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ABSTRACT: Climate change is leading us to search for new materials that allow a more
sustainable environmental situation in the long term. Poly(lactic acid) (PLA) has been proposed
as a substitute for traditional plastics due to its high biodegradability. Various components have
been added to improve their mechanical, thermal, and barrier properties. The modification of the
PLA barrier properties by introducing nanoparticles with different shapes is an important aspect
to control the molecular diffusion of oxygen and other gas compounds. In this work, we have
described changes in oxygen diffusion by introducing nanoparticles of different shapes through
molecular dynamics simulations. Our model illustrates that the existence of curved surfaces and
the deposition of PLA around them by short chains generate small holes where oxygen
accumulates, forming clusters and reducing their mobility. From the several considered shapes,
the sphere is the most suitable structure to improve the barrier properties of the PLA.

1. INTRODUCTION

Climate change is one of the major concerns in recent years;
the need to abandon the oil industry and materials from its
spread in all sectors is not a simple change. The development
of new biodegradable polymers and the improvement of
available materials remain a fundamental task, contributing to
natural degradation with a lower impact on the environment.
In this area, poly(lactic acid) (PLA) has been described as one
of the future materials that can replace plastics in the packaging
area and medical prostheses.1−7 Additionally, this material is
employed in the chemistry industry for the separation of gases
with high energy efficiency8−10 or in the distribution of
medicines for certain treatments.11

PLA is a thermoplastic obtained from crops like corn,
cassava, sugar beets, and potato starch. It is a promising
material for environmental applications, considering that its
mechanical and thermal properties are close to petroleum-
based products such as poly(ethylene terephthalate) (PET),
and it is highly biodegradable and compostable.12−16 However,
its barrier properties need to be improved to allow the
extensive commercial application of PLA, along other proper-
ties.14−17 The general improvement of these important
properties is still expensive.1,3,18 Recent studies reported the
effect of modifying the PLA structure by the introduction of
different materials. Cellulose fibers,15,19−22 silica nanopar-
ticles,1,4,9,10,14,20,23−30 and other organic compounds16,31−39

have remarkably increased the mechanical, thermal, and barrier
properties, reaching values close to current plastics.16,40 Also,
some studies analyzed the PLA crystallinity and how its
variation produced an improvement in mechanical and barrier
properties.15,31,41,42 From the theoretical point of view, the

analyses of the barrier and mechanical properties of PLA and
flexible polymers have been performed as a function of
content, strength, geometry, and interactions, and how the
increased aspect ratio of nanocrystalline cellulose modifies the
water permeability.43

The potential impact of nanoparticles on the plastics’
average properties is very high due to their extended surface
area and the high number of reactive sites with the polymer
matrix. Composite materials of polymers and nanoparticles
have been studied experimentally, focusing on the changes
produced in the thermal and mechanical properties. Only a few
of them have measured the overall change in the barrier
properties. These studies include organic nanoparticles,32,33,16

metallic nanoparticles,14,35 carbon-based materials,31,44 cellu-
l o s e nanocompos i t e s , 1 5 , 3 8 and s i l i c a nanopa r -
ticles.1,4,9,10,14,20,23−30,34,36 These articles highlighted the
importance of the type, quantity, and dimensions of the
grafted polymer and studied their effect on the polymer’s
different properties. Nevertheless, most of the reported studies
are only focused on the experimental characterization of the
properties of polymer matrices modified with nanoparticles,
not considering the structural influences on the final features of
the material. Up to date, only a few works perform systematic
analysis of the effect of the shape of the nanoparticles on the
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final properties of the system. In detail, Knauert et al.44

analyzed the influence of the shape of carbon materials
(nanotubes, fullerene, and graphene sheets) in the viscosity
and the ultimate tensile strength of the polymer. Lin et al.35

observed the nanoparticle’s aggregation as a function of the
dimensions, quantity of the grafted polymer, and the shape of
the nanoparticles (rod, spheres, and nanoplatelets). This
characteristic is remarkable considering that new studies are
capable of tailoring the shape of the nanoparticles varying the
properties of the full material, as shown for silver by
Khodashenas et al.45

