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ABSTRACT
Diabetes is a serious metabolic disease that causes multiple organ dysfunctions. Recent
evidence suggests that diabetes could contribute to the initiation and progression of cer-
tain cancers in addition to the classic diabetic complications. Furthermore, some of the
drugs used clinically to treat patients with diabetes might affect cancer initiation, progres-
sion and mortality. The recent discovery of the possible anticancer effects of metformin, a
classic antidiabetic drug, has led physicians and scientists to reconsider the interaction
between diabetes and cancer. In the present review, we analyze recent reports in this
field, and explore possible mechanistic links between diabetes and cancer biology.

INTRODUCTION
Diabetes is characterized by defects in glucose homeostasis and
proper insulin function. Diabetes can be classified into two types:
type 1 diabetes, which is pathologically based on deficiencies in
insulin secretion; and type 2 diabetes, which is characterized by
insulin resistance and higher insulin levels. Longer disease dura-
tion is associated with multiple organ dysfunctions, such as
nephropathy, retinopathy, neuropathy, atherosclerosis and heart
disease. These symptoms are due largely to microangiopathy
and/or macroangiopathy. Decades of epidemiological evidence
have now been accumulated that support the link between diabe-
tes and an increased incidence of certain cancers in different pop-
ulations after adjusting for age and other confounding factors,
such as obesity. In addition, epidemiological studies report that
those with diabetes who develop cancer have a worse prognosis
after treatment with chemotherapy or surgery and have a greater
mortality than those without diabetes1–4. In addition to these
classic complications of diabetes, recent evidence suggests the
existence of possible mechanistic links between diabetes and cer-
tain types of cancer, including breast, endometrium, colorectal,
liver, pancreatic, urinary bladder and non-Hodgkin’s lym-
phoma5–15. There are many risk factors that diabetes and cancer
have in common, such as aging, obesity, male sex and so on16.
Indeed, both type 1 and type 2 diabetes have been associated
with an increased incidence of some cancers13.
Diabetes is a common metabolic abnormality. From a survey

of the International Diabetes Federation, there were 366 million
people with diabetes in 2011, and the total number is expected

to rise to 552 million by 203017. Type 1 diabetes accounts for
5–10% of the total cases of diabetes and type 2 diabetes
accounts for 90–95%18. Additionally, cancer is one of the most
serious health problems in clinics today. The association of
cancer with diabetes has largely been overlooked by diabetolo-
gists, because the epidemiological data did not have enough
impact on their clinical practice as a result of the lack of clear
mechanistic evidence, confirmation in specific populations, the
protective effect in some tumors13,19–21 and the lack of special
guidelines for cancer screening in patients with diabetes.
However, recent discoveries regarding the possible reduced
incidence of cancer in patients treated with metformin, a well-
studied antidiabetic drug, has led both diabetologists and
oncologists to reconsider the mechanistic connections between
diabetes and cancer. Therefore, understanding the possible
pathophysiological links between diabetes and cancer would be
significant.

DIABETES TYPE AND CANCER
Type 1 diabetes is characterized by a deficiency in insulin secre-
tion as a result of autoimmune destruction of the pancreatic
b-cells. Two cohort studies have been carried out to investigate
the association between type 1 diabetes and the incidence of
cancer, each comprising approximately 30,000 individuals. The
first study, carried out by Zendehdel et al.22 found that the
overall risk of cancer was increased by 20% in type 1 diabetic
patients. Regarding specific organs, they found patients with
type 1 diabetes had elevated risks of cancers in the stomach,
cervix and endometrium. In a second study, Swerdlow et al.23

found that ovarian cancer incidence and mortality were more
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than doubled in patients with type 1 diabetes diagnosed under
30 years-of-age, and type 1 diabetes carried the greatest risks
for those diagnosed at ages 10–19 years23. In their analysis,
there was no increased risk of cancer associated with type 1
diabetes except for ovarian cancer23. Another report showed
that the incidence of pancreatic cancer has been shown to be
higher in the type 1 diabetic population24.
Increasing evidence suggests an interaction between type 2 dia-

