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Haemonchus contortus is an infectious gastrointestinal nematode parasite of small

ruminants. This study addresses the in vitro/in vivo anti-haemonchiasis potential,

toxicological effects, and mechanism of action of nanoparticles. Online databases

were used to search and retrieve the published literature (2000 to 2021). A total of

18 articles were selected and reviewed, out of which, 13 (72.2%) studies reported

in vitro, 9 (50.0%) in vivo, and 4 (22.2%) both in vitro/in vivo efficacy of different

nanoparticles. Mostly, organic nanoparticles (77.7%) were used including polymeric

(85.7%) and lipid nanoparticles (14.3%). The highest efficacy, in vitro, of 100%

resulted from using encapsulated bromelain against eggs, larvae, and adult worm

mortality at 4, 2, and 1 mg/ml, respectively. While in vivo, encapsulated Eucalyptus

staigeriana oil reducedworm burden by 83.75% and encapsulatedCymbopogon citratus

nano-emulsion by 83.1%. Encapsulated bromelain, encapsulated Eucalyptus staigeriana

oil, and encapsulated Cymbopogon citratus nano-emulsion were safe and non-toxic

in vivo. Encapsulated bromelain damaged the cuticle, caused paralysis, and death.

Nanoparticles could be a potential source for developing novel anthelmintic drugs to

overcome the emerging issue of anthelmintic resistance in H. contortus. Studies on

molecular effects, toxicological consequences, and different pharmacological targets of

nanoparticles are required in future research.

Keywords: Haemonchus contortus, nanoparticles, anthelmintic, gastrointestinal nematode, toxicity, anthelmintic

resistance

INTRODUCTION

Haemonchus contortus is a highly infectious gastrointestinal parasitic nematode of small ruminants.
The parasite causes acute anemia, hemorrhagic gastroenteritis, diarrhea, edema, stunted growth,
and death of severely affected animals. H. contortus affects millions of ruminants annually,
resulting in substantial economic losses due to decreased milk, meat, and wool production, loss
of body weight, and cost of anthelmintic drugs (1, 2). The available anthelmintic agents such as
imidazothiazole, benzimidazole, and ivermectin among others are becoming ineffective due to the
rising issue of chemoresistance in helminths (3–7).
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Helminth resistance to multiple anthelmintic drugs is
increasing at an alarming speed and has raised great public
health concerns (8). In the near future, it would be very
difficult to control some of the parasites with prevailing
anthelmintic drugs. Some studies reported that sheep nematode
populations are highly resistant to oxfendazole (88%), levamisole
(41%), and ivermectin (59%) in farm animals (9). Therefore,
it is indispensable and timely to develop novel anthelmintics,
which are suitable, environmentally friendly, cost effective, and
potentially active.

Nanoparticles, owing to their small size, remarkable surface
reactivity, and their biomedical applications, are becoming the
leading candidates for the development of new anthelmintic
drugs (10). They are able to cross membranes and generate
reactive oxygen species (ROS), leading to great reactivity and
finally death of infectious agents (11, 12). Recently, anthelmintic
potential of nanoparticles is being constantly evaluated for
controlling parasitic infections (13).

Nanoparticles are widely used in modern medicines, such as
vaccines, diagnostic procedures, medical devices, drug delivery,
imaging, and antimicrobial therapies (14). Several applications
of nanomaterials as anthelmintics have been reported, including
inorganic and organic nanoparticles (13, 15–29). Since the
anthelminthic use of nanoparticles, we aimed to systematically
address the in vitro/in vivo anti-haemonchiasis potential of
nanoparticles, toxicological effects, and mechanism of action.
This review will also help to highlight the existing gaps in
nanoparticle research against H. contortus.

METHODOLOGY

The systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (30). No protocol was
followed for conducting this systematic review. The PRISMA
checklist is provided in the supporting information section
(Supplementary Table S1).

Searching Criteria
Different databases, e.g., ScienceDirect, Google Scholar,
Scopus, and PubMed were searched to find relevant
published literature (2000 to 2021). Research articles
published in the English language were gathered for
this systematic review. Keywords such as nanoparticles,
nanoparticles nematicidal activity, anthelmintic activity of
nanomaterials, in vitro/in vivo activity of nanoparticles,
and nanoparticles mechanism of toxicity/inhibition.
“Nanoparticles AND anthelmintics OR nematicidal,”
“Nanoparticles AND Haemonchus contortus,” “Anthelmintic
AND Haemonchus contortus,” “anthelmintic in vitro OR
in vivo.” The list of references of published articles was
carefully observed, and related titles were searched and
downloaded. Moreover, other related literature was also searched
and included to discuss and support the findings of the
current review.

