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ABSTRACT

The kinetoplastids Trypanosoma brucei and Leishmania mexicana are eukaryotes with a highly structured cellular organisation that is reproduced with great fidelity in
each generation. The pattern of signal from a fluorescently tagged protein can define the specific structure/organelle that this protein localises to, and can be
extremely informative in phenotype analysis in experimental perturbations, life cycle tracking, post-genomic assays and functional analysis of organelles. Using the
vast coverage of protein subcellular localisations provided by the TrypTag project, an ongoing project to determine the localisation of every protein encoded in the T.
brucei genome, we have generated an inventory of reliable reference organelle markers for both parasites that combines epifluorescence images with a detailed
description of the key features of each localisation. We believe this will be a useful comparative resource that will enable researchers to quickly and accurately
pinpoint the localisation of their proteins of interest and will provide cellular markers for many types of cell biology studies. We see this as another important step in
the post-genomic era analyses of these parasites, in which ever expanding datasets generate numerous candidates to analyse. Adoption of these reference proteins by
the community is likely to enhance research studies and enable better comparison of data.

1. Introduction

Over the last 30 years, a set of tools and technologies has been
developed to enable the imaging of protein localisations in the kine-
toplastid parasites, including monoclonal antibodies, epitope tags and
most recently fluorescent protein tags [1-6]. Given that the kineto-
plastids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania
spp. are highly structured polarised eukaryotic cells, a microscope
image of the subcellular pattern of signal from immunofluorescence or
fluorescent protein tagging is critical step for elucidating phenotype
analysis or the potential protein function. It is often possible to de-
termine which organelle or organelle sub-structure a protein localises to
by reference to key landmarks observed by phase contrast microscopy
and detection of nuclear and kinetoplast landmark positions via fluor-
escent DNA staining (Fig. 1). A standard set of references to which
comparisons could be made would therefore be useful to the field. Here,
we report a collection of reference protein localisations for T. brucei and
Leishmania mexicana (as a representative Leishmania species). We used
the commonly cultured forms of these parasites, the insect gut forms
(procyclic and promastigote) as well as the amastigote (mammalian
macrophage-inhabiting) form of L. mexicana.

A procyclic T. brucei cell has a trypomastigote [7] morphology: An
elongated cell body that tapers at both ends with a long flagellum that is
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laterally attached to the side of the cell body for the majority of the
length of the flagellum. The tips of the long cell body, the flagellum and
the flagellar pocket constitute the key landmarks of the cell by phase
contrast or differential interference contrast (DIC) light microscopy.
These structures create clear asymmetries that allow the definition of a
series of reference axes (Fig. 1). The anterior-posterior axis is defined by
the direction of swimming, with the flagellum extending beyond the
anterior end of the cell body. The dorsal-ventral axis is defined by the
lateral attachment of the flagellum to the cell body with the dorsal side
marked by the flagellum attachment zone [8]. Finally, the proximal
(base) to distal (tip) axis along the flagellum provides the third re-
ference axis.

A promastigote Leishmania cell has an elongated cell body that is
rounded at the cell end from which the long flagellum emerges and
tapered at the opposite cell end [7]. As with trypanosomes the anterior-
posterior axis is defined by the direction of swimming, with the fla-
gellum emerging from the anterior end of the cell (Fig. 1). By phase
contrast, the Leishmania cell body appears rotationally symmetric
around its anterior-posterior axis so it is difficult to define a dorsal-
ventral axis. However, the proximal-distal axis along the flagellum can
provide a further reference axis for Leishmania.

Leishmania mexicana promastigotes can be differentiated in vitro to
form axenic amastigotes that are similar to intracellular amastigotes
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Fig. 1. The morphology of T. brucei and L. mexicana. A-C. The morphologies of key culturable life cycle stages of T. brucei and L. mexicana, shown in cartoon form
(Left) and as an overlay of a phase contrast and Hoechst (DNA stain) fluorescence micrographs (Right). A. Procyclic form T. brucei with a trypomastigote morphology.
The anterior-posterior axis, the kinetoplast (K) and nucleus (N), the flagellum proximal-distal axis and the dorsal-ventral axis are indicated. B. Procyclic form L.
mexicana with a promastigote morphology. No features visible by light microscopy can be used to define a dorsal-ventral axis. C. Amastigote form L. mexicana. The
flagellum does not protrude from the cell, meaning a flagellum proximal-distal axis is not easy to identify. D-E. The key cell cycle stages of procyclic form T. brucei
and L. mexicana, showing the order of duplication of the kinetoplast (K), nucleus (N) and flagellum (F) and their morphology. D. Procyclic trypomastigote form T.

brucei. E. Procyclic promastigote form L. mexicana.

found inside the parasitophorous vacuole of infected macrophages
during a mammalian infection [9]. These cells have an amastigote
morphology: An ovoid cell body from which a short flagellum just
emerges at the anterior end. Leishmania amastigotes are immotile and
therefore the anterior-posterior axis is defined by analogy to the pro-
mastigote form and follows the proximal-distal axis along the flagellum.
As with the promastigote form, the amastigote cell body appears rota-
tionally symmetric around its anterior-posterior axis so it is difficult to
define a dorsal-ventral axis using phase-contrast microscopy.

In addition to the cell shape landmarks that are easily visible by
phase contrast or DIC, the positioning of the DNA containing structures,
the nucleus and kinetoplast (concatenated mitochondrial DNA), are
consistent and predictable (Fig. 1). Therefore, the combination of a
phase contrast image and fluorescent DNA stain image provides an
ideal reference framework for determining protein localisation. More-
over, the timing of the duplication and division of the nucleus, kine-
toplast and cytoskeletal features (most strikingly, the flagellum) occur
at set time points during the cell cycle. A simple count of these features
enables the cell cycle stage of any cell to be determined and hence
allows proteins with cell cycle dependent expression or localisation
patterns to be identified (Fig. 1) [10-12].

TrypTag is an ongoing project which is successfully generating a
subcellular localisation database of every protein encoded in the T.
brucei genome [13]. This project is building on these inherent cell
biological advantages to build a localisation database of high biological
value for many fields. Once complete, the data set will be in two parts:
firstly, the images of the trypanosome cell expressing the tagged protein
and, secondly, the annotation assigning that protein to a likely sub-
cellular localisation. The annotation of the images is of particular im-
portance as this enables researchers to search for proteins with a spe-
cific localisation. Consideration of the many protein localisations
obtained so far shows that some provide extremely clear, reproducible
markers for organelles. We have therefore developed this resource
using well-characterised proteins as a reference for the majority of or-
ganelles and organelle sub-domains in the cell to guide our annotation
of the localisations observed during the TrypTag project. This resource
shows that it is possible, with care, to distinguish between localisations
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that can appear superficially similar. To add comparative value, we
have also localised these proteins in L. mexicana as a representative
Leishmania species. However, this resource will also provide an im-
portant reference for other parasite cell biology communities. Wide-
spread use of cell lines expressing these standard markers described
here will facilitate meta-analyses over the coming years and provides a
foundation for analysis of changes in structure in both trypanosomatid
mutants and different life cycle stages.