betes and the risk of cancer in several organs, such as the endo-
metrium, breast, stomach, colorectal, pancreas, liver and blood
(for a more complete discussion of specific cancer sites, Srokowski
et al.1 Additionally, gallbladder cancer rates have been reported
to be higher in the type 2 diabetic population independent of
body mass index25. Interestingly, the incidence of prostate cancer
is low in the type 2 diabetic population13,19–21. Both hyperglyce-
mia and hyperinsulinemia have been cited as possible mecha-
nisms through which diabetes might stimulate tumor growth26.
There are many factors apart from hyperinsulinemia and hyper-
glycemia that are important in the relationship between diabetes
and cancer metabolism, including oncogenes and tumor suppres-
sor genes, glutamine metabolism, inflammation, and obesity;
these relationships have recently been reviewed elsewhere27–31.
There are possible differences between type 1 and type 2 dia-

betes with regard to diabetes-associated carcinogenesis events
(Table 1)23,32–41. Type 1 diabetes is an autoimmune disease,
which are often associated with an increased risk of cancer. For
example, systemic lupus erythematosus has been associated with

an increased risk of cancer, notably non-Hodgkin’s lym-
phoma42,43. Furthermore, rheumatoid arthritis, a common auto-
immune disease, has been associated with an increased incidence
of hematological malignancies and lung cancer44. Therefore, an
increased risk of cancer could be independent of type 1 diabetes
itself, but might be associated with autoimmune defects. Also,
current epidemiological research investigating the link between
type 1 diabetes and cancer has resulted in mixed findings, which
varied by the research methods used. Case–control studies found
no statistically significant link between the two diseases, whereas
meta-analyses did. The need for further detailed research to be
undertaken that explores the nature of the relationship between
type 1 diabetes and cancer is strongly suggested45.
In most cohort studies, specific diabetic types were not ana-

lyzed sufficiently; however, most of such studied subjects would
have type 2 diabetes. Type 2 diabetes is characterized by insulin
resistance and hyperinsulinemia. Hyperinsulinemia induces
breast cancer development in experimental animal models46.
Type 2 diabetes is often associated with obesity, which is another
risk factor for cancer47. Additionally, patients with type 2 diabetes
show increased levels of insulin-like growth factor (IGF)-1, a
potent mitogen that can contribute to carcinogenesis48. IGF-1
promotes liver metastasis in xenograft colon adenocarcinoma
models in obese mice49. Furthermore, insulin resistance in type 2
diabetes is closely associated with an accumulation of diacylglyc-
erol (DAG) in cells50,51; DAG accumulation can cause activation
of the protein kinase C family of serine-threonine kinases51,

Table 1 | Recent research about the relationship between diabetes and cancer

Year Author Sample Specific diabetes type Risk of specific cancer

2010 Shu et al.32 24,052 diabetic patients Type 1 Stomach RR = 3.36 (1.44–6.66),
skin RR = 4.96 (2.83–8.07) leukemia
RR = 2.02 (1.15–3.29)

2005 Swerdlow et al.23 28,900 insulin treated
diabetics including
23,834 with
type 1 diabetes

Type 1 Ovarian SMR = 2.90 (1.45–5.19)

2003 Zendehdel et al.22 29,187 patients Type 1 Stomach SIR = 2.3 (1.1–4.1), cervix
SIR = 1.6 (1.1–2.2), endometrium
SIR = 2.7 (1.4–4.7)

2012 Wang et al.33 18,258⁄3,626,369 Diabetes* Liver RR = 2.01 (1.61–2.51)
2011 Ren et al.34 1,836⁄165,861 Diabetes* Biliary tract RR = 1.43 (1.18–1.72),
2011 Ben et al.35 20,410⁄21,616,592 Diabetes* Pancreas RR = 1.94 (1.66–2.27)
2011 Ge et al.36 3,211⁄60,731 Diabetes* Stomach RR = 0.97 (0.64–1.46)
2011 Jiang et al.37 61,690⁄8,201,654 Diabetes* Colorectum RR = 1.27 (1.21–1.34)
2011 Larsson et al.38 9,520⁄5,769,987 Diabetes* Kidney RR = 1.42 (1.06–1.91)
2012 Castillo et al.39 8,000 cases Type 2 Leukemia OR = 1.22 (1.03–1.44)

Myeloma OR = 1.22 (0.98–1.53)
2011 Liao et al.40 730,069 patients Diabetes* Breast RR = 1.25 (1.20–1.29)
2012 Kitahara et al.41 674,491 patients Diabetes* Thyroid cancer Women: HR = 1.19 (0.84–1.69)

Men: HR = 0.96 (0.65–1.42)

*Specific diabetic types were not analyzed sufficiently in most publications. In such papers, it is likely that most were type 2 diabetes; we described
these as ‘diabetes’ in the table if not distinguished clearly in the publication. HR, hazard ratio; OR, odds ratio; RR; relative risk; SIR, standardized
incidence ratio; SMR, standard mortality ratio.
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which play important roles in cancer biology52. Thus, the molec-
ular mechanisms of cancer development might be very different
between type 1 and type 2 diabetes.