Inclusion/Exclusion Criteria
The inclusion criteria were (a) nanoparticles tested
in vitro/in vivo, (b) articles containing information on assay
types, concentration and time exposure used, inhibition/efficacy
of nanoparticles, and size of nanoparticles, and (c) original
research articles published in English. However, articles dealing
with (a) molecular, prevalence, and epidemiological aspects ofH.
contortus, (b) nanoparticles studies dealing with parasites other
than H. contortus, (c) studies that tested chemicals/drugs other
than nanoparticles, (d) plant extracts used against H. contortus,
and (e) nanoparticles used as a candidate for vaccine were out of
the scope and were excluded from this review.

Data Extraction
Endnote (Thomson Reuters, San Francisco, CA, USA) was used
to compile the articles. The selected articles were carefully
reviewed by the researchers to extract the relevant information
including nanoparticle(s) name and size, biological species
used, time of exposure, concentration used, inhibition/efficacy,
toxicological and pharmacological effects, author(s) name,
country of study, and year of publication. Figures and tables were
formulated to arrange the extracted data. Moreover, Inkscape
(0.92) (https://inkscape.org/) was also used as a drawing tool.

Quantitative Analysis
Jaccard Similarity Index
Jaccard similarity index (JI) was calculated to determine the
similarity between the two sets of studies reported in this review.
One set of the study is the “in vitro pharmacological validation of
nanoparticles” and the other one is the “in vivo pharmacological
validation of nanoparticles.” The following formula was used for
JI similarity (31):

JI = c×100/(a+ b− c)

where “a” is the total number of nanoparticles used in vitro, “b” is
the total number of nanoparticles used in vivo as anthelmintic
against H. contortus, and “c” is the number of nanoparticles
common to both in vitro and in vivo studies.

RESULTS

A total of 136 (n = 136) research articles were found and
downloaded from online search databases. Eighteen (n = 18)
articles were selected and thoroughly reviewed for this study. All
the irrelevant and duplicate articles were removed (Figure 1).
The quality of the selected articles was assessed, and the
articles were summarized as author(s) name, nanoparticles
used, biological species/compound used in combination with
nanoparticles, source of nanoparticles, country name, release
profile, reported quality control, as well as characterization
(Table 1).

Out of 18 articles, 13 (72.2%) studies reported in vitro, 9
(50.0%) in vivo, and 4 (22.2%) reported both in vitro/in vivo
efficacy of nanoparticles. In vitro studies were more than in
vivo. Mostly, studies were carried out in Brazil (n = 10;
56.0%), Kenya, and India (n = 3; 17.0% each) (Figure 2).
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FIGURE 1 | Article screening and selection process used for conducting this systematic review.

Most of the studies were reported in the year 2020 (n = 4)
and 2017 (n = 3), followed by 2013 and 2016 (n = 2 each)
(Figure 3). Mostly, organic nanoparticles (77.7%) were used
including polymeric (85.7%) and lipid nanoparticles (14.3%). The
remaining (22.2%) were non-organic nanoparticles comprised
of metals (75.0%) and metal oxides (25.0%). Among metal
and metal oxides nanoparticles, silver and zinc oxide were
reported. The active substances were mainly encapsulated by
using polycaprolactone and chitosan as a polymeric matrix. The
release kinetics of chitosan encapsulated Eucalyptus staigeriana
essential oil and chitosan nanoparticles loaded with carvacrol
and carvacryl acetate were performed using dialysis membrane
method. However, this important piece of information was found
missing in most of the selected articles.

The effects of nanoparticles were evaluated using the egg
hatching test (EHT), larval development test (LDT), adult worm
mortality test (AWM), and adult worm motility test (AWM)

in vitro, whereas in vivo efficacy was evaluated by using worm
burden reduction and fecal egg count reduction tests (FECRT).
Egg hatching test was the commonly used assay in vitro, while
the worm burden reduction was common in vivo (Figure 4).