2. Results and discussion

This resource provides illustrative widefield epifluorescence images
of proteins endogenously tagged with a fluorescent protein which lo-
calise to specific structures/compartments in the T. brucei and
Leishmania cell. This is supported by a description of key features dis-
tinguishing these localisations, a localisation ontology (a defined vo-
cabulary) to describe them and the associated Gene Ontology (GO)
cellular component accession numbers of the structure. In collaboration
with TriTrypDB we have submitted GO definitions to allow the pairing
of all localisation ontology terms with GO terms, although not all
structures have yet been assigned GO terms.

Wherever possible, example proteins have been selected which are
major components of a structure/compartment and for which there is
previously published evidence for localisation to that structure/com-
partment. In some cases, where that was not possible, we have used
proteins either with well-characterised orthologs in other organisms or
with well-known biochemistry. For these cases we have indicated if this
protein has a subcellular localisation known in either the yeast or
human genome-wide subcellular protein localisation projects [14,15].
If no example protein is given then it means that to date there is no
previously described example in trypanosomatids nor any ortholog
from another organism with the expected localisation.

The localisation descriptions are designed to be used in an additive
manner; therefore, if the fluorescent pattern from a tagged protein
shows that protein is localised to more than one organelle then all the
appropriate descriptors should be listed. Moreover, for the more com-
plex organelles that contain sub-domains we have arranged the
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descriptions within a hierarchy reflecting their position within that
organelle; for example, the nuclear pore is a component of the nuclear
envelope, which in turn is part of the nucleus. We have indicated this
hierarchy using numbered headings.

This ontology presented here provides a defined set of terms useful
to the kinetoplastid community for future descriptions of cellular lo-
calisations. There follows in most cases a nominated marker protein
defining that organelle/structure. Sometimes there is a GO term that is
useful for describing the general location of a novel protein where a
specific sub-definition in the hierarchy has not been determined - e.g.
nucleus. Whilst we include these more generic terms for completeness
we have not ascribed markers to them, since they are generally too
granular to be useful. In looking at the many thousands of tagged
proteins in the TrypTag project we have chosen a subset cohort whose
localisation provides an inventory of organelles and structures useful
for studies in trypanosomes and Leishmania.

Overall, the structure and organisation of many organelles and or-
ganelle sub-domains are similar between T. brucei and L. mexicana;
however, there are certain structures such as the lysosome and fla-
gellum attachment zone that differ significantly, and we highlight these
differences. We have shown reference marker protein localisations in T.
brucei procyclic trypomastigotes in Fig. 2, L. mexicana promastigotes
and amastigotes in Figs. 3 and 4 respectively and cell cycle dependent
localisations in Fig. 5. Some amastigote cell lines gave a weak or am-
biguous signal, which may have one of several causes (see below). We
have drawn attention to this limitation in Fig. 4 by means of a red
outline to the relevant micrographs.

Our tagging approach introduces the mNeonGreen [16] open
reading frame into the endogenous locus of the target gene to allow
expression of a protein with an amino (N) or carboxyl (C) fluorescent
tag. For the reference images here, we have selected the terminus which
gave the clearer localisation, assessed qualitatively based on signal and
background intensity. For the majority of these proteins, tagging at
either the N or C terminus gave the same localisation; however some
protein localisations (a subset of plasma membrane, mitochondrion and
endomembrane proteins) were sensitive to the tagging terminus. This
endogenous tagging method uses ‘readthrough’ transcription such that
the tagged proteins’ expression is more likely to reflect that of the wild
type protein than when other commonly-used methods are employed,
such as exogenous promoter-driven expression. Clearly, however, we
and other users are aware that such endogenous tagging introduces an
exogenous UTR either on the 5’ or 3’ end, depending on which terminus
of the protein is tagged. This could lead to over- or mis-expression of a
subset of proteins, especially for C terminal tagging because the 3 UTR
is thought to encode most of the regulatory signals for controlling gene
expression [17]. Therefore, as with any such global approaches there
are unavoidable caveats that will no doubt be born in mind by the user;
however, in these examples we have been careful to locate the tag in
each specific protein marker at the most appropriate terminus.

3. Nucleus - GO:0005634

T. brucei and Leishmania have a single, near-spherical nucleus lo-
cated approximately in the centre of the cell, which undergoes closed
mitosis. In T. brucei mitosis follows kinetoplast division [10,18,19],
while in Leishmania mitosis and kinetoplast division occur near-syn-
chronously [11,12]. The nucleus is readily identified using DNA stains
and sub compartments are readily identifiable.

3.1. Nuclear lumen - GO:0031981

This is the entire membrane bound contents of the nucleus. A nu-
clear lumen protein localisation is identified from a nuclear signal
without exclusion from the nucleolus and without an ‘edge effect’
(concentration of the signal at the edge of the nucleus) which would
indicate a nuclear envelope signal. Many, if not most, nuclear proteins
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are concentrated in either the nucleoplasm or nucleolus.
3.2. Nucleoplasm - GO:0005654

This is the lumenal contents of the nucleus excluding the nucleolus,
comprised of euchromatin and heterochromatin. A nucleoplasm protein
localisation gives a nuclear lumen signal that is excluded from the
nucleolus. Example protein: Histone 3, H3 [20] (Fig. 3). Specialised
nuclear bodies including the expression site body (ESB, the site of VSG
mRNA transcription) are recognisable as single or multiple points in the
nucleoplasm but are not readily distinguishable by light microscopy
without co-localisation evidence; therefore, we have not described
them here.

3.2.1. Nucleolus - GO:0005730

Each nucleus has a single, near-spherical nucleolus responsible for
ribosomal RNA synthesis which is visible as the region of lower signal
intensity in the nucleus when viewed using a DNA stain. During mitosis
the nucleolus does not break down [21] and instead becomes stretched
along the spindle before resolving into two separate nucleoli as mitosis
reaches completion. Example protein: DEAD/H RNA helicase, the
ortholog of which localises to the nucleolus in humans [14] (Fig. 3).