DIABETES, CANCER AND SEX
Several reports have shows the presence of sex differences in
the incidence of cancer in diabetic patients53–58. Recently, Cho-
dick et al.13 reported an interesting observation regarding sex
differences in cancer incidence and diabetes in a large popula-
tion-based cohort study in Israel. In that report, the authors
found that type 2 diabetes is associated with increased rates of
cancer in women, but not in men13. With regard to the types
of cancer, the increased risk of cancer in diabetes patients was
apparent in the digestive, genital and urinary organs13. Further-
more, diabetes in men was associated with a reduced risk for
prostate cancer when compared with non-diabetic subjects13,19–
21. Interestingly, diabetes is associated with a decreased inci-
dence of skin cancer in women, but such a reduction was not
found in diabetic men13. Another large-scale population-based
cohort study from Japan found almost no difference in total
cancer incidence, but the incidence of particular types of cancer
was markedly different between sexes11. These reports suggest
that diabetes-associated cancer risks could be partially explained
by sex-specific factors, such as sex hormone-dependent and
social-environmental factors.

CANCER AND DIABETES TREATMENT
Insulin and Insulin Analogs
Increased levels of insulin in the body are believed to contribute
to diabetes-associated cancer. The activation of the insulin
receptor might lead to the proliferation and survival of cancer
cells. Insulin glargine is a long-acting insulin analog that was
introduced to provide basal insulinization with a lower risk of
hypoglycemia than neutral protamine hagedorn insulin. Some
epidemiological analyses reported an interesting connection
between glargine and cancer risks. Hemkens et al.59 reported
that, considering the overall relationship between insulin dose
and cancer, and the lower dose of insulin glargine, the cancer
incidence with insulin glargine appeared to be higher than
expected compared with human insulin. Several other studies
also supported this result in some types of cancer, such as pros-
tate or breast cancer60–67.
However, certain conclusions are in doubt68–71. In 2011, Blin

et al.72 found that cancer risk increased with exposure to insu-
lin or sulfonylureas in these patients. There was no excess risk
of cancer in type 2 diabetic patients on insulin glargine alone
compared with those on human insulin alone72. Tang et al.73

found that insulin glargine use was associated with a lower risk
of cancer compared with non-glargine insulin use. Insulin glar-
gine did not increase the odds of breast cancer. Compared with
non-glargine insulin, no evidence of an association was found
between insulin glargine and prostate cancer, pancreatic cancer
and respiratory tract cancer74–77. Another study found that the
overall risk of death or cancer in patients on insulin glargine

was approximately half that of patients on human insulin,
thereby excluding a competitive risk bias78.
At this time, the US Food and Drug Administration and the

European Medicines Agency have not concluded that insulin
glargine increases the risk of any cancer, and the review of this
safety concern is still ongoing79,80. Analysis of the Outcome
Reduction with Initial Glargine Intervention trial did not show
an increase in incident cancers (hazard ratio 1.00, 95% confi-
dence interval 0.88–1.13; P = 0.97), death from cancer (hazard
ratio 0.94; 95% confidence interval 0.77–1.15; P = 0.52), or can-
cer at specific sites, and the data do not support epidemiologi-
cal analyses that have linked insulin in general or insulin
glargine in particular to incident cancers during several years of
exposure74.
Therefore, insulin-glargine treatment provides a valuable clin-

ical treatment option for diabetes therapy. For this reason,
well-designed, large, randomized control trials between insulin
glargine and other types of insulin would be difficult to carry
out because of the inherent ethical issues. The accumulation of
observational studies must continue to better understand the
safety of glargine. Additionally, the new long-acting insulin, de-
gludec, has been introduced to the market, and it is important
to monitor the potential carcirogenic effects of this new insulin
analog81.