The results exhibited that the doses used in the in vitro studies
ranging from 0.025 to 56 and 0.20 to 500 mg/kg for in vivo. The
most common exposure time against eggs hatching was 48 h,
whereas it was 24 h for larvae and adults. The highest efficacy of
100% was a result of using encapsulated bromelain against eggs,
larvae, and adult worm mortality at a concentration of 4, 2, and
1 mg/ml, respectively (Table 2). Encapsulated E. staigeriana oil
reduced worm burden by 83.75% and encapsulated Cymbopogon
citratus nano-emulsion by 83.1% in vivo (Table 3).

The double emulsion method was the frequently used
(n = 4) technique for nanoparticle preparation than the
ionic gelation method (n = 2), and Dulbecco’s modified eagle
medium (DMEM), polyelectrolytic complexation system, and
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TABLE 1 | Quality assessment of articles selected for this systematic review.

Country Name Type of nanoparticles Biological specie Release

profile

Quality

reported?

Nanoparticle’s

characterization?

Reference

India Silver nanoparticle

(AgNPs)

Ziziphus jujuba _ _ Transmission electron

microscopy (TEM) and scanning

electron microscope (SEM)

(20)

India AgNPs Azadirachta indica _ _ TEM, and SEM (22)

India LAgNPs Lansium parasiticum _ + Surface plasmon resonance

(SPR)

(25)

China Chitosan nanoparticles Carvacrol and carvacryl

acetate

+ + Fourier transform infrared

spectroscopy (FTIR)

(24)

Iran Zinc oxide nanoparticle

(ZnO-NPs)

N/A _ + XRD and TEM micrography (13)

Brazil Nanoemulsion Eucalyptus staigeriana _ + Beam of red light (ZetaSizer

3600, Malvern, United Kingdom)

(29)

Brazil Solid lipid nanoparticle Melaleuca alternifolia

(Maiden & Betche)

Cheel

_ + N/A (19)

Brazil Solid lipid nanoparticle Melaleuca alternifolia _ + N/A (18)

Brazil Chitosan-encapsulated E. staigeriana essential

oil (EsEO)

+ + N/A (17)

Brazil Nanoemulsion E. staigeriana _ + Beam of red light (ZetaSizer

3600, Malvern, United Kingdom)

(21)

Brazil Nanoencapsulated Eucalyptus citriodora

essential oils

+

_

FTIR analysis (16)

Brazil Encapsulated oil E. staigeriana _ + N/A (15)

Brazil Nanoemulsion C. citratus essential oil

Nanoemulsion

_ + Beam of red light (ZetaSizer

3600, Malvern, United Kingdom)

(23)

Brazil Encapsulated oil N/A _ + N/A (27)

Brazil Polycaprolactone Thio1

nanoparticles (nano

Thio1)

Tagetes patula L. _ + Dynamic light scattering (DLS)

(Zetasizer NanoZSTM, Malvern

Panalytical Instruments, UK)

(28)

Kenya Chitosan encapsulated

bromelain

N/A _ + SEM and FTIR analysis (26)

Kenya Chitosan encapsulated

bromelain

N/A _ + FTIR analysis (32)

Kenya Encapsulated ethanolic

extract

Prosopis juliflora _ – N/A (33)

Key: N/A, data not available.

single emulsion method (n = 1 each). The methods used for
nanoparticle characterization were Fourier transform infrared
spectroscopy (FTIR), transmission electron microscopy (TEM),
x-ray diffraction (XRD), and surface plasmon resonance (SPR).

Comparative Analysis of Common
Nanoparticles
Nanoparticles evaluated for both in vitro and in vivo efficacies
were compared to know their effectiveness against the parasite.
Four nanoparticles were commonly evaluated for in vitro as well
as in vivo efficacy (Table 4). Since minimum concentration used
and maximum efficacy obtained, the encapsulated bromelain
was highly effective (100%) in vitro; however, the in vivo
efficacy was not satisfactory (68.8%) at the tested concentration.
Similarly, the chitosan-encapsulated EO (EncEs) were potentially
active against eggs and larvae in vitro (98.0 and 97.0%,
respectively), while high activity (84.0%) was also reported

in vivo with a relatively higher concentration. Moreover, the
nanoparticles were more effective in vitro compared with
in vivo.

Toxicity Evaluation
Toxicity and toxic doses of different nanoparticles were reviewed
and reported (Table 5). Among the tested nanoparticles,
nano-tea tree oil (TTO), EncEs, EcEOn, nanoencapsulated
carvacryl acetate (nCVA), and encapsulated bromelain were
reported as non-toxic at the tested concentrations, while AgNPs
and EsNano were moderately and mildly toxic in HEK293
cell lines and female Swiss albino mice, respectively. Zinc
oxide nanoparticles were not evaluated for their toxicity.
Nanoparticles were either orally administered or through
esophageal gavage. The LC50 for AgNPs, CcEOn, and nano-TTO
was not calculated.