3.2.2. Spindle - GO:0005819

Spindle protein localisations are recognisable from the character-
istic spindle structure: Diamond-shaped in early mitosis (within an
elongated nucleus) or long and thin in late mitosis (between two nas-
cent nuclei connected by a long bridge) [22]. The spindle is parallel to
the anterior-posterior axis of the cell in T. brucei [22]. In L. mexicana the
spindle begins near parallel to the anterior-posterior axis, before ro-
tating to be near perpendicular [12]. As in many organisms which
undergo closed mitosis, condensed chromosomes are not visible. Ex-
ample protein: Spindle-associated orphan kinesin F, KINF [23,24]
(Fig. 5).

3.2.2.1. Spindle poles - GO:0000922. The ends of the spindles are
bundles of microtubule minus ends and associated structures,
although while microtubule bundling occurs in trypanosomes little is
known about the associated structures [25]. Proteins localised to this
structure give two signal foci, one on each of the outermost edges of
nascent and recently divided nuclei - although they may hypothetically
give more varied structures during spindle assembly or disassembly.
These foci are separated along the anterior-posterior axis in T. brucei
and separated perpendicular to the anterior-posterior axis in
Leishmania. This structure is only present in mitotic cells with a
spindle. No proteins unique to the spindle poles have been well
characterised to date in the kinetoplastids.

3.2.2.2. Kinetochore - GO0:0000776. The kinetochores attach the
centromere of chromosomes to the spindle microtubules and have
recently been characterised in detail [26]. Proteins in this structure give
a punctate signal in late pre-mitotic and mitotic nuclei, and often have
decreased signal levels at other cell cycle stages. In early mitotic cells
the points lie as a line perpendicular to the orientation of the spindle
(analogous to the metaphase plate), before moving towards the spindle
poles [26]. Example protein: Kinetoplastid kinetochore protein 1,
KKT1 [26,27] (Fig. 5).

3.3. Nuclear envelope - GO:0005635

This is the double membrane enclosing the perinuclear space that
surrounds the nucleus and is contiguous with the endoplasmic re-
ticulum. Proteins found in this structure would be expected to give a
nuclear signal with a clear increase in signal around the periphery of
the nucleus — an ‘edge effect’. However, to date, no nuclear envelope
proteins have been well characterised. It is plausible there is significant
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Fig. 2. Reference protein localisations for procyclic trypomastigote form T. brucei. Widefield fluorescence images for each protein are laid out in the same format:
Left, an overlay of the phase contrast (grey), mNG fluorescence (green) and Hoechst DNA stain (magenta) and right, the mNG fluorescence in greyscale. These images
were all captured as part of the TrypTag project. The protein name and gene fusion are shown in the top left (Tb927.X.XXXX::mNG for C terminal tagging,
mNG::Tb927.X.XXXX for N terminal tagging). The annotation of the localisation is shown in the bottom left. A key distinguishing feature of the localisation may be
highlighted on the right.
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amastigote approximately matches the contrast in Fig. 2. Red outlines indicate a localisation that may be spurious, see main text for more detail.

overlap between nuclear envelope and endoplasmic reticulum proteins
due to the connections between these two membrane systems.

3.3.1. Nuclear pore - GO:0005643

Proteins within the nuclear pore complex give a characteristic signal
distribution with small puncta covering the entire outside of the nu-
cleus at all stages of the cell cycle. Images captured with the focal plane
directly through the centre of the nucleus reveal the nuclear envelope-
confined nature of nuclear pores. Example protein: Nuclear pore
protein 152, NUP152 [28] (Figs. 2-4).

3.3.2. Nuclear lamina - GO:0005652

The nuclear lamina is a cytoskeletal structure supporting the nuclear
envelope. A nuclear lamina protein would be expected to have a con-
centration of signal at the nuclear periphery with a punctate/patchy
pattern. To date, the only candidate nuclear lamina protein char-
acterised had a localisation similar to nuclear pores, perhaps instead
suggesting a role in nuclear lamina-nuclear pore interaction [29].

29

4. Cytoplasm - GO:00057 37

This includes the entire plasma membrane bound contents of the
cell, excluding the nuclear lumen and the flagellar cytoplasm. This
comprises both small organelles and soluble components of the cyto-
plasm. Cytoplasmic proteins give a whole cell signal that is excluded
from the nucleus and the flagellum. A cytoplasmic signal can also have
a range of different textures such as smooth, patchy, reticulated and
punctate; these correspond to sub-structures within the cytoplasm.
Example protein: S11, a ribosome subunit, the ortholog of which
localises to the cytoplasm in yeast [15]. (Figs. 2-4). Note that the
parental cell line, which does not express any fluorescent protein, tends
to have a weak reticulated or punctate cytoplasmic signal.

4.1. Glycosome - GO:0020015

These are small slightly elongated membrane bound organelles,
related to peroxisomes, found throughout the cytoplasm [30,31]. Pro-
teins in glycosomes give a characteristic signal that looks like a short
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amastigote morphology division (10 h after division) is shown.

line or elongated point, and glycosomes tend to cluster into groups
away from the nucleus and flagellar pocket in T. brucei. In Leishmania
the position of the glycosomes is similar; however, the signal is more
rounded. Example protein: Glycosomal glyceraldehyde 3-phos-
phate dehydrogenase, GAPDH [32,33] (Figs. 2-4).

4.2. Acidocalcisome - GO:0020022

This is a small spherical membrane bound organelle, which contains
very high concentrations of calcium and sodium ions. They are ex-
pected to have little luminal protein content, with most acidocalcisome
proteins expected to be transporters. An acidocalcisome protein signal
is characteristically composed of multiple point-like or circular foci that
cluster away from the nucleus and flagellar pocket. Example protein:
Vacuolar iron transporter 1, VIT1 [34] (Figs. 2,3). When VIT1 tagged
with mNeonGreen at its C-terminus is expressed in L. mexicana amas-
tigotes it does not obviously localise to acidocalcisomes; instead it has a
reticulated fluorescent signal, which we think is likely to be spurious
(Fig. 4). This is potentially due to expression with an endogenous 3’
UTR being particularly critical in this cell type.

