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Robots employed in homes and offices need to adaptively learn spatial

concepts using user utterances. To learn and represent spatial concepts, the

robot must estimate the coordinate system used by humans. For example, to

represent spatial concept “left,” which is one of the relative spatial concepts

(defined as a spatial concept depending on the object’s location), humans use a

coordinate system based on the direction of a reference object. As another

example, to represent spatial concept “living room,”which is one of the absolute

spatial concepts (defined as a spatial concept that does not depend on the

object’s location), humans use a coordinate system where a point on a map

constitutes the origin. Because humans use these concepts in daily life, it is

important for the robot to understand the spatial concepts in different

coordinate systems. However, it is difficult for robots to learn these spatial

concepts because humans do not clarify the coordinate system. Therefore, we

propose a method (RASCAM) that enables a robot to simultaneously estimate

the coordinate system and spatial concept. The proposed method is based on

ReSCAM+O, which is a learning method for relative spatial concepts based on a

probabilistic model. The proposed method introduces a latent variable that

represents a coordinate system for simultaneous learning. This method can

simultaneously estimate three types of unspecified information: coordinate

systems, reference objects, and the relationship between concepts and words.

No other method can estimate all these three types. Experiments using three

different coordinate systems demonstrate that the proposed method can learn

both relative and absolute spatial concepts while accurately selecting the

coordinate system. The proposed approach can be beneficial for service

robots to flexibly understand a new environment through the interactions

with humans.
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1 Introduction

Robots that support human activities in homes and offices

should be able to learn spatial concepts adaptively using user

utterances. Because humans use spatial concepts in multiple

coordinate systems daily (Clark, 1973), it is desirable for a

robot to understand the coordinate systems for learning these

spatial concepts. Consider a scene in which the robot learns

spatial concepts using the utterances of a trainer, as shown in

Figure 1A. The trainer uses two types of spatial concepts: relative

spatial concepts, which depend on the object’s location (e.g., front

and right), and absolute spatial concepts, which are independent

of the object’s location (e.g., kitchen and corridor). To teach the

relative spatial concept “left,” the trainer uses a coordinate system

based on the direction of the reference object (defined as an

intrinsic coordinate system), as shown in Figure 1B. In contrast,

to teach the relative spatial concept “behind,” the trainer uses a

coordinate system based on the spatial relationship between the

trainer and the object (defined as an egocentric coordinate

system). In addition, to teach the absolute spatial concept

“living room,” which does not depend on object locations, the

trainer uses a coordinate system whose origin is a point on a map

(defined as an absolute coordinate system). In general, humans

do not specify the coordinate system in everyday life. Therefore,

FIGURE 1
Schematic of the learning spatial concepts used in our study. (A) Interaction scene. A trainer teaches a robot its location using an utterance. The
trainer teaches “migi” (right) in this scene. The trainer may use different concepts to represent the location as indicated by the gray speech balloons.
Using the obtained locations and phoneme sequences, our method performs the following operations: i) clustering locations with the selection of
coordinate systems and reference objects, ii) unsupervised segmentation of utterances, and iii) matching between a spatial concept and aword.
(B) Coordinate systems used in our study. The trainer may use an absolute spatial concept in the absolute coordinate system or a relative spatial
concept in the intrinsic or egocentric coordinate system.
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the robot must select an unspecified coordinate system to learn

the spatial concepts.

Studies have been conducted on learning concepts by

selecting the coordinate systems (Sugiura et al., 2011; Gu

et al., 2016). Gu et al. proposed a method for learning relative

spatial concepts in intrinsic and egocentric coordinate systems

while estimating the coordinate systems and reference objects

used by the trainer (Gu et al., 2016). However, this method

cannot learn absolute spatial concepts. Robots are expected to

learn both relative and absolute spatial concepts used by humans.

However, a method that can learn both concepts simultaneously

has not yet been developed. Further, Gu’s method cannot learn

concepts using spoken utterances because the trainer utters only

one word, e.g., “left,” to teach the concept. To learn concepts

using utterances, for example, “Your place is left of the chair,” the

robot needs to estimate the relationship between the concepts

and words. Studies have been conducted on learning spatial

concepts using utterances as a lexical acquisition task (Taniguchi

et al., 2017, 2020a, 2020b; Sagara et al., 2022). Taniguchi et al.

proposed SpCoSLAM, a learning method for absolute spatial

concepts (Taniguchi et al., 2017; 2020a). This method addresses

spoken utterances by learning the relationships between concepts

and words obtained by unsupervised word segmentation. The

acquired lexicon and spatial concepts can also be used for

navigation tasks (Taniguchi et al., 2020b). In addition, Sagara

et al. proposed ReSCAM+O, a learning method for relative

spatial concepts using user utterances (Sagara et al., 2022).