Frontiers in Veterinary Science | www.frontiersin.org 4 December 2021 | Volume 8 | Article 789977

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Ali et al. Alternatives for the Control of Haemonchus contortus

Jaccard Similarity Index
The two datasets, i.e., in vitro and in vivo use of nanoparticles
was checked for their similarity by using JI similarity formula and
22.2% similarity was found.

DISCUSSION

The main constraints of profitable products in the livestock
sector are parasites and parasitic resistance to anthelmintic drugs

FIGURE 2 | Country-wise studies of nanoparticles against H. contortus.

around the world. To resolve the huge economic losses, it is
important to improve the control of main parasitic diseases
through alternative, less harmful, biodegradable, and ecologically
safe anthelmintic strategies. Nanoparticles may reduce the risk
of resistance of H. contortus to the anthelmintic drugs and
overcome the resistance mechanisms adapted by the parasite,
potentiating the drug target, and increasing bioavailability of

FIGURE 3 | Year-wise studies of nanoparticles against H. contortus.

FIGURE 4 | Process of selection, preparation, and characterization of nanoparticles for in vitro/in vivo anthelmintic activity.
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the drug. The current systematic review assessed the in vitro/in
vivo nematicidal potential and toxicological implications along
with the mechanism of action of various nanoparticles againstH.
contortus. The results of this study will help to identify potential
approaches to design new nanoparticulate drugs and ways to
meet the current research limitations in prospective studies.

Nanoparticles were commonly evaluated in vitro, and only
few studies had reported in vivo effectiveness of different
nanoparticles. Previously, in vitro studies were mostly reported
than in vivo and justify the current findings (34–36). In
vitro studies are inexpensive and less time consuming, and
anthelmintic effects at different life stages of the parasite
can easily be studied (37). After initial screening, effective
substance/product can further be evaluated for in vivo efficacy
(38). In vivo studies are useful to know the host immune
response to a particular anthelmintic agent, toxicological and
pharmacological effects, and in vivo efficacy. However, in vivo
studies are expensive and difficult to reproduce the results,
required long experimental duration, and has lower precision
(39). The research field is highly inundated with in vitro studies,
and in vivo studies are insufficient; therefore, in vivo evaluation of
nanoparticles would be of great importance in future studies (36).

Organic nanoparticles were among the frequently used
nanoparticles. Nanoparticles can easily be produced in
large quantities using different approaches and are highly
biodegradable and biocompatible. These nanoparticles possess
the capacity to solve, absorb, and encapsulate a drug in a
polymer matrix and are excellent nanocarriers for the controlled
and sustained release of drugs (40, 41). Among metal and
metal oxides, AgNPs and ZnO were reported. AgNPs have
profound antiparasitic and antibacterial activities. Antiparasitic
activity of AgNPs was inhibition of metabolic activities and
cell proliferation of Leishmania spp. promastigotes. Antiviral
activities of AgNPs have also been demonstrated to stop viral
replication process and prevent binding of virus particles to
host cell receptors. These nanoparticles have promising efficacy
as anticancer agents and could be a reason that they have
attracted more attention as an anthelmintic agent (42–46). ZnO
nanoparticles are widely used and important candidates for
developing novel drugs due to their non-toxic, antiparasitic,
antifungal, and antimicrobial effects. These can also be used for
gene delivery and can cause death of cancerous cells without
effecting normal healthy cells (47, 48).

Nanoparticles were encapsulated using a polymeric matrix,
mainly chitosan and polycaprolactone, to improve the controlled
drug release. Encapsulation of bioactive substances also improves
the absorption and bioavailability by facilitating the diffusion
through epithelium. The most common are aliphatic polyesters
and their copolymers. Polycaprolactone (PCL) is a synthetic
aliphatic polyester approved by the FDA and has some
advantages: it is hydrophobic, biodegradable, biocompatible, and
relatively inexpensive (49). In addition, due to its low toxicity, it is
suitable for intravenous or oral administration (50, 51). Chitosan,
a natural polymer obtained by the deacetylation of chitin,
was the frequently used encapsulating matrix. The chitosan
microsphere formulation for the controlled release of drugs
improves their dissolution and bioavailability (52, 53). Hence,

increases in efficient drug delivery may increase the overall
effectiveness of the targeted drug/compound. Furthermore, its
excellent biodegradability and non-toxic nature were the core
reasons for which chitosan was selected as an encapsulating agent
for evaluating anti-haemonchiasis nanoparticles (21).