4.3. Lipid droplet - GO:0005811

This is a storage organelle for lipids and lipid soluble molecules,
which has little internal protein content, though has some surface-as-
sociated proteins. A lipid droplet protein is characterised by multiple
circular signal foci throughout the cytoplasm, which are larger than
acidocalcisomes or RNA granules [35]. The size and number of lipid
droplets is dependent on the nutritional status of the cell [35]. In
Leishmania promastigotes for some foci the signal appeared ring-like,
which is plausible for larger lipid droplets if the protein is only asso-
ciated with the droplet periphery. In Leishmania amastigotes there was
no observable signal for our example protein. Example protein: Lipid
droplet kinase, LDK [36] (Figs. 2,3).
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4.4. RNA granules

RNA granules are non-membrane bound structures within the cy-
toplasm, which are sites for the storage, processing and degradation of
RNA. RNA granules are highly dynamic and complex, and there are
multiple different types of RNA granule, such as P-bodies and stress
granules, which appear under different cellular conditions. An RNA
granule protein localisation is characterised by multiple point-like foci
of variable sizes throughout the cytoplasm and the number, size and
distribution depends on their type and the precise state of the cell. We
have observed this to have some variability, which we presume results
from the level of stress arising from the precise time the live cell was
adhered to the slide before imaging. These different granule types can
be distinguished by co-localisation with a known marker. Example
protein: SCD6 [37] (Figs. 2-4).

4.5. Endocytic

In T. brucei and L. mexicana, all exocytic/endocytic activity occurs at
the flagellar pocket. The position of the single lysosome and single
Golgi apparatus means that almost all exocytic/endocytic traffic is
concentrated in the region between the flagellar pocket and nucleus.
One exception to this is the Leishmania lysosome which extends from
near the flagellar pocket to beyond the nucleus, and there may there-
fore be some associated endocytic traffic in this region. The exocytic/
endocytic apparatus includes specific compartments such as the early/
late/recycling endosomes but we have chosen, for simplicity, to use a
higher-level description. Proteins in exocytic/endocytic apparatus give
signals as either a single focus or a complex of multiple foci between the
flagellar pocket and nucleus. More detail about the exact compartment
(s) from which the signal is originating can be determined by co-loca-
lisation with known marker proteins. Example protein: RAB5A [38]
(Figs. 2-4).
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4.5.1. Lysosome - GO:0005764

This is a membrane bound organelle that is a terminal destination of
the endocytic pathway and is responsible for the breakdown of many
different cellular or endocytosic substrates. The T. brucei lysosome is
found between the flagellar pocket and nucleus towards the ventral
side; signal from a lysosome protein therefore appears as a small focus
positioned relatively close to the posterior side of the nucleus. In con-
trast, the lysosome in L. mexicana is an elongated tube that runs along
the anterior-posterior axis of the cell from a multivesicular complex
close to the flagellar pocket, past the nucleus, then terminating in the
posterior half of the cell. Signal from a Leishmania lysosome protein
therefore appears as a line that runs from anterior, near the pocket,
beyond the nucleus and towards the posterior. Example protein: cy-
steine peptidase A, CPA [39,40] (Figs. 2-4).

4.5.2. Golgi apparatus - GO:0005794

Signal from a Golgi apparatus or endoplasmic reticulum exit site
protein appears as a short line positioned near the flagellar pocket. In T.
brucei the Golgi apparatus is asymmetrically positioned towards the
flagellar (dorsal) side of the cell, near the start of the flagellum at-
tachment zone and the neck of the flagellar pocket, and is oriented
parallel to the flagellum. In Leishmania the Golgi apparatus lies parallel
to the flagellar pocket. It is consistently positioned on one side of the
pocket; however, a dorsal-ventral axis in these cells is not readily es-
tablished from only light microscopy. The Golgi has differences be-
tween the cis and trans compartment composition, potentially enabling
the localisation of proteins to particular sub-domains. Example pro-
tein: GRASP [41-43] (Figs. 2-4).

4.5.3. Endoplasmic reticulum (ER) - GO:0005783

An endoplasmic reticulum protein gives a reticulated cytoplasmic
signal, often with a perinuclear (i.e. nuclear envelope) signal. This
signal appears somewhat similar to that of a protein localised to the
mitochondrion; however, its tubules are thinner, it typically has areas
of more diffuse signal corresponding to the cisternae and has minimal
signal around the kinetoplast. Specialised sub-domains of the ER are
known, particularly in T. brucei, including flagellum attachment zone
[44] and flagellar pocket [45] associated sub-domains. It is likely that
some ER proteins are enriched in particular sub-domains (e.g. flagellum
attachment zone ER-enriched VAP [46]), but few such examples have
yet been analysed. Example protein: serine palmitoyltransferase,
SPT, the ortholog of which localises to the ER in humans [14] and yeast
[15] (Figs. 2-4). A weak or ambiguous ER localisation may be anno-
tated cytoplasm with the modifier reticulated; see the use of modifiers
below.

4.6. Mitochondrion - GO:0005739

T. brucei and Leishmania have a single reticulated mitochondrion
which extends throughout the cytoplasm, from the posterior to the
anterior ends of the cell. The reticulation/tubules of the mitochondrion
surround the kinetoplast (which lies within the mitochondrion) and are
thicker than those of the endoplasmic reticulum. The double membrane
of the mitochondrion means there are two sub-compartments, the inter-
membrane space and the matrix, in addition to the two membranes. It
may be the case that these give characteristic signals. Example pro-
tein: Translocase of the inner membrane 17, TIM17, a well-con-
served mitochondrion translocase protein (Figs. 2-4). As for the ER, a
weak or ambiguous mitochondrion localisation may be annotated cy-
toplasm with the modifier reticulated; see the use of modifiers below.

4.6.1. Kinetoplast - GO:0020023

The kinetoplast is disc-shaped and lies next to the basal body with
its long axis perpendicular to the orientation of the flagellum. A kine-
toplast protein localisation can be identified by co-localisation of signal
with stained kinetoplast DNA. Example protein: PIF1-like helicase 8,
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PIF8 [47] (Figs. 2-4).

4.6.2. Tripartite attachment complex (TAC)

This is the transmembrane cytoskeletal complex that links the ki-
netoplast to the basal body and crosses the inner and outer mitochon-
drial membranes. Proteins localised to the TAC give a small focus of
signal extremely close to the kinetoplast on the side of the flagellar
pocket, basal body and flagellum. The TAC has an anisotropic multi-
layered structure with distance from the kinetoplast corresponding to
position in this structure [48]. Example protein: P197 [49] (Figs. 2-4).

4.6.3. Antipodal sites

These sites define the two poles of the kinetoplast disc and are as-
sociated with the addition of new minicircles during mitochondrial S
phase. Antipodal site proteins give two points of signal at the tips of the
kinetoplast along its long axis, oriented perpendicular to the flagellum.
Given that these are the site of minicircle addition during mitochondrial
S phase, proteins may only localise to this structure at some stages of
the cell cycle. Example protein: Mitochondrial RNA binding protein
38, RBP38 [50] (Figs. 2-4).