However, these methods cannot learn the spatial concepts in

multiple coordinate systems. Here, we propose a method in

which a robot learns these spatial concepts while estimating

the coordinate system using word sequences by extending the

ReSCAM+O learningmethod. Table 1 shows a comparison of the

spatial concept learning methods. The proposed method can

estimate the following unspecified elements: coordinate systems,

reference objects, and the relationship between concepts and

words. This method can learn both relative and absolute spatial

concepts, which is not possible using any other method. In

addition, the proposed method can learn concepts using word

sequences by estimating the relationship between concepts and

words. We performed experiments to demonstrate the

aforementioned qualities of the proposed method.

Here, we describe the task settings used in this study. An

interaction scene in the task setting of this study is illustrated in

Figure 1A. The trainer and robot are in the scene, as well as the

candidate reference objects. All the objects have their own

direction. The trainer teaches the robot what its location is

called by uttering words1. The trainer uses relative or absolute

spatial concepts represented in an intrinsic, egocentric, or

absolute coordinate system. When teaching relative spatial

concepts, the trainer selects an object as the reference object

among the candidate reference objects. Such teaching is iterated

several times by changing the locations of the trainer and robot.

The robot does not know the reference objects, coordinate system

used by the trainer, and the boundaries of the words because it

has no pre-existing lexicon. The robot has an acoustic model and

a language model of Japanese syllables as its initial knowledge

and can recognize an utterance as a phoneme sequence. In

addition, the robot can recognize each object as an object

category. The robot learns spatial concepts and the words

representing them while estimating the reference object,

coordinate system, and relationship between the concepts and

words in each scene.

The main contributions of this paper are as follows:

• We propose a novel method that can learn both relative and

absolute spatial concepts without any prior distinctions.

• We show that our proposed method can select coordinate

systems and learn spatial concepts represented in three

different coordinate systems using word sequences.

TABLE 1 Comparison of the learning methods of spatial concepts.

Learning spatial concepts Learning relationship between concepts and
words

Absolute Relative

Selection of
References
objects

Selection of
coordinate
systems

Gu et al. (2016) ✓ ✓
Taniguchi et al. (2017) ✓ ✓
Sagara et al. (2022) ✓ ✓
Proposed method ✓ ✓ ✓ ✓

1 As all the experiments in this paper were performed in Japanese
language, we provide English translations as well as Japanese
phoneme sequences in this paper. The proposed method is
applicable to languages other than Japanese.
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• We show that our proposed method outperforms other

methods that do not select coordinate systems.

The remainder of this paper is organized as follows. In

Section 2, we discuss previous relevant studies. In Section 3

and Section 4, we present our previous ReSCAM+O method and

our proposed method, respectively. In Section 5, the

experimental results obtained using the proposed method are

presented. Section 6 includes the conclusions drawn from the

results of this study.

2 Related work

2.1 Simultaneous learning of concepts and
words

Studies have been conducted on simultaneous learning of

concepts and words. Frank et al. proposed a Bayesian model for

cross-situational learning of words (Frank et al., 2008). Their

model clarified the understanding of word learning, which

mentions that a Bayesian model can be easily extended for

joint learning with other domains. Therefore, the proposed

model is based on a Bayesian model. Heath et al. proposed a

learning method for lexical knowledge using robot-to-robot

communication (Heath et al., 2016). They showed that this

method could resolve referential uncertainty for the

dimensions of space and time. Štepánová et al. suggested a

method for mapping language to vision using a real-world

robotic scenario (Štepánová et al., 2018). This method could

robustly find the mapping between language and vision.

However, none of these methods can learn the phoneme

sequences of unknown words in utterances because word

segmentation is not performed.