The release kinetics of nanoparticles was the neglected aspect
and barely studied in the reviewed articles. It is an important and
critical aspect that helps to understand the dosage form behavior,
and assess the safety and efficacy of a desired drug during the
various stages of development. To maximize the effectiveness of
nanoparticle targeting, drug release from nanoparticles needs to
be slow enough to avoid substantial drug loss before the carrier
reaches the site of action thereby reducing toxicity (54, 55). After
nanoparticle accumulation at the target site, optimizing efficacy
will require tunability of the drug release rate (56). Therefore,
determination of product quality and performance becomes a
crucial aspect during nanoparticulate dosage form development.
When designed appropriately, an in vitro release profile can
reveal fundamental information on the dosage form and its
behavior, as well as provide details on the release mechanism
and kinetics, enabling a rational and scientific approach to drug
product development (57). Thus, the kinetics of drug release
from nanoparticles should be an essential feature of their design
and a property monitored for the quality control of nanoparticle
formulations (58).

The frequently reported assay was egg hatching test (EHT)
followed by larval development test (LDT). The possible reason
for such an extensive use of these assays may be attributed
to the fact that these tests take into account variations in the
habits, behavior, and sensibility of these life forms of the parasite
and permit the exposure of different potential pharmacological
sites for future pharmacodynamics investigation (59). Moreover,
APMT and AWMT were less likely to be used in in vitro studies
for anthelmintic evaluation. It is because of the lack of a culture
system yielding adults of this nematode parasite, which prevents
a preliminary investigation of the efficacy of anthelmintics at this
stage (60); hence, the in vitro tests using free-living stages of
nematode parasites are considered as the best means of screening
the anthelmintic activity of new substances/products (61).

The most widely utilized in vivo assessment of nanoparticles
against H. contortus was the FECR test. The major benefit of
this examination is that, regardless of their mode of operation,
it can be carried out with all anthelmintics (59). Gerbils and
sheep have been primarily used in in vivo experiments as animal
models. Using sheep as a model can be explained by the fact that
domestic animals are a valuable component of clinical studies for
several purposes, including simple availability and management,
accessibility to early examine diseased tissues as well as the
models, and also require disease characteristics to be explored at
an early level (62). However, a study also evaluated the efficacy
of plants against intestinal nematode parasites by using mice
as models and reported high anthelmintic efficacy (63). Rodent
use as an animal model may have some drawbacks; rodents
provide a completely different internal environment (habitat) to
the nematodes than small ruminants; thus, the drug efficacy may
be lower or higher based on the habitat and drug absorption
site of the host (64). Rodents are monogastric, and sheep are
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TABLE 2 | In vitro efficacy of nanoparticles against H. contortus.

Nanoparticle Stage of

parasite

Biological specie Size (nm) Concentration

(mg/ml)

Time (h) Efficacy (%) Reference

Silver nanoparticle

(AgNPs)

Eggs

Adult

Ziziphus jujuba Mill. 28–44 2

30

48

24

92

94

(20)

Eggs

Adult

Azadirachta indica A. Juss 15–25 0.025

0.025

48

24

85

87

(22)

Eggs

Larvae

Lansium parasiticum 300–700 15.8 nM

31.7 nM

63.5 nM

158.7 nM

15.8 nM

31.7 nM

63.5 nM

158.7 nM

48

24

32.1

45

47.2

51.2

33.3

29.5

22.2

14.8

(25)

Solid lipid

nanoparticle

Egg

Larval

(nanoTTO)

Essential oil of M. alternifolia

N/A 0.1

0.2

0.4

0.85

1.7

3.5

3.5

7

14

28

56

24

48

2.77

3.50

15.22

21.19

41.52

82.63

19.51

40.63

48.73

67.28

84.80

(18)

Zinc oxide

nanoparticle

(ZnO-NPs)

Adult

Adult

N/A 20–30 8

12

16

8

12

16

8

12

16

12

16

12

16

16

20

24

20

24

Low motility

Very low

No motility

Very low

No motility

No motility

No motility

No motility

No motility

19.33/20

20/20

20/20

20/20

(13)