5. Flagellum and associated structures
5.1. Flagellum - GO:0005929

The morphology and position of the flagellum is one of the defining
features of the different trypanosomatid morphology classes [7]: T.
brucei procyclic forms are trypomastigote with the flagellum running
laterally attached to the side of the cell towards the anterior end of the
cell, where it overhangs the cell by a short distance. In Leishmania
procyclic promastigotes the flagellum protrudes from the anterior of the
cell with a short stretch of lateral attachment within the flagellar
pocket. In morphologies with a motile flagellum, signal localisations
can normally be assigned with confidence to a flagellum sub-structure.
However, Leishmania amastigotes have a short, immotile flagellum that
barely extends beyond the cell body, has a collapsed 9 + 0 (9v) ax-
oneme and no paraflagellar rod [51,52]. Several flagellum structures
are missing and this difference in architecture leads to differences in the
localisation of many proteins in the flagellum and associated structures.

5.1.1. Flagellar cytoplasm - GO:0097014

This is the membrane bound contents of the flagellum. A flagellar
cytoplasm protein would give signal visible as a flagellar localisation
which is more diffuse and/or wider than an axonemal or paraflagellar
rod signal. It is plausible that some proteins may be concentrated in the
flagellar cytoplasm relative to the rest of the cytoplasm, through the
action of the transition zone or the proposed ‘ciliary pore complex’;
however to date there are no clear examples of proteins concentrated in
the flagellar cytoplasm in trypanosomatids.

5.1.2. Axoneme - GO:0005930

The axoneme is the microtubule based cytoskeleton of the flagellum
that extends from the basal body to the distal tip of the flagellum.
Axoneme protein signals typically extend from close to the kinetoplast,
through the flagellar pocket to the distal end of the flagellum. Some
structures including the central pair, inner dynein arms and all struc-
tures on the distal microtubule doublets are absent in Leishmania
amastigotes [51]. Example protein: Outer arm dynein 3, OADf [53]
(Figs. 2,3).

5.1.2.1. Basal body - GO:0036064. The basal body nucleates the
axoneme in close proximity to the kinetoplast. A basal body protein
localisation is identifiable by a single point of signal at the base of the
flagellum extremely close to the kinetoplast and next to the flagellar
pocket. Trypanosomatids have a mature basal body subtending an
axoneme and adjacent to this an immature pro-basal body which will
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nucleate the new flagellum in the next cell cycle. As such many basal
body proteins are also found in the pro-basal body. Example protein:
SAS6 [49,54] (Figs. 2-4).

5.1.2.2. Pro-basal body. This is an immature basal body that has not yet
nucleated a flagellum and is found tethered to an adjacent basal body.
Signal from a pro-basal body protein would be difficult to distinguish
from a basal body signal without evidence from co-localisation, so in
practice a pro-basal body protein localisation is only identifiable if the
protein is also present in the basal body. In this case this gives two
points of signal between the kinetoplast and the flagellar pocket,
separated perpendicular to the orientation of the flagellum. It is likely
that there are also proteins that link the basal and pro-basal body,
which would give a single point signal between these two structures
[55]. Example protein: SAS6 [54] (Figs. 2-4).

5.1.2.3. Transition zone - GO:0035869. This is a small, specialised
region of the flagellum bounded at the proximal end by the basal
body and at the distal end by the start of the axoneme proper (the start
of axonemal central pair microtubules) [56,57] A transition zone
protein gives a single dot of signal similar to that of a basal body
protein; however, the signal often appears in the portion of the
flagellum within the flagellar pocket, more distal than the basal body.
Example protein: Transition zone protein 50, TZP50 [58]
(Figs. 2-4).

5.1.2.4. Flagellar tip - GO:0097542. This is the distal tip of the
axoneme; proteins localised here give a characteristic point of signal
at the tip of the flagellum. This is distinct from signal from proteins
localised at the distal end of the flagellar membrane, which typically
have a horseshoe shaped signal around the tip of the flagellum.
Example protein: Axoneme capping structure 2, ACS2 [59]
(Figs. 2-4).

5.1.3. Flagella connector — GO:0120118

This structure is only present in T. brucei and connects the tip of the
growing new flagellum to the side of the old flagellum. Proteins loca-
lised to the flagella connector give a dot at the tip of the new flagellum
with the signal progressing along the side of the old flagellum as the cell
progresses through the cell cycle. For some flagella connector proteins a
signal may also been seen on cells that have just completed cytokinesis
either at the flagellum tip or mid-way up the flagellum depending on
whether the cells inherited the new or the old flagellum. Example
protein: Flagella connector protein 1, FCP1 [59,60] (Fig. 5).

5.1.4. Paraflagellar rod (PFR) — GO:0097740

This is an extra-axonemal structure of comparable size to the ax-
oneme itself, and runs parallel to the axoneme for most of the length of
the flagellum. A paraflagellar rod protein gives an axoneme-like signal;
however, at its proximal end the signal does not extend into the fla-
gellar pocket and the signal fades towards the distal end of the fla-
gellum. The paraflagellar rod is not present in Leishmania amastigotes
[61]. Example protein: Paraflagellar rod 2, PFR2 [62,63] (Figs. 2,3).

5.1.5. Intraflagellar transport (IFT) particle - GO:0030990

In long exposure images, signal from intraflagellar transport pro-
teins gives patchy flagellum localisation seen with a strong signal in the
basal body region. The patchy signal within the flagellum arises from
the movement of the protein as the image is acquired. In short exposure
images (200 ms or less), the IFT particles appear as point-like foci or
short lines parallel to the flagellum and in videomicrographs motion of
individual intraflagellar transport particles can be observed. In L.
mexicana amastigotes a signal is observed at the base of the flagellum
but no patchy signal is seen within the flagellum. Example protein:
Intraflagellar transport 172, IFT172 [64-66] (Figs. 2-4).
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5.2. Flagellar membrane - GO:0060170

This is the specialised domain of the cell membrane that encloses
the flagellum. Signal from a flagellar membrane protein appears like
two closely spaced parallel lines along the outside edges of the fla-
gellum, arising from the ‘edge effect’ of the membrane localisation. The
signal appears to penetrate a short distance into the cell body, to the
base of the flagellar pocket near the kinetoplast. Example protein:
Flabarin-like, FlabarinL (T. brucei) [67] and Flabarin (L. mexicana)
[68] (Figs. 2,3). When Flabarin is expressed in L. mexicana amastigotes
tagged with mNeonGreen at its C-terminus it does not localise to the
flagellum but instead has a reticulated fluorescent signal — a result
which carries the above rehearsed caveats (Fig. 4).