In the past decades, several works have applied simulations
to understand the changes in polymers when introducing
nanoparticles.3,18,46,47 Computational approximations appear
as a key instrument to verify and characterize the chemical
interactions at the atomic scale, delivering relevant energetic
and structural information to complement the experimental
analysis. Multiple studies have assessed, at different simulation
scales of dimension and time, the concentration effect of a
modifier on the interface between the polymer and the
nanoparticles.29,48−53

These studies revealed the importance of a higher or lower
density interface,48−51 the effects of the size, agglomeration,
and spherical nanoparticles’ curvature.29,47,48,52−54 These
theoretical reports, as most of the experimental ones, are
focused on evaluating the changes in thermal and mechanical
properties of the final nanocomposite and, to a lesser extent,
studying the barrier properties. To the best of our knowledge, a
key factor has not been addressed yet: the effect of the
nanoparticles’ shapes.
In this work, we focused on studying the barrier properties

of PLA and how the introduction of a modifier agent, such as a
nanoparticle, affects the final properties of the polymer matrix.
The shape of the modifier was systematically analyzed to
evaluate its influence on the chemical configuration and
properties of PLA. The diffusion of molecular oxygen (O2) in
PLA and modified PLA was studied based on atomistic models
described by molecular dynamics. These models highlighted
the influence of the shape of the nanoparticle on the barrier
properties of PLA. We observe the curvature effect of the
different morphologies, identifying the sphere like-shape as the
best solution to improve the barrier properties of the polymer.

2. METHODS
2.1. Modeling of Neat PLA. The study of the barrier

properties of PLA with nanoparticles of different shapes was
carried out using an atomistic model based on molecular
dynamics (MD). The PLA samples were built using the
SCIENOMICS MAPS code [https://www.scienomics.com]
and a Dreading-type interaction.55 The MD simulations were
performed using the LAMMPS code56,57 and analyzed by the
OVITO program.58 The CHARMM potential represents the
interaction of PLA atoms and molecular oxygen.59,60 In all the
simulations, the time step was 2 fs and an rRESPA-type
integrator with two additional time steps, the first half of the
original and the second a quarter, likewise the interaction of
pairs with one step is imposed of time equal to the original and
a k-space with half the initial time step.
Following the criteria of minimum energy and non-size

effects described by McAliley and Bruce59 and Zhang et al.,28,61

we elaborated PLA samples ([C3H4O2]n) of 32 chains with 50
monomers each. The samples were arranged in the MAPS
code using the Dreading potential. These samples were

thermalized by a simulation process in LAMMPS using the
CHARMM potential with the method described by Wensink et
al.62 for the relaxation of polymers at room temperature and
pressure and used to obtain a good density approximation. In
this method, the sample is under successive simulations with a
constant number of atoms, volume, and temperature (NVT).
Alternatively, the model is treated with a constant number of
atoms, pressure, and temperature simulation (NPT). Table 1
describes in detail the performed simulations of the sample in
the box relaxation.

The relaxed PLA samples were analyzed in terms of the
density, the glass transition temperature (Tg), the melting
temperature (Tm), and the self-diffusion coefficient. Tg and Tm
were calculated by the method of McAliley and Bruce,59 which
describes a variation in the glass transition temperature with
the cooling speed when using high speed rates in MD
simulations. In this case, the temperature was raised to 750 K
with an NPT ensemble at 1 bar during 100 ps. Next, the
temperature was reduced at different speeds (500, 300, 100,
and 50 K·ns−1), using the same pressure. The variation in
density with respect to the temperature for each case is shown
in Figure 1, where two different changes of the slope are
observed: a constant in all cases corresponding to the Tm and a
variable for each case corresponding to the Tg. Later, the glass
transition temperature variation with the cooling rate was
represented, and the experimental value of 10 K·s−1 was
extrapolated.
The study of the self-diffusion coefficient was calculated by

the analysis of the mean-square displacement (MSD) of the
PLA atoms as a function of time, according to the Einstein
equation:4,60,63−67
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where D is the diffusion coefficient, N is the number of
molecules, and ⃗r t( )i and ⃗r(0)i are the final and initial positions
of the PLA chain in a time interval. Thus, an NVT simulation
at 300 K for 4 ns was performed. The MSD as a function of
time was plotted for the last nanosecond of each simulation.
Additionally, another five simulations were run for each case,
under the same conditions with different initial velocity
distributions, to calculate the error of the diffusion coefficient.
Finally, some additional restrictions were imposed on the PLA
system to mimic the real behavior of PLA. The central atoms