Studies have also been conducted on learning unknown

words using unsupervised word segmentation. Synnaeve et al.

proposed word segmentation methods using a nonlinguistic

context (Synnaeve et al., 2014). The results showed that the

model produced better segmentation results than its context-

oblivious counterparts. However, this method requires labels for

context annotations. Incorrect labels can be estimated when a

robot learns concepts using sensory information. In our model,

labels are estimated using sensory information as well as word

sequences to perform mutual complementation of the

ambiguities. Araki et al. suggested a method for learning

object concepts and word meanings using multimodal

information and spoken sentences (Araki et al., 2012).

Similarly, Nakamura et al. proposed a mutual learning

method based on integrating the learning of object concepts

with a language model (Nakamura et al., 2014). In these methods,

spoken sentences are segmented using an unsupervised

morphological analyzer based on a nested Pitman-Yor

language model (NPYLM) (Mochihashi et al., 2009). However,

using NPYLM, the word boundaries were not estimated correctly

when the recognized phoneme sequences contained errors. To

solve this problem, Taniguchi et al. proposed SpCoA++

(Taniguchi et al., 2018) using Neubig’s unsupervised word

segmentation method (Neubig et al., 2012), which uses speech

recognition lattices. Our previous method for relative spatial

concepts also used the segmentation method to solve this

problem (Sagara et al., 2022).

2.2 Learning relative concepts

The learning of related concepts has also been studied.

Tellex et al. proposed a probabilistic learning framework for

spatial concepts (spatial relationships) using natural sentences

(Tellex et al., 2011). A robot trained by their method can learn

and use word meanings in real-world tasks. Aly and Taniguchi

presented a learning method for spatial concepts which

represents spatial relationship between objects in a tabletop

scene (Aly and Taniguchi, 2018). This method enables a robot

to perform actions on objects using a sentence, for example,

“Raise the red bottle near the box.” Sagara et al. suggested

ReSCAM+O, a learning method for relative spatial concepts

using user utterances (Sagara et al., 2022). However, these

methods cannot learn concepts using two or more

coordinate systems. Studies have been conducted on multiple

coordinate systems for spatial concepts in cognitive science

(Landau and Jackendoff, 1993; Gapp, 1994; Imai et al., 1999). In

artificial intelligence, there are studies on learning spatial/

motion concepts in two or more coordinate systems. Iwata

et al. proposed a learning method for motion relative to a

reference point (Iwata et al., 2018). Coordinate systems were

selected during the learning process. However, this method

cannot consider multiple coordinate systems for each object.

Spranger et al. suggested a method for learning relative spatial

concepts similar to our study (Spranger, 2013, 2015). This

method could learn relative spatial concepts in different

coordinate systems. However, they did not consider several

candidate reference objects.

Studies have been conducted on learning concepts while

estimating the coordinate systems as well as reference objects.

Sugiura et al. proposed a learning method of relative spatial

moving concepts by estimating both reference objects and

coordinate systems using an expectation-maximization (EM)

algorithm (Sugiura et al., 2011). Gu et al. proposed a method

for learning relative spatial concepts in different coordinate

systems using an EM algorithm (Gu et al., 2016). However, in

these studies, the concepts cannot be learned using human

utterances because the robot must know in advance the

concept being taught. The proposed method can learn

concepts using user utterances by estimating all the

reference points, coordinate systems, and concepts being

taught.
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3 Previous method: ReSCAM+O

This section describes the spatial concept acquisition method

using reference object clues (ReSCAM+O) on which the

proposed method described in Section 4 is based.

3.1 Overview

ReSCAM+O enables robots to segment words accurately and

learn relative spatial concepts. This method is based on a

probabilistic model. Figure 2A shows a graphical model of

ReSCAM+O and Table 2 lists the variables used in

ReSCAM+O. As shown in Figure 2B, the probabilistic model

comprises the concept learning module and speech recognition

module. The details of the ReSCAM+O generation process are

described in (Sagara et al., 2022). This method can learn relative

spatial concepts as distributions by estimating the reference

object in each scene. The number of concepts during learning

are estimated using the Chinese restaurant process (CRP)

(Aldous, 1985). In addition, it learns novel words using an

unsupervised word segmentation method (latticelm) (Neubig

et al., 2012), class n-gram, and the selection of segmentation

candidates using mutual information. Furthermore, it can be

used to learn the relationship between concepts and words. The

method learns them simultaneously to compensate for the

uncertainty of the inputs.