5.3. Flagellar pocket - GO:0020016

This term refers to the entire flagellar pocket, the invagination of
the cell membrane at the base of the flagellum. In T. brucei it is iden-
tifiable in phase contrast images as a bright spot near the kinetoplast,
but tends not to be easily visible in phase contrast images of Leishmania.
The flagellar pocket is the sole site for exocytosis/endocytosis and also
has a complex set of associated cytoskeletal structures. Normally, it is
possible to identify with which sub-structure of the flagellar pocket a
protein is likely associated.

5.3.1. Flagellar pocket membrane - GO:0020018

The flagellar pocket membrane is the specialised domain of the cell
membrane that encompasses the flagellar pocket; together with the
flagellar membrane and pellicular membrane it makes up the entire cell
membrane. It is visible as a smooth ring of signal near the kinetoplast.
In T. brucei this signal lies around the phase bright flagellar pocket.
Currently, there are no proteins with a published convincing flagellar
pocket or flagellar pocket membrane (see below) localisation for pro-
cyclic form T. brucei or Leishmania. Some proteins are known in the T.
brucei bloodstream form [69].

5.3.2. Flagellar pocket neck complex

We suggest this term for the complex of interlinked cytoskeletal
structures around the flagellar pocket neck and including the flagellar
pocket collar and hook complex. It is intimately linked with the mi-
crotubule quartet and flagellum attachment zone (see below). We an-
ticipate the collar and hook complex to be the only components of the
flagellar pocket neck complex; however, electron microscopy analysis
shows that this region is complex and T. brucei and Leishmania have
several differences. There may be as yet uncharacterised divergent
specialised structures [39,41,65]. Proteins within this complex region
give a structured signal around the flagellar pocket and/or the exit of
the flagellum from the pocket.

5.3.2.1. Flagellar pocket collar - GO:1990900. This ring or horseshoe-
shaped structure defines the boundary between the flagellar pocket and
the pocket neck. Signal from proteins localised to the pocket collar
appears as a short line perpendicular to the flagellum at the distal side
of the flagellar pocket, but can also appear as a ring (particularly in T.
brucei) depending on cell orientation. The only bona fide collar protein
known is BILBO1l [70]; however, expression of BILBO1l with a
fluorescent protein tag over an extended period (> 48h) causes
growth arrest in T. brucei [70] and, to date, it has not been possible
to determine the localisation of this protein using a fluorescent protein
rather than an epitope tag in Leishmania [42].

5.3.2.2. Hook complex — GO:0120120. The hook complex (previously
termed the bilobe) describes a region of cytoskeletal structures at the
distal side of the flagellar pocket as the flagellum exits the cell body.
Hook complex proteins can give a hook, short line or bilobed shaped
signal near the flagellar pocket neck. In T. brucei this is the start of the
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extended flagellum attachment zone. Example protein: LRRP1 [71]
(Fig. 2). The hook complex has not been characterised in Leishmania.
The Leishmania LRRP1 homolog localised to the flagellar pocket region
but an in-depth analysis of its localisation was beyond the scope of this
study (Figs. 3,4).

5.3.3. Microtubule quartet

These four specialised microtubules nucleate near the basal body
and then run around the flagellar pocket passing through a gap in the
flagellar pocket collar at the distal end of the flagellar pocket. In T.
brucei they continue on to the anterior end of the cell parallel to the
extended flagellum attachment zone [44,72]. In L. mexicana there are
additional microtubules nucleating near the flagellar pocket [42,73].
To date, only proteins that localise to the proximal region of the mi-
crotubule quartet as it loops around the flagellar pocket have been
identified. Signal from proteins localised to this section of the micro-
tubule quartet curves around the flagellar pocket. Example protein:
SPEF1 [49] (Fig. 2). In L. mexicana SPEF1 also appears to localise to the
cytoplasmic microtubule in addition to the microtubule quartet
(Figs. 3,4).

5.3.4. Flagellum attachment zone (FAZ) — GO:0120119

This structure connects the flagellum to the cell body, traversing
both the flagellum and pellicular membranes. Unlike most structures,
the FAZ exhibits major differences between T. brucei and L. mexicana. In
trypomastigotes, including T. brucei, the FAZ extends along the entire
length of the flagellum that is laterally attached to the cell body.
Proteins localised to the FAZ give a linear signal that begins as the
flagellum exits the cell body and runs to the anterior end of the cell
body. This signal is positioned between the flagellum and the cell body
so appears offset in comparison to an axoneme or paraflagellar rod
signal. In Leishmania the FAZ is restricted to the flagellar pocket neck
with some specific elaborations. Leishmania FAZ proteins can give
signal shaped like a short line, a short line with a ring or a ring/
horseshoe around the flagellum exit point [42]. The Leishmania FAZ is
likely more similar to the ancestral trypanosomatid, with the extended
FAZ of T. brucei an innovation in the Trypanosoma lineage [74]. Ex-
ample protein: Flagellum attachment zone 1, FAZ1 [44] (Figs. 2-4).

5.3.5. Cytostome - GO:0031910

Neither Leishmania nor T. brucei have a cytostome, but as many
trypanosomatids do we have included this structure here for com-
pleteness. T. cruzi has a cytostome [75] and it is likely the ancestral
trypanosomatid also had a cytostome [74].

6. Cell cortex - GO:0005938

The cell cortex includes the entire cell surface and associated
structures.

6.1. Plasma membrane - GO:0005886

The plasma membrane is the entire cell membrane including the
pellicular, flagellar and flagellar pocket membrane. Signal from a
plasma membrane protein outlines the cell body, flagellum and flagellar
pocket, with a clear ‘edge effect’.

6.1.1. Pellicular membrane

This sub-domain of the plasma membrane excludes the flagellar and
flagellar pocket membranes. The pellicular membrane protein signal
outlines the entire cell body with a clear ‘edge effect’, with no signal on
the flagellar pocket or flagellum. Membrane protein signal tends to be
uniform over the entire cell surface. Example protein: Glucose
transporter 2 A, THT2 A [5] (Figs. 2,3). THT2 A is not expressed in L.
mexicana amastigotes [76].
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6.1.2. Cortical cytoskeleton - GO:0030863

Proteins localised to the cortical cytoskeleton give a signal similar to
the pellicular membrane; outlining the cell body with a clear ‘edge
effect’. However, unlike the pellicular membrane localisations, the
signal is typically non-uniform. It is often excluded from the posterior
tip of the cell, and can sometimes be excluded from other areas.
Example protein: Whole cell body, WCB [77] (Figs. 2-4).