Nanoemulsion

chitosan

Eggs

Larvae

Eucalyptus staigeriana 274 0.06

0.125

0.25

0.5

1

0.5

1

2

4

8

48

24

10.7

16.2

59.1

87.9

99

9.1

17.3

31.9

75.5

96.3

(29)

Eggs Citriodora citratus

essential oil

248 0.07

0.15

0.31

0.62

1.25

N/A 34.9

49.4

58.1

73.3

97.1

(23)

Encapsulated

bromelain

(chitosan)

Eggs

Larvae

Adult

N/A 200–700 4

2

2

48

24

24

100 (26)

Adult N/A 1 N/A (32)

(Continued)
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TABLE 2 | Continued

Nanoparticle Stage of

parasite

Biological specie Size (nm) Concentration

(mg/ml)

Time (h) Efficacy (%) Reference

Chitosan

encapsulated

EcEO

Eggs

L1

Eucalyptus citriodora

essential oil

N/A 0.125

0.25

0.5

1

2

4

0.5

1

2

4

8

N/A 11.9

25.9

56.8

85.5

92.8

100

10

39.1

49.4

75.8

98.0

(16)

Chitosan-

encapsulated

EsEO

Larvae

Eggs

E. staigeriana essential oil

(EsEO)

N/A 0.72

1.45

2.9

5.8

0.18

0.37

0.75

1.5

3.6

23.53

54.6

96.59

19.88

39.23

78.42

97.19

(17)

Chitosan

nanoparticles

Adult Carvacrol and carvacryl

acetate

271–276 0.15 6 12 66.6

8.3

(24)

Encapsulated

leaves ethanolic

extract (ELEE)

Eggs Prosopis juliflora N/A 2 N/A 100 (33)

Encapsulated root

ethanolic extract

(EREE)

70

Keys: N/A, data not available; FECR, fecal egg count reduction.

TABLE 3 | In vivo efficacy of nanoparticles against H. contortus.

Nanoparticle Bioassay Biological

species

Size (nm) Concentration

(mg/kg)

Time (days) Efficacy (%) Model Reference

Nanoemulsion-chitosan

EO

FECR Worm

burden

Cymbopogon

citratus

248 450 0 15 80

64

83.1

Sheep (23)

Chitosan-encapsulated

EO (EncEs)

Worm burden Eucalyptus

staigeriana

N/A 500 N/A 40.51 Mongolian gerbils (17)

365 30 83.75 Sheep (15)

Solid lipid nanocarriers

(nanoTTO)

Worm burden Melaleuca

alternifolia

287 0.20

0.50

N/A 4.09

48.64

Mongolian gerbils (19)

Encapsulated

bromelain

FECR N/A N/A 3

10

30

28 5

56.6

68.8

Goats (32)

Chitosan encapsulated

EcEO

FECR Eucalyptus

citriodora

N/A 250 10 40.5 Sheep (16)

Encapsulated oils

anethole + carvone

FECR N/A N/A 50 45 Significantly reduced

FEC

Sheep (27)

Polycaprolactone thio1

nanoparticles (nano

thio1)

FECR Tagetes patula L. N/A 2,5 30 Kept the parasitic load

stable

Sheep (28)

EPG 2.5 30 45% Sheep (28)

Nanoemulsion

chitosan

EPG E. staigeriana 277 0.25 180 No significant

difference was

observed

Sheep (21)

Key: N/A, data not available; EO, essential oil; nanoTTO, nano tea tree oil; FECR, fecal egg count reduction; EPG, eggs per gram of feces.
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TABLE 4 | Comparative analysis of common nanoparticles used against H. contortus.

Nanoparticle In vitro In vivo Toxicology Mechanism

of action

References

Conc.

(mg/ml)

Eff. (%) Conc.

(mg/kg)

Eff. (%) Dose.

(mg/ml)

T. level

Chitosan-

encapsulated EO

(EncEs)

5.8b

1.5a
96.59

7.19

365c 83.75 500 Non N/A (17, 23)

Solid lipid

nanocarriers

(nanoTTO)

3.5a

56b
82.63

84.80

0.50c 48.64 0.20 Non N/A (18, 19)

Encapsulated

bromelain

1c

2b

4a

100 30d 68.8 3–30 Non N/A (26, 32)

Chitosan

encapsulated

EcEO

4a

8b
100

98.0

250d 40.5 N/A N/A N/A (16)

Keys: a, eggs; b, larvae; c, adult worm; d, fecal egg count reduction; Conc., concentration; Eff., efficacy; T. level, toxicity level; EO, essential oil; TTO, tea tree oil; N/A, data not available.

polygastric animals, which can also alter the drug mechanism
of distribution and biotransformation. However, efficacy test on
rodents can help researchers deduce the prescriptions to be used
on sheep and goats (63).

