters of the first stage in thermal degradation, calculated by the 

Kissinger method, are summarized and compared in Table 3. 

 

Figure 7. The curves of 
2

max

ln( )
T



 

vs. 

max

1

T
 

of TE and FRTE. 

The kinetic parameters of TE changed with the incorporation of PA. For FRTE, the 

values of activation energy and lnA were 116.7 kJ/mol and 13.1/min, respectively, which 

were significantly higher than those of neat TE. In general, the incorporation of flame-

retardant PA enhanced the thermal stability of TE [42]. 

Table 3. Kinetic data using the Kissinger method. 

Sample 
Temperature (°C) 

E (kJ/mol) lnA (1/min) 
5 °C/min 10 °C/min 20 °C/min 40 °C/min 

TE 367.5 385.9 407.5 433.4 107.4 11.4 

FRTE 372.3 387.8 408.0 433.5 116.7 13.1 

The Flynn–Wall–Ozawa method is another kinetics analysis method and was used 

in this study. Compared with the Kissinger method, the Flynn–Wall–Ozawa method can 

analyze the change in activation energy of a flame retardant system in the whole thermal 

degradation process, through simple TGA data processing, and can, therefore, obtain 

more comprehensive and complete kinetic data. 

Based on the data in Figure 4, and the equation of 
0

0

tw w
a

w w

−
=

−
 (w0 is the initial 

weight of the sample, wt is the sample weight at any temperature t, w∞ is the final sample 

weight), the conversion degree as a function of temperature, relative to the decomposition 

of the TE and FRTE systems, can be calculated, as exhibited in Figure 8. 

Figure 7. The curves of ln( β
T2

max
) vs. 1

Tmax
of TE and FRTE.



Polymers 2022, 14, 1142 8 of 11

Table 3. Kinetic data using the Kissinger method.

Sample
Temperature (◦C)

E (kJ/mol) lnA (1/min)
5 ◦C/min 10 ◦C/min 20 ◦C/min 40 ◦C/min

TE 367.5 385.9 407.5 433.4 107.4 11.4
FRTE 372.3 387.8 408.0 433.5 116.7 13.1

The kinetic parameters of TE changed with the incorporation of PA. For FRTE, the
values of activation energy and lnA were 116.7 kJ/mol and 13.1/min, respectively, which
were significantly higher than those of neat TE. In general, the incorporation of flame-
retardant PA enhanced the thermal stability of TE [42].

The Flynn–Wall–Ozawa method is another kinetics analysis method and was used
in this study. Compared with the Kissinger method, the Flynn–Wall–Ozawa method can
analyze the change in activation energy of a flame retardant system in the whole thermal
degradation process, through simple TGA data processing, and can, therefore, obtain more
comprehensive and complete kinetic data.

Based on the data in Figure 4, and the equation of a = w0−wt
w0−w∞

(w0 is the initial weight
of the sample, wt is the sample weight at any temperature t, w∞ is the final sample weight),
the conversion degree as a function of temperature, relative to the decomposition of the TE
and FRTE systems, can be calculated, as exhibited in Figure 8.
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The activation energies of the thermal degradation for the TE composites could be
calculated through Equation (7). The conversion values were 0.02, 0.05, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, 0.95 and 0.98.

For the fitting straight lines, obtained in Figure 9, their R2 values were both higher
than 99%. This means that the Flynn–Wall–Ozawa method was suitable for this research
system. Moreover, the fitting lines, corresponding to TE and FRTE, were relatively parallel,
which indicated that the research system should correspond to a single reaction mechanism.
The activation energy curves are presented in Figure 10.

As seen, the same tendency as for the results from the Flynn–Wall–Ozawa method was
obtained. A decrease in the activation energy, with the increasing conversion in the initial
degradation stage (2~10%), was found. The activation energy of FRTE at 5% conversion
was around 116.0 kJ/mol, whereas that of neat TE was 117.8 kJ/mol. It was reported that
the earlier thermal degradation of polymer always occurred, due to the degradation of
polysiloxane at a lower temperature [43]. Then, the activation energies of neat TE and
FRTE both increased with increasing conversion. With the increase in activation energy, the
thermal stability of the polymer was improved, and the degradation became difficult, which
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indicated that the flame retardancy of the polymer was improved. However, for FRTE, the
incorporation of PA led to activation energy greater than that of neat TE (α ≥ 10%). From
these values, mean values of 124.4 kJ/mol and 129.1 kJ/mol were found for neat TE and
FRTE, respectively, which was in best agreement with those obtained using the Kissinger
method [44]. The above results indicated that the Si-C3H6NH2 bond and Si-Ph bond of
flame retardant PA may form some silyl radicals or siloxane derivatives, which could react
with TE or the evolved products of TE. Thus, the cross-linking reactions were promoted to
form a compact char layer in the FRTE composite and further pyrolysis during the thermal
degradation process was retarded.
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4. Conclusions

A flame-retardant composite FRTE has been successfully prepared by the incorporation
of poly(aminopropyl/phenyl)silsesquioxane into a thiol-ene matrix. The results of the
cone calorimeter and TGA measurements showed that, compared with neat TE, the flame
retardancy and thermal stability of FRTE were improved. Specifically, the PHRR and
THR of FRTE were reduced by almost 23.7% and 14.5%, and the amounts of residual char
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were increased. Furthermore, the results from both the Kissinger and Flynn–Wall–Ozawa
methods showed that the activation energies of FRTE were enhanced by the incorporation
of PA, which indicated that the branched silicone with aminopropyl and phenyl promoted
cross-linking reactions of TE, to form a compact char layer, and retarded further pyrolysis
during the thermal degradation process of the polymer matrix.
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