6.1.3. Cell tip - GO:0051286

This is the extreme end of the cell body, either the anterior or
posterior end of the cell. Cell tip proteins may give signal seen as a dot
or a region at and/or near the anterior or posterior of the cell body.
Signal is typically seen only at either the posterior or anterior. Example
protein: XMAP215 [19] (Figs. 2-4).

6.1.4. Cleavage furrow — GO:0032154

This is the furrow formed as the cell undergoes cytokinesis, pro-
gressing from the cell anterior to posterior. It is only present in cells
undergoing cytokinesis. Cleavage furrow proteins give signal along the
line of cytokinesis, typically at the leading edge of the advancing
furrow.

6.1.5. Midbody — GO:0030496

This is the structure that transiently links the daughter cells at the
final stages of cytokinesis [19] and is present only at the very latest
stages of cytokinesis. Midbody proteins would give signal visible as a
thin line connecting the posterior ends of the two daughter cells at the
end of cytokinesis, but no proteins which localise only to this structure
have yet been identified.

7. Localisation ontology use in the TrypTag project

The T. brucei localisations shown here form the basis of the anno-
tation system for the TrypTag project [13] and provide a reference for
determining protein localisation to an organelle with confidence from
fluorescent signal. Terms are used in a strictly additive manner,
meaning many proteins will have multiple annotation terms. For ex-
ample, “cytoplasm, flagellar cytoplasm, nuclear lumen” describes a
protein that localises throughout the cell as a soluble protein. “fla-
gellum tip, basal body, pro-basal body” describes a protein which lo-
calises to those three distinct structures.

These localisation annotations fit into a hierarchical system with
complex organelles and structures made up of a set of sub-annotations.
For example, the nucleus has up to four levels of hierarchy with the
overarching term being nucleus, which is then divided into nuclear
lumen and nuclear envelope. Within the nuclear lumen there is the
nucleoplasm, nucleolus, spindle and finally within the spindle there are
the spindle poles and the kinetochores. An annotation of “kinetochore”
therefore implies this protein also localises to the spindle, within the
nuclear lumen of the nucleus.

This system also allows for ambiguity when a fluorescent signal is
weak and/or unconvincing. For example, “nucleus” indicates the pro-
tein may localise within any of the sub-annotations and could be used
for a weak but clearly nuclear signal. Similarly, “flagellum” could be
used as an annotation with confidence for a weak or ambiguous ax-
oneme or flagellar membrane fluorescent signal.

For TrypTag, we are using a system of modifiers that identify qua-
litative properties of the signal: Relative strength of the signal (strong,
weak) for proteins which localise to multiple organelles, whether a
signal appears in a subset of cells or at particular cell cycle stages
(< 10%, 25%, 50%, 75% or cell cycle dependent — only observed in
cells at a specific point in the cell cycle), its position along one of the
reference axes (anterior, posterior, proximal, distal, end) and any tex-
ture/structure in the signal (reticulated, point, points, patchy, periph-
eral, region) [13]. For example, “cell tip [posterior]” indicates a protein
localised to the posterior pole of the cell. “nucleolus [peripheral,
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patchy]” indicates a protein localised to the nucleolus, but restricted to
patches around its edge. These modifiers are subjective, but provide a
useful qualitative descriptor for complex localisations.

Some regions of the cell are complex and there are multiple possible
localisations. In this case all plausible annotations are given: “cell tip
[anterior], flagellum attachment zone [distal, end]” indicates a protein
localisation in the anterior cell tip and/or the extreme distal end of the
flagellum attachment zone. It may be the case that some of these an-
notations are effectively synonyms.

The system of modifiers also allows for some degree of explanation
in cases where fluorescent signal was insufficiently convincing to assign
a highly specific annotation. In these situations, an annotation one step
up the hierarchical system with an explanatory modifier can be used.
For example, “cytoplasm [reticulated]” would be used if the fluorescent
signal is clearly reticulated throughout the cytoplasm, but with in-
sufficient clarity as to whether it arose due to an endoplasmic reticulum
or mitochondrial protein localisation.

8. Protein identifiers of cellular landmarks

Having defined a coherent set of GO terms and a hierarchy we
sought to provide a cohort of the best defined proteins that will act as a
collection of identifiers for particular organelles and structures within
kinetoplastid parasites (Table 1). This resource can be used in many
ways — for individual or collective marking of cells within a variety of
experiments. We have only included proteins whose localisation pro-
vides a robust and reproducible definition of the organelle or structure.
Making individually or multiply tagged cell lines is a rather trivial ex-
ercise, but one that is likely to facilitate the interpretation of many
experiments in these systems.
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9. Conclusions

In the post-genomic era there has been an explosion in the number
and size of datasets, which has required a step change in the way we
approach their analysis. To aid the analysis of these large datasets we
and others have developed technologies that enable the generation of
many cell lines expressing fluorescently tagged proteins very rapidly
(< 2 weeks) [5,78]. To encourage consistency and comparability in the
description of these cell lines between experiments and laboratories we
have developed the terminology described here. This terminology is
carefully designed to be unambiguous, human-readable and searchable.
If this terminology became a standard in the field it would be useful for
the analysis of many experiments and would be especially appropriate
for any protein localisation description - for example, for user-sub-
mitted comments concerning protein localisations on the genome da-
tabase TriTrypDB [79], or for a summary of protein localisations in a
paper.

This comprehensive inventory of the organelles and structures of T.
brucei and Leishmania as viewed by fluorescence light microscopy in
living cells will hopefully be a useful resource both for the immediate
kinetoplastid research field, as it provides a foundation for the analysis
of changes in structure in mutants and adaptations in structure in dif-
ferent life cycle stages, and also for other scientists less familiar with
these parasites.