Table 1. Summary of the Conditions Used in the MD
Simulations to Build the Initial Box

ensemble pressure (bar) temperature (K) run time (ns)

NVT 500 0.05
NVT 300 0.05
NPT 1000 300 0.05
NVT 500 0.1
NVT 300 0.05
NPT 5000 300 0.05
NVT 500 0.1
NVT 300 0.05
NPT 30,000 300 0.05
NVT 500 0.1
NVT 300 0.05
NPT 1 300 1
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of the PLA (*−COC−*) were constrained to reduce the self-
diffusion, following the models described by Suarez et al.,68

Takahashi et al.,69 and Maskey et al.70 Methyl groups, double-
bond oxygen, and hydrogens were not constrained. A test
without constrain showed that the MSD function has many
fluctuations, and the PLA self-diffusion coefficient is far from
the real value.
2.2. Modeling of PLA with Nanoparticles. The

simulations with nanoparticles were carried out defining
regions in space with four different shapes (sphere, cylinder,
cone, and flake), enclosed by repulsive surfaces to the atoms of
the system, that is, to the atoms forming the PLA and to the
oxygen molecules. Therefore, these regions are prohibited
areas to occupy by an atom. We did it this way to focus
exclusively on the shapes of nanoparticles rather than their
types. The flake shape was modeled as a cylinder with a high
radius and a low height, while the rest of the shapes were
modeled following their geometry. The LAMMPS fix wall
command was set, which imposes a potential in a region
centered on the box with the desired shape, in our case,
Lennard-Jones with ε = 1.0 kcal·mol−1 and σ = 1.0 Å. The
samples with the gap were obtained with this command
starting from a region 1000 times smaller (an equivalent
volume of 10−9 Å3) and increasing its dimensions one time
every thousand steps. During each interval of 1000 steps, an
NVT simulation was run at 300 K and at the end of the growth
for one million steps. These simulations permit atom evolution
and relaxation for the non-equilibrium process.
2.3. Diffusion and Barrier Analysis. The barrier

properties were studied by the diffusion of oxygen through
each sample. Traditionally, experimental permeation tests are
performed in an atmosphere saturated with oxygen. Therefore,
in the simulations, the change of volume was analyzed while
increasing the number of oxygen molecules inserted randomly
in the voids of PLA and outside of the nanoparticle region,
seeking the highest oxygen concentration without producing
volume expansion without control. By this strategy, a
maximum of 15% in mass of oxygen (652 molecules) was
added randomly to the PLA system, with a volume variation
below 10%. Percentages higher than this value produced the
destabilization of the original sample. Simulations with oxygen
molecules were run in an NVT ensemble at 300 K for 4 ns. As
in the PLA sample, five other systems with the same conditions
were run with different starting velocity conditions. The MSD
of oxygen during the last nanosecond of each simulation was
used to calculate the diffusion coefficient by applying eq 1.

Simulations of 8 ns were performed to observe that the
diffusion coefficient takes a similar value and a constant order
of magnitude compared with the case of 4 ns. The comparison
between the different nanoparticle shapes was made with an
equivalent volume fraction.
Finally, a detailed analysis of the oxygen interaction with the

PLA sample was performed to observe which atoms are
responsible for the molecular oxygen interaction reducing the
diffusion. We studied the oxygen interactions with other atoms
of the sample, taking special attention to the duration of each
interaction. The oxygen trajectory was followed by observing
the nearest atom in each case. A possible interaction was
considered when the oxygen atom was found closer than 2 Å
from another atom X. Then, we observed that the most
common possible interactions were with hydrogen and other
oxygen molecules. Therefore, the oxygen molecules were
labeled as interacted if the distance was lower than 2 Å and the
angle was 104 ± 5°, applying only the last condition for the
interactions with hydrogen atoms.