3.2 Probabilistic generative model

The relative location x′n is generated as follows.

x′n ~ N(ln∣∣∣∣μ, λ−1)vM(θn∣∣∣∣∣]CL
n
, κCL

n
) (1)

where ln denotes the distance between a reference object and

trainer, and θn denotes the angle between a line that passes

through the reference object and trainer and a line that passes

through the reference object and robot. The distance ln is

generated using a normal distribution N(·), and the angle θn
is generated using the von Mises distribution vM(·), which
can represent angles or directions.

The absolute location of the trainer xn is generated using the

relative location x′n as follows:

xn � xOnπn + R(fO
nπn

)x′n (2)

where R(θ) denotes the rotation matrix of angle θ and fO
nπn

denotes the direction of the reference object.

A word sequence wn is generated using an approximation

through unigram rescaling (Gildea and Hofmann, 1999) to

connect the concept learning module and speech recognition

module, as follows:

wn ~ p(wn

∣∣∣∣ϕL,ϕO,ψ, CL
n, C

O
n , z

L
n, z

O
n ,L)

≈ URp(wn|L)∏
i

p(wni

∣∣∣∣ϕL,ϕO,ψ, CL
n, C

O
n , z

L
n, z

O
n )

p(wni)
(3)

FIGURE 2
Graphical models of ReSCAM+O. (A) Functions of variables. (B) Modules.
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where ϕL � {ϕL1 , . . . ,ϕLS}, ϕO � {ϕO1 , . . . , ϕOK}; ≈ UR denotes an

approximation using unigram rescaling;

p(wni|ϕL, ϕO,ψ, CL
n, C

O
n , z

L
n, z

O
n ) denotes the prior probability

of wni, the i− th word of word sequence wn. This is calculated

as follows:

p(wni|ϕL,φO,ψ, CL
n, C

O
n , z

L
n, z

O
n ) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mult(wni|ϕL
CL
n
) (zLn � i)

Mult(wni|ϕO
CO
n
) (zOn � i)

Mult(wni| ψ) (otherwise)
(4)

where ϕLs , ϕ
O
k denote the word distributions of a spatial concept

and an object, respectively, ψ denotes the word distribution of

concept-independent words, and zLn, z
O
n denote the indices of

words representing a spatial concept and an object, respectively.

The words selected by zLn, z
O
n are defined as location words and

object words, respectively. Eq. 4 indicates that each utterance is

assumed to have one location word and one object word.

An object recognition result of the reference object Onπn is

generated as follows:

Onπn ~ Mult(ωCO
n
) (5)

where ωk denotes the parameter of the distribution. The object

recognition result represents the probability that a candidate

reference object will be classified into each object category. The

object recognition result is used as a clue for estimating reference

objects.

3.3 Parameter estimation

The estimated parameters are as follows: parameters of

the spatial concepts μ, λ, ]s, κs, parameters of the word

distributions ϕLs , ϕOk , ψ , parameter of the prior for the

indices of the object categories vO, word sequences wn,

language model L, and indices CL
n , CO

n , πn, zLn , zOn . The

probabilistic model parameters are estimated by iterating

the following four steps: (a) generating word sequences,

(b) concept learning, (c) selecting a list based on mutual

information, and (d) updating the language model. The

TABLE 2 Variables of ReSCAM+O.

CL
n Index of spatial concepts

CO
n Index of object categories

πn Index of References objects

xn Absolute location of the trainer

x′n Location in a selected coordinate system

xOnj Location of candidate References objects

μ Mean of distance

λ Precision of distance

]s Mean angle of relative spatial concepts

κs Concentration of relative spatial concepts

ωk Parameter of distribution of object recognition result

vO Parameter of prior of index of object categories

Onj Object recognition result of each candidate References object

wn Word sequences

ϕLs Parameter of word distribution of spatial concepts

ϕOk Parameter of word distribution of object categories

ψ Parameter of word distribution of concept-independent words

zLn Index of location words

zOn Index of object words

yn Utterance

A Acoustic model

L Language model

μ0 , λ0 , a0 , b0 , ]0 , κ0 , m0 , σ0 , e, αO, αL , β
L , βO , βG , γπn , γ

z
n

Hyperparameters

N Number of scenes

S Number of spatial concepts

K Number of object categories

Jn Number of candidate References objects
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parameters in the concept learning module without word

sequence wn are estimated in (b), word sequence wn is

estimated in (a) and (c), and language model L is

estimated in (d). In step (b), the parameters are estimated

using the Metropolis-Hastings (M-H) method, which is a

Markov-chain Monte Carlo (MCMC) method. During the

iterations of the M-H method, the number of spatial concepts

is also estimated using CRP.