Toxicity
LAgNPs were moderately toxic when tested on HEK293 cell
lines. The HEK293 cell viability decreased in a dose- and
time-dependent manner. The lowest concentration produced
no significant toxic effects; however, with an increase in
concentration, i.e., 31.7, 63.5, and 158.7 nM, the observed
decrease in the viability was 77.5 ± 5.06, 71.3 ± 9.8, and
62.1 ± 9.3%, respectively (25). Oral administration of CcEOn
at 450 mg/kg concentration resulted in the death of 1 sheep
out of 10. The sheep suffered from sialorrhea before death (23).
However, the death of the sheep was not confirmed through
necropsy and was assumed that the sheep may have aspirated
the essential oil, and the wrong route of administration was
attributed as the cause of death. Other studies also supported the
non-toxic nature of CcEO at 1 and 800 mg/kg in rats and gerbils,
respectively (65, 66) (Figure 5).

EsNano was found non-toxic after acute and subchronic
toxicity evaluation in rats. The tested concentrations did not
produce any change in the hematological parameters except a
slight increase in the white blood cells (WBCs) after subchronic
toxicity (29). There was no change in the body weight and
histological morphologies of organs in treated rats (29). Nano
encapsulated carvacryl acetate (nCVA) had no cytotoxic and
genotoxic/mutagenic effects on murine fibroblast cell lines at the
tested concentration. The non-toxic effects of nanoparticles were
attributed to CVA and the biopolymers as they had no toxicity
(24). Esophageal gavage administration of nanoencapsulated
EcEO was safe, and no behavioral changes and mortality were
recorded after acute toxicity evaluation (16). Similarly, nanoTTO
produced non-significant differences in the hematological and
serum biochemical profiles of the treated and untreated groups

(18). Encapsulated bromelain was non-toxic as no pathological
and histological changes were observed at concentrations ranging
from 3 to 30mg/kg after necropsy. The hematological parameters
also remained unchanged at the same concentrations, confirming
the non-toxic effect of bromelain in vivo (32). Encapsulated E.
staigeriana essential oil (EnEsEO) was found non-toxic when
orally administered to gerbils at 500 mg/kg concentration (17).
However, the toxicity of ZnO-NPs was not evaluated and should
be evaluated in future studies.

Mechanism of Action
The pharmacological activity of a drug depends on how it
interacts with the targeted biomolecules, i.e., receptors (67).
Pharmacological activity is an important phenomenon to
know the precise target of the nanoparticle with anthelmintic
efficacy against the parasite or other organism/pathogen under
observation (36).

Exposure ofH. contortus to LAgNPs produced morphological
and physiological effects. Morphologically, LAgNPs caused
complete distortion of the cuticle and shrank the body.
Physiologically, levels of reactive oxygen and nitrogen species
were significantly increased, which resulted in oxidative stress
and caused physical damage to tissues of the worm (25). In
response to oxidative stress, a sharp increase in stress-responsive
activities of enzymes, like catalase, superoxide dismutase, and
glutathione peroxidase activities, along with the concentration
of glutathione, was observed in worm tissue, which indicated
a LAgNPs-responsive alteration of metabolism (25). Moreover,
AgNPs also depleted the levels of glycogen, lipids, and protein
contents of H. contortus. Parasites produce energy from stored
carbohydrates (glycogen) to perform major metabolic processes
(20). Glycogen is the chief energy reserve in most of the
nematodes that exist in environments of low oxygen tension
(68). Lipids are the chief functional and structural components of
nematode parasites. Plasma membranes and eggs contain lipids
as an important energy source in the free-living stages, any
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TABLE 5 | Toxicity of nanoparticles used against H. contortus.

Nanoparticles

(symbol)

Concentration

(mg/kg)

Exposure

time (days)

Mode of

administration

Model/cell line Toxicity level LC-50 value

(mg/ml)

Physiological changes References

Silver

nanoparticles

(AgNPs)

31.7 nM

63.5 nM

158.7 nM

1 N/A HEK293 Moderate N/A Viability of cell was

decreased.

(25)

Solid lipid

nanoparticles

(nanoTTO)

0.20 5

7

9

Oral Gerbils (Meriones

unguiculatus)

Non N/A Non-toxic to liver and

kidneys since hepatic and

renal functions were not

affected.