3. RESULTS

3.1. Analysis of Neat PLA. PLA samples simulated by
molecular dynamics have a density of 1.09 ± 0.01 gr·cm−3 (box
dimensions of 5.65 × 5.65 × 5.65 nm3), an approximate glass
transition temperature of 364 K, a melting temperature of 600
K (as observed in Figure 1), and a self-diffusion coefficient of
around 10−7 cm2·s−1. These values are coincident with those
described for the CHARMM potential in a pure PLA study59

and can be considered a good approximation to the
experimental values of density = 1.25 gr·cm−3, Tg = 300 K,
and Tm = 500 K.4 However, the value of the self-diffusion
coefficient is higher than the value described in the
experiments ∼10−8−10−9 cm2·s−1. To mimic this value, a
series of restrictions on the central atoms of the PLA chain
(*−C−O−C−*) were imposed, which reduced the mobility of
the chains and allowed the representation of the movement of
micrometric chains that occur in reality. Figure 2 shows how
the average square displacement of the PLA atoms varies as a
function of time with and without restrictions on the chain’s
central atoms. The behavior of the PLA without any restriction
is quite similar to that of a liquid material. When imposing the
restriction, the system tends to a stable value. Additionally, the
fictitious self-diffusion coefficient of our fixed system would
have a value around 10−9 cm2·s−1, which is in the order of the
experimentally expected magnitude. Based on these results, the

Figure 1. (a) Density as a function of the temperature for molecular dynamics simulation of PLA cooling at different rates from 750 to 300 K. (b)
Zoomed in view of the glass temperature (Tg) transition section (red). (c) Zoomed in view of the melting temperature (Tm) transition section
(blue).
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simulated PLA sample has density, melting and glass transition
temperatures, and a self-diffusion coefficient close to the real
value, which allowed us to analyze the barrier properties of the
system.
3.2. Diffusion Analysis. The barrier properties of

packaging materials mainly focus on the permeation of oxygen,
water vapor, and carbon dioxide. The permeation of a gas
through a material is described as the product of the diffusion
coefficient by the solubility coefficient. This work was focused
on studying the diffusion of oxygen through PLA, observing
how it varies when introducing structures of different shapes in
its interior. The diffusion coefficient variation is directly related
to the permeation coefficient since the sample of PLA was
immersed in a supersaturated oxygen ambient to reach the
maximum solubility inside it. This super-saturation will
increase the internal pressure in the sample, which will
produce an overestimation of the expected diffusion
coefficient. Still, it will not affect the study of the shape
influence on the barrier properties of the nanoparticles.
First, we studied the oxygen diffusion coefficient in pure

PLA without the insertion of nanoparticles (D0), obtaining an
approximate value of 1.75 × 10−5 ± 1.34 × 10−12 cm2·s−1.
Figure 3 shows the reduction in the diffusion coefficient (

Δ [ ] = −
−( )D % 100

D D

D
np 0

0
) for the different inserted nano-

particles (sphere, cylinder, cone, and flake) with a volume
equivalent to a sphere of 1 nm radius (black) and a sphere of
1.5 nm radius (red). As can be seen, the nanoparticles with a
smaller volume have a lower impact on decreasing the diffusion
coefficient. In contrast, for larger volumes, the effect of the
shape on the diffusion coefficient is similar for all the evaluated
nanoparticle shapes. This difference can be related to the size
of the nanoparticle and the total system. Once nanoparticle
volume is increased and the shape approximates to the limits of
the simulation box, unrealistic effects could be generated that
change the structure of the sample.
On the other hand, in the case of nanoparticles with smaller

volumes (V = 4.19 nm3), the sphere is the one that offers a
greater reduction of the diffusion coefficient, followed closely
by the cone. Both structures would then produce a higher
reduction in the permeation coefficient and improve the PLA
for packaging. Finally, the cylinder and the flake cases are the
least favorable, and by their design, we are comparing a higher
cylinder (cylinder) with a wider one (flake). Therefore, a
higher cylinder would always be more favorable, a shape with a
larger curved surface. From this analysis, it can be observed
that the sphere and the cone are suitable forms to reduce the
oxygen permeation in the PLA. Probably this effect is related to
the greater amount of curved surface on both structures. If we
focus on the curved surface, the sphere has the highest value
(Sc = 12.57 nm2, data for structures of smaller volume)
followed by the cone (Sc = 11.01 nm2), the cylinder (Sc = 7.60
nm2), and the flake (Sc = 6.48 nm2), coinciding with the
percentage decrease in the diffusion coefficient.