4 Proposed method: Relative and
absolute spatial concept acquisition
method

4.1 Probabilistic generative model

The proposed method RASCAM enables robots to learn both

relative and absolute spatial concepts without any prior

distinctions. In the proposed method, the concept learning

module of ReSCAM+O is improved. Figure 3 shows a graphical

model of the proposed method and Table 3 lists the new variables

used in the proposed method. We added a new variable

ρs ∈ {ABS, REL INTRINSIC, REL EGOCENTRIC}, which

denotes the coordinate system of concept s. When ρs � ABS,

concept s is an absolute spatial concept in an absolute

coordinate system. When ρs � REL INTRINSIC, concept s is a

relative spatial concept in an intrinsic coordinate system. When

ρs � REL EGOCENTRIC , concept s is a relative spatial concept

in an egocentric coordinate system. The location in the coordinate

system ρCL
n
is denoted as x′n, which is generated by the distribution

of the concept CL
n , as shown in (6).

x′n ~ N(μCL
n
,ΛCL

n
) (6)

where μCL
n
,ΛCL

n
denote the parameters of the distribution, N(·)

denotes a normal distribution, and CL
n denotes an index of a

spatial concept uttered in scene n. In the previous method, a

relative spatial concept was represented by an angle

distribution and a distance distribution. However, these

distributions cannot represent absolute spatial concepts. In

the proposed method, both relative and absolute spatial

concepts are represented as normal distributions to easily

analyze the results.

Location x′n is transformed into an absolute coordinate

system, as shown in (7).

xn �
⎧⎪⎪⎨⎪⎪⎩

x′n ρCL
n
� ABS

xOnπn + R(fO
nπn

)x′n ρCL
n
� REL INTRINSIC

xOnπn + R(fTr
nπn

)x′n ρCL
n
� REL EGOCENTRIC

(7)

where xOnπn denotes the location of the object, R(θ) denotes
the rotation matrix of angle θ, fO

nπn
denotes the direction of

the reference object, and fTr
nπn

denotes the direction from the

reference object to the trainer. Unlike (2), different

transformations are used depending on ρCL
n
. Parameters

μs,Λs are generated from their conjugate priors: a normal

distribution and Wishart distribution, respectively.

Word wni, which is the i - th word of word sequence wn, is

generated as shown in (8).

wni ~

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mult(wni|ϕL
CL
n
) (zLn � i)

Mult(wni|ϕO
CO
n
) (zOn � i and ρCL

n
≠ ABS)

Mult(wni| ψ) (otherwise)
. (8)

This shows that utterances representing relative spatial

concepts are assumed to have a location word and an object

word, and utterances representing absolute spatial concepts

are assumed to have a location word but no object word.

FIGURE 3
Graphical model of RASCAM. A new variable ρs is added.

TABLE 3 New variables of RASCAM.

μs Mean vector of spatial concepts

Λs Precision matrix of spatial concepts

ρs Coordinate system of spatial concepts

γρ Hyperparameter
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4.2 Parameter estimation

For parameter estimation, the difference between the

learning algorithm and ReSCAM+O is described. The new

parameter ρs is estimated using the M-H method in step (b)

similar to the other parameters in the concept learning

module. In ReSCAM+O, steps (a–d) are repeated, as

described in Section 3.3. However, steps (a), (c), and (d)

cannot be directly applied to the proposed method for

estimating the word sequences and language model.

Because it is possible to segment words to a certain extent

without using these improvements, step (b) alone is

performed using the word sequences obtained through

unsupervised word segmentation instead of repeating

steps (a–d).

5 Experiments

5.1 Conditions

To demonstrate the advantages of learning concepts while

selecting the coordinate system, we compared the learning results

obtained using the following five methods:

A) learning only in the absolute coordinate system,

B) learning only in the intrinsic coordinate system,

C) learning only in the egocentric coordinate system,

D) proposed method (λR0 � 0.01, λA0 � 0.01), and
E) proposed method (λR0 � 1.00, λA0 � 0.01).