Sulfonylureas
Sulfonylureas are a class of antidiabetic drugs used to treat
type 2 diabetes. They have also been associated with an
increased risk of cancer in a few studies. The study by Currie
et al.12 showed that diabetic patients treated with sulfonylurea
monotherapy exhibited a significantly increased incidence of
cancer similar to insulin-treated patients when compared with
untreated patients. Such an increased incidence of cancer in
sulfonylurea-treated patients was reversed by co-administration
of metformin12.
A population-based cohort study showed that sulfonylureas

increased cancer-related mortality at a level similar to that
observed in insulin-treated patients when compared with met-
formin-treated patients82. That study did not include a non-
treatment diabetic group, making it unclear whether sulfonylu-
reas increased the risk of cancer-associated mortality or metfor-
min decreased it.
Particular types of sulfonylureas could be associated with

different rates of cancer incidence. A retrospective observational
cohort analysis that was carried out by Monami et al.83 found
that cancers in diabetic patients treated with glibenclamide
showed significantly higher mortality rates when compared
with patients treated with gliclazide. The same group reported
a case–control study showing that glibenclamide use in diabetic
patients is strongly associated with an increased risk of cancer
when compared with gliclazide treatment, and this trend is
dependent on a drug exposure interval of up to 36 months84.
Again, none of these studies was a randomized control trial.
Recently, the newer oral insulin secretagogues, such as, glimepi-
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ride, and the glinide-class of drugs, have also been reported to
increase the incidence of cancers85.

Metformin
Metformin belongs to the biguanide class of antidiabetic drugs,
which are prescribed mainly for patients with type 2 diabetes.
Metformin is a biguanide widely prescribed as a first-line antid-
iabetic drug in type 2 diabetes mellitus patients86.
Accumulating evidence suggests that metformin reduces can-

cer incidence in the diabetic population. Evans et al.87 pub-
lished the first report investigating the decreased incidence of
cancer in diabetic patients treated with metformin. Bowker
et al.82 carried out a 5-year follow-up study of 12,309 diabetic
patients and found that metformin-treated patients showed sig-
nificantly lower cancer-related mortality compared with the
patients treated with insulin or sulfonylureas. More recently, a
large-scale observational cohort study showed that cancer
occurred in 7.3% of 4,085 metformin users compared with
11.6% of 4,085 controls, with median incidence times of 3.5
and 2.6 years, respectively88. However, in a systematic review
and collaborative meta-analysis of randomized clinical trials,
Stevens et al.89 found no statistically significant beneficial effect
of metformin on cancer outcomes. Metformin had little effect
on overall mortality compared with other active diabetic thera-
pies, and a statistically non-significant 10% reduction in mortal-
ity compared with placebo or usual care89.

Metformin reduces adenosine triphosphate (ATP) production
and results in an increased ratio of adenosine monophosphate
(AMP)-to-ATP90, which leads to the activation of the liver
kinase B1 (LKB1)–AMP-activated protein kinase (AMPK)
signaling pathway. Subsequently, LKB1 induces AMPK
phosphorylation and AMPK-mediated signal transduction
(Figure 1)16,91–93. Some papers stated that metformin inhibits
hepatic gluconeogenesis in an LKB1- and AMPK-independent
manner through a decrease in hepatic energy state as well94.
Some other studies suggest that metformin potentially inhibits
carcinogenesis/cancer cell growth through diverse pathways
(Figure 1)92–97.
The antitumor effects of metformin have also been con-

firmed in various animal models93,98–104. Metformin treatment
mimics the gene expression profile of long-term calorie restric-
tion105, which is a nutritional intervention capable of both
extending lifespan and reducing the incidence of many age-
related diseases, including cancer106,107. Metformin inhibits
tumor growth in mice receiving a high-fat diet, whereas metfor-
min did not inhibit tumor growth in mice receiving a normal
diet108. This suggests that the tumor suppressive effect of met-
formin might be dependent on the amelioration of a systemic
metabolic profile, such as the synthesis of adipocytokines. Met-
formin might enhance CD8 (+) memory T-cell generation and
show antitumor effects through AMPK101. Alternatively, met-
formin has been shown to kill cancer stem cells, which might
play essential roles in cancer growth103. These reports show that