3.3. Barrier Analysis. Detailed analysis of the oxygen
occupation was performed inside the PLA sample averaged
over the last nanosecond of simulation and considered to
calculate the mean-square displacement and diffusion co-
efficient. The degree of occupation of the sample allows us to
describe the influence of each of the nanoparticles and observe
if there are areas of greater concentration. Figure 4 shows a

color map of the oxygen density averaged for the last
nanosecond in the PLA samples with and without nano-
particles. It is observed that, indeed, for the sphere and the
cone, the concentration is much greater around the nano-
particle, i.e., they produce an oxygen capture region that
reduces the diffusion of oxygen molecules. In the case of the

Figure 2. Mean-square displacement of the PLA atoms in a
simulation with the force of the central atoms established as zero
(black line) or without any restriction (red line). The arrows indicate
to which scale each curve corresponds.

Figure 3. Percentage of the decrease of the diffusion coefficient for
the different nanoparticles introduced in the PLA. Black bars
correspond to an equivalent volume of 4.19 nm3, and the red to
14.14 nm3.

Figure 4. Color map of the oxygen occupation (average of the last
nanosecond of the molecular simulation) in pure PLA and the
different forms of the introduced nanoparticles.
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cylinder and the flake, an increase is also generated in the
capture regions, but they present a dispersion very similar to
the one seen for pure PLA.
Additionally, when the diffusion coefficient is greatly

reduced, it is found that oxygen atoms are concentrated in
fewer regions than pure PLA, that is, regions with a higher
concentration of oxygen. In summary, we observe that oxygen
is deposited preferentially around the different nanoparticles
and concentrates more than what is seen for pure PLA, which
decreases oxygen mobility. This concentration is uniform
throughout the nanoparticle, although higher values are
observed in the curved regions.
Finally, interaction analysis of the oxygen with the different

PLA atoms was carried on. We observe that oxygen is mainly
interacting with hydrogen in the PLA chain and other oxygen
molecules, as shown in Figure 5, where the oxygen interactions

are shown for a simulation of 150 fs, every 50 fs. The oxygen
interactions with hydrogen are normally produced with the
methyl group (−CH3), with more than 45,000 interactions in
20 ps, followed by the CH group, with more than 9000
interactions in 20 ps, and the hydroxyl group (−OH), with less
than a thousand interactions in 20 ps, as expected from the
number of hydrogen atoms per group. The contact duration is
similar in the three cases (around 30 fs), producing an effect of
reducing the oxygen diffusion by accumulative short-term
interactions with the polymer matrix. The interactions between
oxygen molecules are very common through the simulation
(more than 2 million in 20 ps), with a long duration (around
260 fs), much higher than the interaction with the PLA groups.
Therefore, the main cause of oxygen retention is the formation
of oxygen clusters that cannot pass through PLA with the same
mobility as individual oxygen molecules. In summary, more
porosity in the PLA samples could be a favorable method to
reduce the diffusion coefficient and increase the barrier
properties of PLA.

4. DISCUSSION
In the literature, it has been detailed through experiments and
simulations how the barrier properties of PLA are improved in
the presence of nanocomposites of different materials.
Petersson and Oksman20 describe that the presence of
bentonite sheets causes a reduction in oxygen permeation,
Sanchez-Garcia and Lagaron21 observe the same behavior in
cellulose nanothreads for water steam permeation, Sepulveda et
al.30 explain that the reduction in oxygen permeation is due to