(18)

Nano emulsion

Eucalyptus

staigeriana

(EsNano)

1,000

1,500

2,000

2,500

3,000

1–14 Esophageal

gavage

Female Swiss

albino mice (Mus

musculus)

Female Wistar

albino rats

Mild 1,603.9 No significant differences

were found in the body

weights or the histological

morphologies of organs

between the treatment and

control groups.

(29)

Nano-

encapsulated

EcEOn

2,000

2,500

3,000

3,500

15 Esophageal

gavage

Female Swiss

albino mice (Mus

musculus)

Non 1,680.7 No behavioral changes and

mortality were observed.

(16)

Nanoencapsulated

carvacryl acetate

(nCVA)

0.00156

0.3

1 N/A Murine fibroblast

L929

Non 0.3 No cytotoxic and genotoxic

effects were observed.

(24)

Encapsulated

bromelain

3–30 14 Oral Goats Non 0.155 No treatment related

pathological changes of

internal organs were

observed after necropsy. No

changes in the histology of

heart, kidney, or hematology

parameters were recorded.

(32)

Chitosan

encapsulated

Eucalyptus

staigeriana EO

(EnEsEO)

500 3 Oral M. unguiculatus Non N/A No hematological and

biochemical alterations were

reported.

(17)

Zinc oxide

nanoparticles

N/A N/A N/A N/A N/A N/A N/A (13)

Cymbopogon

citratus EO

nanoemulsion

450 3 Oral Sheep Toxic N/A One sheep out of ten died,

treated with CcEOn. The

sheep presented sialorrhea

before death.

(23)

Encapsulated oils

anethole+ carvone

50 45 Oral Sheep Non N/A No effect on kidney and liver

function.

(27)

Key: N/A, data not available.

depletion or damage to lipid constituents may lead to mortality
of the parasite. Therefore, lipid biosynthesis inhibition could
be a potential target to develop an effective anti-haemonchiasis
drug (20).

Proteins, like enzymes, are very important for
normal physiological functioning and to carry out key
metabolic activities. Hence, reduced protein content
would hamper the normal physiological activities of the
worms and may be accounted for mortality at higher
concentrations. Egg morphological alterations justify
the disintegration and shrinkage of H. contortus larvae
development (20). Some studies reported, a drastic
decrease in 5′ nucleosidase, ATPase, alkaline, and acid
phosphatases of intestinal cestodes treated with AuNPs

(69). Encapsulated bromelain is highly effective against
nematode parasites (70), and it was found that bromelain
damages the cuticle of H. contortus leading to paralysis and
death (71).

The ZnO-NPs completely paralyzed the parasites. These
nanoparticles can adversely affect the antioxidant systems of
H. contortus by inducing severe oxidative stress resulting in
denaturation of the antioxidant enzymes. Various concentrations
of ZnO-NPs imposed controversial alteration on the activities of
the antioxidant enzymes including superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GSH-Px) (13). This
increase in the oxidative stress and reactive oxygen species (ROS)
can damage proteins, carbohydrates, lipids, and DNA of the
parasite (72). Therefore, disruption of the antioxidant system
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FIGURE 5 | Schematic representation of nanoparticles preparation, efficacy, and toxicity evaluation as anthelmintic agents.

of the parasite unables H. contortus to survive against the host
generated free radicals.

CONCLUSION AND FUTURE
RECOMMENDATIONS

Nanoparticles could be a potential source for developing
novel anthelmintic drugs to overcome the emerging issue
of anthelmintic resistance in H. contortus. Mostly, in vitro
studies have reported the anthelmintic efficacy of nanoparticles.
More studies are required to evaluate and describe the
effects of nanoparticles on a molecular level, toxicological
consequences, and different pharmacological targets along with
exact mechanism of action using suitable animal models.
Furthermore, the size of the nanoparticles was not determined
in some of the studies, which is one of the crucial aspects
of nanoparticles, and should be considered in future studies
to provide more in-depth information of the nanoparticles
under consideration.

Chitosan-encapsulated EO and encapsulated bromelain were
highly effective both in vitro and in vivo with no observed toxic
effects at the tested concentration. However, the release profile
of mostly nano-encapsulated compound(s) was missing, and

hence, the controlled and sustained drug release properties are
unknown. These nanoparticles should further be evaluated and
could be alternative sources of anti-haemonchiasis agents.
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