Rag-GTPase
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AMP/ATP ratio
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glyconeogenesis in

liver

Growth
factors

LKB-1

Increased insulin
sensitivity

PKB

Metformin

TSC AMPK

mTOR

Figure 1 | Diverse mechanistic pathways of metformin. Metformin reduces adenosine triphosphate (ATP) production, increasing the cellular
adenosine monophosphate (AMP)-to-ATP ratio, which leads to the activation of the liver kinase B1 (LKB1)–AMP activated protein kinase (AMPK)
signaling pathway. Subsequently, LKB1 activates AMPK. AMPK inhibits mammalian target of rapamycin complex 1 (mTORC1) directly and the
mTOR-inhibitor through tuberous sclerosis complex (TSC)1/2 activation. Such mTORC1-inhibition results in the inhibition of several carcinogenic
molecules, such as ribosomal protein S6 kinase (S6K) and hypoxia-inducible factor-1a (HIF-1a). Several growth factors induce protein-kinase B (PKB)/
Akt activation and counteract with AMPK-mediated TSC1/2 activation. Alternatively, metformin inhibits Rag-guanosine triphosphatase (GTPase),
which activates mTORC1.
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metformin could be a candidate drug for preventing tumor
growth in diabetic patients through various mechanisms.
Furthermore, metformin might also retain its possible benefi-

cial effects in non-diabetic cancer patients109,110. However, these
favorable effects of metformin on cancer are not always corrob-
orated by the data from retrospective clinical studies and smal-
ler series of prospective trials using pathology end-points110–112.
Some studies have been interpreted with limitations, some pos-
sible confounding factors and biases that might not have been
fully adjusted for in the studies; some risk factors, such as ciga-
rette smoking, alcohol intake, ages, treatment indication and
hyperglycemia were not specified in studies, which might have
rendered the results less valid. The long-term randomized pro-
spective studies need to confirm the potential benefit.

Thiazolidinediones, Peroxisome Proliferator-Activated
Receptor-c and Cancer
Thiazolidinediones (TZDs) are a class of drugs used to treat
patients with type 2 diabetes. TZDs act as an agonist for the
ubiquitous nuclear receptor, peroxisome proliferator-activated
receptor-c (PPARc). TZDs show antidiabetic effects by induc-
ing increased insulin sensitivity and differentiation of adipo-
cytes113. Several studies showed that TZDs suppressed the
growth of cancer cells in vivo and in vitro114–122. TZDs also act
as anti-angiogenic drugs123. Thus, a beneficial effect of TZDs
on cancer in the diabetic population was expected.
A total of 17 studies satisfying the inclusion criteria (3 case–

control studies and 14 cohort studies) were considered124. Ade-
quate evidence excludes an overall excess cancer risk in TZD
users within a few years after starting treatment. However, there
is a modest excess risk of bladder cancer, particularly with ref-
erence to pioglitazone124. There was no association with pancre-
atic, lung, breast and prostate cancers. Assuming that this
association is real, the potential implications on the risk–benefit
analysis of TZD use should be evaluated124. However, results so
far have not supported the original hypothesis. An early study,
reported by Govindarajan et al.125 showed a 33% reduction in
lung cancer incidence by TZDs in patients with diabetes; how-
ever, there was no information available regarding the smoking
history of patients or the duration of TZD treatment in that
study. Therefore, interpretation of this result was difficult. Next,
three nested case–control studies reported on the risk of cancers
(breast, colon and prostate) in diabetic patients treated with
TZDs or other drugs126, and found no impact of TZDs on can-
cer incidence126. A cross-sectional study using the Vermont
Diabetes Information database showed that TZDs were signifi-
cantly associated with cancer, and this trend is much stronger
in patients who were treated with rosiglitazone, one of the
TZDs127. This difference was found in women, but not in men.
Additionally, another TZD, pioglitazone, did not show such an
association with cancer127. Chang et al.128 reported that both
pioglitazone and rosiglitazone could reduce the risk of incident
liver cancer in type 2 diabetic patients. In this report, a better
protection against cancer occurrence associated with a longer

use and higher doses of TZDs as described128. On the contrary,
a recent meta-analysis using randomized clinical trials to assess
the safety of rosiglitazone in patients with diabetes showed no
association with cancer; however, most of the participants
enrolled in that analysis underwent less than a year of rosiglit-
azone treatment129. Therefore, longer, more careful observation
is required to evaluate the safety of TZDs in treating diabetes.