the insertion of silica nanoparticles with cinnamaldehyde,
Mulla et al.14 observe a great reduction in water permeability
when ZnO nanoparticles are included in PLA, and
Mohammadalinejhade et al.38 describe that PLA with nano-
hybrids of silver and lignocellulose reduces the water vapor
permeability, due to the highly hydrophobic lignocellulose and
the lower mobility of PLA chains due to the nanohybrids’
occupation of the cavities between polymer chains. All of them
indicate that the presence of a certain material prevents the
passage of oxygen or water through it and generates a tortuous
path for the gas. This type of behavior can describe our
simulations of greater volume, in which independent of the
shape, a reduction in the value of the permeation occurs in a
similar percentage. However, the amount of material
introduced in this case can be counterproductive and generate
an undesired increase in biodegradability, as described by
Fukushima et al.12 and Mulla et al.14 In smaller nano-
composites such as spherical nanoparticles, Ndoro et al.53

indicate that the curvature influences the arrangement of the
polymers. A surface with smaller curvature (flatter) prevents
polymers from distributing homogeneously on their surface,
interfering with each other, producing lower polymer density
and greater free volume. Merkel et al.9 and Zhou et al.29 add
that gas permeation is reduced when the spherical nano-
particles have a smaller size and therefore a smaller curvature.
Both clarify that the polymer’s density on the surface has
increased, reducing the free-volume fraction and reducing the
permeation. Finally, Wen et al.26,27 and Zhou et al.29 support
this theory by studying the effect of nanoparticle concentration
on permeation. They observe that more nanoparticles reduce
the permeation until the agglomeration is so high that it causes
the opposite effect. The agglomeration produces porosity
where the polymer does not enter, increasing the fraction of
free volume through which the gases move. Also, Singh,15 in
his PhD thesis, describes that chitin nanocrystals and cellulose
nanocrystals produce an increment in PLA crystallinity,
forming small spherulites that increase the barrier properties
more than the bigger ones. Huang et al.31 observe a similar
variation for graphene nanosheets due to the tortuous path
produced. In our model, we only study the variation in
amorphous PLA, to reduce the number of possible variables
that affect the result; however, we expect a major reduction
when crystallinity is considered. The study presented in this
work on how the shape of the nanoparticles introduced in a
PLA polymer matrix affects the barrier properties agrees with
what was observed previously. We have observed that the
sphere improved, to a larger extent, the barrier properties of
PLA compared to the other shapes. It has a lower curvature
than the rest of the forms. Therefore, we can assume that this
effect is purely caused by the shape of the nanoparticles, and it
is not related with their nature, in which our model
construction is based.
Additionally, the curvature effect is more evident when

studying two similar structures, such as the cylinder and the
flake, since the former presents a greater amount of surface
with less curvature than the latter with larger flat surfaces. In
Figure 4, we have observed that indeed curved sections are
points of agglomeration of oxygen, that is, having a lower
fraction of free volume in this region, oxygen is trapped in
these areas, accumulating and moving with difficulty. Also, we
observe that the interaction with other oxygen molecules is the
main factor of oxygen retention. Hence, an accumulation zone

Figure 5. Oxygen evolution in pure PLA simulation every 50 fs. Color
code: hydrogen is represented in white, carbon in gray, and oxygen
from PLA in red. Oxygen molecules are represented in blue, and the
one that is followed in cyan. Hydrogen interaction and oxygen
molecule interactions are represented in black with dashed lines. In
the top series, we observe an oxygen interaction and duration with
different hydrogen atoms, and in the bottom series, we observe the
formation and duration of an oxygen cluster.
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with an intermediate porosity is the best way to reduce oxygen
diffusion.

5. CONCLUSIONS
In this article, we present a model based on molecular
dynamics to study the nanoparticle shape influence on the
barrier properties of a PLA matrix, isolating this effect from the
nature of the nanoparticles. First, we validate the CHARMM
potential for reproducing oxygen diffusion in a PLA matrix.
Concerning the shape effect, we have observed that the most
significant reductions in the permeation values are obtained by
establishing a tortuous path through large blocks of materials,
always limited by the biodegradation time of the same, and
using nanoparticles with a larger curvature like the spheres. We
expect that these findings could be useful in designing new
nanocomposite materials with improved barrier properties not
only for oxygen molecules but also for water or other gases and
as a piece of extra information to describe the difference
observed in the experimental results.
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