10. Methods
10.1. T. brucei and L. mexicana cell culture
T. brucei procyclic form SmOxP9 [80] cells (derived from TREU 927,

expressing T7 RNA polymerase and tetracycline repressor) were grown
in SDM-79 media (Life Technologies) with 10% (v/v) FCS (Life

Table 1
XXX.
Localisation ontology term Gene ontology ID  Protein name Terminus Gene ID Notes
T. brucei L. mexicana

Nucleus nucleoplasm G0:0005654 H3 N Tb927.1.2430 LmxM.10.0990
nucleolus G0:0005730 DEAD/H N Tb927.5.1560 LmxM.15.0130
spindle GO0:0005819 KINS C Tb927.3.2020 LmxM.25.1950
kinetochore G0:0000776 KKT1 N Tb927.10.6330 LmxM.36.1900
nuclear pore G0:0005643 NUP152 N Tb927.10.9650  LmxM.36.4270

Cytoplasm cytoplasm GO0:0005737 S11 N Tb927.1.3180 LmxM.20.1650
glycosome GO0:0020015 GAPDH N Tb927.6.4300 LmxM.29.2980
acidocalcisome G0:0020022 VIT1 C Tb927.3.800 LmxM.27.0210 Not suitable for amastigotes
lipid droplet G0:0005811 LDK N Tb927.11.8940  LmxM.28.2000 Not suitable for amastigotes
RNA granule GO0:0035770 SCD6 N Tb927.11.550 LmxM.25.0540
endocytic RAB5A N Tb927.10.12960 LmxM.18.1130
lysosome G0:0005764 CPA C Tb927.6.1000 LmxM.18.1130
Golgi apparatus GO0:0005794 GRASP C Tb927.11.2660 LmxM.32.2380
endoplasmic reticulum GO0:0005783 SPT C Tb927.4.1020 LmxM.33.3740

Mitochondrion/Kinetoplast ~mitochondrion G0:0005739 TIM17 N Tb927.11.13290 LmxM.09.1130
kinetoplast G0:0020023 PIF8 C Tb927.7.1000 LmxM.26.0930
tripartite attachment complex  G0:0120121 P197 N Tb927.10.15750 LmxM.19.1150
antipodal sites RBP38 C Tb927.8.2740 LmxM.23.0760

Flagellum axoneme G0:0005930 OADp N Tb927.11.3250 LmxM.13.1650 Not suitable for amastigotes
basal body GO0:0036064 SAS6 N Tb927.9.10550 LmxM.34.4280
transition zone G0:0035869 TZP50 N Tb927.10.11840 LmxM.32.1230
flagellar tip G0:0097542 ACS2 C Tb927.11.450 LmxM.25.0420
flagella connector GO0:0120118 FCP1 C Tb927.8.940 Not present in Leishmania
paraflagellar rod G0:0097740 PFR2 N Tb927.8.4970 LmxM.16.1430 Not present in amastigotes
intraflagellar transport particle =~ GO:0030990 IFT172 N Tb927.10.1170 LmxM.21.0980
flagellar membrane G0:0060170 Flabarin C Tb927.11.2400 LmxM.27.1730 Not suitable for amastigotes

Other hook complex G0:0120120 LRRP1 C Tb927.11.8950  LmxM.28.1990
microtubule quartet SPEF1 C Tb927.4.3130 LmxM.33.1120
flagellum attachment zone GO0:0120119 FAZ1 N Tb927.4.3740 LmxM.33.0690
pellicular membrane THT2A N Tb927.10.8510  LmxM.36.6280 Not suitable for amastigotes
cortical cytoskeleton G0:0030863 WCB N Tb927.7.3550 LmxM.14.1440
cell tip G0:0051286 XMAP215 N Tb927.6.3090 LmxM.29.1760
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Technologies).

Cas9T7 [78] L. mexicana (derived from World Health Organisation
strain MNYC/BZ/62/M379, expressing Cas9 and T7 RNA polymerase)
promastigotes were grown in M199 medium with Earle’s salts and L-
glutamine (Life Technologies) supplemented with 10% (v/v) heat in-
activated FCS (Life Technologies), 5 mM HEPES-NaOH (pH 7.4), 26 mM
NaHCOj3 and 5pg/ml haemin at 28 °C. Axenic amastigotes were gen-
erated by subculture into Schneider’s Drosophila medium (Life Tech-
nologies) supplemented with 20% heat-inactivated FCS and 25mM
MES-HCL (pH 5.5) at 34 °C with 5% CO, for 10 h (for dividing cells) or
72 h (unless otherwise indicated) without subculture.

T. brucei and L. mexicana cultures were maintained by subculture to
achieve a culture density between 1 x 10° and 1 x 107 cells/ml (T.
brucei) or 1 x 10° and 1 x 107 cells/ml (L. mexicana), which gives
continuous exponential population growth. Culture density was mea-
sured using a CASY model TT cell counter (Roche Diagnostics) with a
60 um capillary and exclusion of particles with a pseudo diameter
below 2.0 um.

10.2. Tagging construct generation and transfection

Constructs for endogenous mNeonGreen tagging for T. brucei were
generated by long-primer PCR and high-throughput 96-well plate
transfection of cells was performed as previously described [81]. The
pPOTv7 (mNeonGreen/blast) plasmid was used as the PCR template for
generating tagging amplicons. Successful transfectants were selected
with 5ug/ml blasticidin S hydrochloride (Melford Laboratories) 6 h
post-transfection. Primers were designed as previously described [5].
These cell lines were generated as part of the TrypTag project [13].

Generation of the L. mexicana tagging constructs and sgRNA tem-
plates for endogenous mNG tagging were generated by the PCR method
as previously described [78] using the pLPOT (mNG/Blast) plasmid as
the template. pLPOT is adapted from pPOT and pPLOT with T. brucei
and Crithidia fasciculata 5’ or 3’ untranslated regions (UTRs) and in-
tergenic sequences replaced with complete L. mexicana intergenic se-
quences [53]. Transfection of cells was performed as previously de-
scribed [5] using the Amaxa Nucleofector-2b. Primers for constructs
and sgRNA were designed using LeishGEdit (http://www.leishGEdit.
net). Successful transfectants were selected with 5 pg/ml Blasticidin S
hydrochloride (Melford Laboratories) 6 to 8 h following transfection.

10.3. Fluorescence microscopy

All T. brucei and L. mexicana cell lines expressing mNeonGreen
tagged proteins were examined live. Briefly, parasites were harvested
from a log-phase culture by centrifugation at 800 g for 5 min, washed
three times in PBS (L. mexicana) or vPBS (T. brucei, PBS supplemented
with 10 mM glucose and 46 mM sucrose) with Hoescht 33342 (1 pg/ml)
in the first wash. This washing is necessary to improve adhesion to the
glass slide and increase cell density. The cells were re-suspended in
30l PBS and 1 to 10l was then placed on a microscope slide, a
coverslip was applied and immediately imaged using a DM5500 B mi-
croscope (Leica Microsystems) with an Andor Neo sCMOS camera and a
63 X NA 1.40 Plan-Apochromat oil immersion objective lens (T. brucei)
or a Axioimager.Z2 microscope (Zeiss) with a Hamamatsu ORCA-
Flash4.0 camera and a 63 x NA 1.40 Plan-Apochromat oil immersion
objective lens (L. mexicana). T. brucei images were captured as part of
the TrypTag project and make part of that database.
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