Incretin Drugs and Cancer
Incretins are a group of gastrointestinal hormones that cause a
postprandial increase in the amount of insulin released from
the b-cells, even before blood glucose levels become elevated130.
The safe use of incretin therapy is mentioned by some research.
In 2011, Elashoff et al.131 found that pancreatic cancer was
more commonly reported among patients who were treated
with a glucagon-like peptide-1 (GLP-1)-based therapy com-
pared with other therapies (P < 0.008, P < 9 9 10-5)131. All
other cancers occurred similarly among patients compared with
other therapies (P = 20). These findings raise caution about the
potential long-term actions of these drugs in the promotion of
pancreatic cancer131. In 2013, Butler et al.132 also found that in-
cretin therapy in humans resulted in a marked expansion of
the exocrine and endocrine pancreatic compartments, the for-
mer being accompanied by increased proliferation and dyspla-
sia, and the latter by a-cell hyperplasia with the potential for
evolution into neuroendocrine tumors. Because GLP-1 is rap-
idly degraded in vivo by the enzyme dipeptidyl peptidase-4
(DPP-4; which is a 110-kDa cell surface glycoprotein also
known as CD26, and has an important, but complex, function
in tumor behavior, with its biological effect dependent on the
tumor type and the microenvironment)132, DPP-4 inhibition
could result in higher levels of both endogenous GLP-1 and
GLP-2, because GLP-2 degradation is also inhibited133.
Glucose-dependent insulinotropic polypeptide (GIP), as well

as GLP-1, belongs to the family of incretins134. Some research
that assessed GIP receptor expression in a broad spectrum of
human gastrointestinal and bronchial tumors found that high
GIP receptor expression was found in neuroendocrine tumors
(NET)135–138. Of these tumors, functional pancreatic NET,
including insulinomas, gastrinomas, glucagonomas and VIPo-
mas, as well as non-functional pancreatic NET, ileal NET and
bronchial NET, are especially noteworthy. Conversely, GIP recep-
tors were rarely found among the epithelial cancers. The highest
incidence of GIP receptor expression, approximately 26%, was
found in pancreatic tumors. In an in vitro experiment, Prabaka-
ran et al.139 found that the presence of GIP receptors in colorectal
cancer (CRC) might enable ligand binding and, in so doing, stim-
ulate CRC cell proliferation. The overexpression of GIP, which
occurs in obesity, might therefore be contributing to the
enhanced rate of carcinogenesis observed in obesity139.
DPP-4 is associated with a high level of clinical aggressiveness

in some tumors, but a lower level in others140. DPP-4 itself could
be a novel therapeutic target. Anti-CD26 monoclonal antibody
treatment resulted in both in vitro and in vivo antitumor activity
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against several tumor types, including lymphoma and renal cell
carcinoma141. The role of CD26/DPP-4 activity in cancer, and
the potential usefulness of this protein in therapeutics and
diagnostics have been discussed142.
In healthy CD1 mice, a DPP-4 inhibitor did not promote

dysplasia in the colon143, and the DPP-4 inhibitor showed no
tumor promoting effects and non-considerable growth
effects143. In 2013, Femia et al.144 reported that long-term treat-
ment with a DPP-4 inhibitor, sitagliptin, reduces colon carcino-
genesis and reactive oxygen species in 1,2-dimethylhydrazine-
induced rats, and this protective effect of DPP-4 against colon
carcinogenesis could be explored in chemoprevention trials.
Also, a recent clinical trial showed that DPP-4 inhibition by
saxgliptin was not associated with increased incidence of either
pancreatic or other cancers145.
Aoe et al.146 found that there was a trend for an association

between response rate to chemotherapy and CD26 expression,
with a higher level of CD26 expression more likely to be linked
to a better response to chemotherapy. Their in vitro and micro-
array studies146 showed that mesothelioma cells expressing high
CD26 displayed high proliferative activity, and CD26 expression
was closely linked to cell-cycle regulation, apoptosis and che-
motherapy resistance. In another study, Arwert et al.147 found
that skin wounding triggers tumor formation in InvEE mice
(the transgenic mice express involucrin promoter-regulated con-
stitutively activated MEK1 construct, with two phosphomimetic

point mutations [S217E/S221E]) through a mechanism that
involves epidermal release of interleukin-1a and attraction of a
pro-tumorigenic inflammatory infiltrate, and DPP-4 levels were
upregulated in keratinocytes expressing mutant MAPK kinase 1
and in the epithelial compartment of InvEE tumors. CD26
expression was increased in dermal fibroblasts after skin
wounding, but was downregulated in tumor stroma147. Phar-
macological blockade of CD26 reduced growth of InvEE
tumors, whereas combined inhibition of interleukin-1a and
CD26 delayed tumor onset and reduced tumor incidence147.
Some other studies have analyzed the possible mechanistic

connection between GLP-1 and cancer from duration, age, and
some other factors148–152, and they found that the GLP-1 recep-
tor, and the phosphatidyl-inositol 3 kinase-protein kinase B
renin–angiotensin system–extracellular regulated protein kinases
pathways might play a role (Figure 2).

PERSPECTIVE
Diabetes and Angiogenic Abnormalities
Angiogenesis, the formation of new blood vessels from a pre-
existing capillary network, is not always healthy and often accom-
panies the growth of cancers153,154. Several clinical trials have
shown that anti-angiogenesis therapy is beneficial in the treat-
ment of many cancers155, suggesting that increasing angiogenesis
signals are contributing to cancer progression. Hypoxia in tumor
tissue is a strong stimulator of angiogenesis through accumula-
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Figure 2 | Glucogen-like peptide-1 and cancer. Mechanism of GLP-1-potentiated insulin secretion in b-cells and a possible cancer pathway. AC,
adenylatecyclase; ADP, adenosine diphosphate; ATP, adenosine triphosphate; IGF-BP3, insulin-like growth factor binding-protein 3; cAMP, cyclic
adenosine monophosphate; IGF, insulin-like growth factor; PI3-Akt; phosphatidyl-inositol 3-kinase-Protein Kinase B; PKA, protein kinase A; PPARc,
peroxisome proliferator-activated receptor-c; Ras-ERK, renin–angiotensin system–extracellular regulated protein kinases.
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tion of hypoxia-inducible factors (HIFs) and their downstream
targets, such as vascular endothelial growth factor (VEGF).
There is a possibility that these angiogenic abnormalities could

be relevant to the association between cancer and diabetes. It is
likely that the role of angiogenic signals in diabetes occurs by an
organ-dependent mechanism. Diabetes is associated with
increased angiogenesis and VEGF expression in the retina156,157,
whereas diabetic patients showed defective VEGF signaling
cascade activation in the heart and peripheral vessels158–160.
Furthermore, anti-angiogenic therapy inhibited diabetic retinopa-
thy157,158, and on the contrary, angiogenesis therapy rescued dia-
betic cardiac and peripheral vascular diseases161,162. It is also
likely that abnormal angiogenesis is relevant to diabetic nephrop-
athy163. In tumor cells, high levels of glucose induced the accu-
mulation/expression of HIF-1a, whereas non-tumor cells showed
decreased HIF-1a accumulation in response to high glucose lev-
els164,165, suggesting that impaired glucose homeostasis directly
affects angiogenesis signals in tumors.

Glucose Utilization Defects and Cancer
Glucose metabolism is a complicated system essential for cell
survival. It is still not clear how metabolic abnormalities and
carcinogenesis are connected. With regard to glucose metabo-
lism defects and carcinogenesis, an interesting possible connec-
tion has been reported. In 2009, Yun et al.166 reported that
low-glucose culture media exerts selection pressure on cells,
which showed higher glucose transporter (Glut)-1 expression.
Elevated Glut-1 expression in low-glucose conditions is associ-
ated with de novo mutation of oncogenes, such as KRAS/BRAF,
in normal cultured cells166. Diabetes is associated with defects
in glucose uptake, and results in lower available glucose for
energy production in cells, despite significantly elevated levels
of blood glucose. In fact, when analyzed by [13C]-magnetic res-
onance spectroscopy, rates of insulin-stimulated glucose uptake
and glycogen synthesis were 50% lower in diabetic patients
when compared with control individuals167. Therefore, it could
be possible that lower available glucose in cells might alter gene
expression profiles responsible for nutrient uptake through
overinduction of nutrition transporters and mutations in key
oncogenes. On the contrary, Zhang et al.168 reported that
increased concentrations of glucose induced gene mutations
partially by oxidative stress-dependent mechanisms in human
lymphoblast cell lines. These reports show that defects in glu-
cose homeostasis might directly induce mutation in genes and
contribute to carcinogenesis. Le et al.169 found that under glu-
cose limitation, the tricarboxylic acid cycle could also be repro-
grammed and driven solely by glutamine, generating citrate
that consists of only glutamine carbons. Reductive carboxylation
was first documented as a means for normal brown fat cells to
synthesize lipids, and was subsequently implicated as a way for
cancer cells to synthesize lipids from glutamine for their growth
in hypoxic environments170.
Targeting glucose metabolism could be a selective way to kill

cancer cells. Several glycolytic enzymes are required to maintain

a high glucose metabolism171. Some human carcinomas overex-
press mitochondrial ATPase inhibitory factor 1(IF1), which
blocks the activity of mitochondrial H+-ATP synthase and facil-
itates metabolic adaptation to aerobic glycolysis. The overex-
pression of IF1 in human carcinomas is an additional
epigenetic factor that contributes to the peculiar energy metabo-
lism of mitochondria in cancer, and IF1 directly promotes the
acquisition of the hallmarks of the cancer phenotype172.

Inflammation and Cancer
Inflammation is a hallmark of cancer where diverse immune
cells exert either pro- or antitumor properties172,173, and affect
therapeutic resistance174. During inflammation, the fate of the
cell is dependent on the balance between pro- and antitumori-
genic immune responses, and it is now believed that inflamma-
tion affects the three stages of cancer : tumor initiation, tumor
promotion and tumor progression175. Tumor initiation is the
process by which a normal cell becomes premalignant. The
inflammatory environment, which consists of an increase in
cytokines, chemokines, and reactive oxygen and nitrogen spe-
cies, results in DNA mutations, epigenetic changes and geno-
mic instability that can contribute to tumor initiation175,176.
Tumor promotion involves the proliferation of genetically
altered cells, and chronic inflammation promotes this by inhib-
iting apoptosis, and the acceleration of proliferation and angio-
genesis175,177. Finally, tumor progression and metastasis, which
involves an increase in tumor size, additional genetic changes
and the spreading of the tumor from its primary site to multi-
ple sites, are also influenced by inflammation.
Heparanase might show shared molecular mechanics with

inflammation, diabetes and cancer. Heparanase is a multifunc-
tional molecule having both enzymatic and non-enzymatic func-
tions. Previous studies have implicated heparanase in several
facets of the inflammatory/autoimmune process including leuko-
cyte recruitment, immune cell extravasation and migration,
release of cytokines and chemokines, and activation of innate
immune cells. Meirovitz et al.178 reviewed the compelling
evidence that heparanase is an important player in coupling
inflammation with tumorigenesis, particularly as observed in
colitis-associated colon carcinoma178. Several up-to-date reviews
also nicely summarized the basic and translational aspects related
to the involvement of heparanase in cancer progression179,180.
Emerging evidence shows that heparanase plays important roles
in diabetes (types 1 and 2)181,182. The review by Park EJ et al.183

describes their exciting finding that heparan sulfate within b-cells
in the pancreatic islet acts to protect these cells from free radical
damage and death. This protective anti-apoptotic effect is neu-
tralized when nearby autoreactive T cells secrete heparanase that
subsequently degrades heparan sulfate, leading to the onset of
type 1 diabetes183. Clearly, heparanase has emerged as a major
player in the pathogenesis and natural history of various diseases
that plague humans184. The role of heparanase in cancer, diabe-
tes and inflammation has elevated the importance of developing
clinically effective antiheparanase therapies.
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CONCLUSION
There are many theories and possible mechanisms at work in
the biology of diabetes (Figure 3). Although diabetes and diabe-
tes therapy could potentially be associated with cancer inci-
dence/prognosis, it must be mentioned here that the majority
of mortality is still as a result of classical diabetes-associated
complications, such as cardiovascular disease and chronic renal
failure. Blood glucose control is essential for preventing diabe-
tes-associated complications; therefore, clinicians should not
hesitate to use blood glucose lowering therapies on account of
their possible cancer risks. Because of the characteristics of dia-
betes biology, carrying out long-term randomized controlled tri-
als for assessing the connection between certain treatments and
carcinogenesis is difficult. Therefore, the continuous accumula-
tion of observational studies will be required. The anticancer
effects of metformin highlight the possibility that some diabe-
tes-associated cancers could be avoidable. It is necessary to have
special guidelines for the screening of and the use of therapeu-
tic strategies for diabetes-associated cancers when considering
potential risk factors, such as blood glucose control, amount of
insulin, types of cancer, angiogenesis, homocysteine level and
so on. Diabetes might be associated with cancer; investigation
into possible mechanistic links would shed new light on both
diabetes and cancer biology, and would also provide clues for
the development of useful novel drugs for these common
diseases.
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