Methods (B) and (C) are our previous methods

ReSCAM+O (Sagara et al., 2022) in which the

distributions of the spatial concepts are replaced by two-

dimensional normal distributions. Although the baseline can

be calculated using another method such as SpCoA that does

not estimate coordinate systems, applying the other method

to a task for which it was not designed would unreasonably

lower the values obtained in the evaluation. Therefore, in this

study, we evaluated the baseline performance by excluding

the estimation of the coordinate systems from the proposed

method.

A study on the spatial concept acquisition task for robots

(Taniguchi et al., 2020a), SIGVerse, (Inamura and Mizuchi,

2021) used an architecture that connects Unity and ROS. As

in their study, we used a virtual home environment2 in Unity.

The trainer and robot in the environment were controlled

using a keyboard. The robot can detect candidate reference

objects in the environment and recognize their directions. We

used 12 directed objects as candidate reference objects.

Among the objects, we used four as the reference objects.

We assumed that the object recognition had no errors. The

objects were classified into ten categories. We taught the

robot’s location in 104 scenes using spatial concepts2,3.

Figure 4A shows the locations of the robots taught by the

trainer. We taught four absolute spatial concepts, four

relative spatial concepts represented in an intrinsic

coordinate system, and two relative spatial concepts

expressed in an egocentric coordinate system. In this

experiment, to focus on whether spatial concepts can be

learned while selecting coordinate systems, we used the

correct word segmentation results of user utterances as an

input4. Therefore, learning was performed using only (b)

concept learning, as shown in Section 4.2. The experiment

was performed ten times by changing the initial values of the

parameters. The hyperparameter values were set as follows: μ0 �
(0.0, 0.0)T, ]0 � 3.0,V0 � I , αL � 1.0, αO � (1.0, . . . , 1.0)T,
βL � (0.1, . . . , 0.1)T, βO � (0.1, . . . , 0.1)T, βG � (0.1, . . . , 0.1)T,
γπn ~ (1.0, . . . , 1.0)T, γzn ~ (1.0, . . . , 1.0)T, γρ ~ (1.0, . . . , 1.0)T.

In addition, for the proposed method, experiments were

conducted by setting λ0, which indicates the distance between the

center of the distribution and origin of the coordinate system, to two

values. First, to prevent the relative and absolute spatial concepts from

being distinguished by using the distance from the origin of the

coordinate system, the hyperparameters for both the relative and

absolute spatial concepts λR0 , λ
A
0 were set to 0.01 in proposed method

(D). As the actual relative spatial concepts are rarely taught far away

from the reference object, in method (E), the hyperparameters λR0 , λ
A
0

were set to 1.00, 0.01, respectively. This facilitates distinction between

relative and absolute spatial concepts. For the other methods,

hyperparameters λR0 , λ
A
0 were set to 0.01 as in method (D). The

number of learning iterations was 20,000 and the value of the final

iteration was used as the result. To calculate the evaluation metric

WAR described in Section 5.2, we used the test data of the locations

in 20 scenes in which a chair’s location was moved, as shown in

Figure 4B.

5.2 Metrics

The following evaluation metrics are used to evaluate

whether each spatial concept is learned while distinguishing

the coordinate system, and whether the location and word

can be mutually estimated. CAR, RAR, and ARI evaluate the

results using the training data, whereas WAR evaluates the

results using test data.

2 https://github.com/a-taniguchi/SweetHome3D_rooms.

3 Word sequences were generated using the utterance patterns and
location words shown in a Supplementary Material.

4 The robot can segment spoken utterances into word sequences to a
certain degree using unsupervised word segmentation even if there
are no words in language model the robot has. We show an
experiment with spoken user utterances in Appendix A.
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FIGURE 4
Locations taught by the trainer and spatial concepts learned in experiments with utterances. The dots represent the locations taught by the
trainer. The colors of the word boxes represent the coordinate systems: absolute (white), intrinsic (blue), egocentric (red). (A) Training data. The red
circles represent the candidate reference objects used for teaching. The orange circles represent the candidate reference objects not used for
teaching. The gray circles represent nondirectional objects, which are not candidate reference objects. The arrows represent the directions of
the objects. (B) Test data. (C–E) Result D-best, Result D-typical, and Result E. The is not displayed for visibility of the spatial concepts. The ellipses
represent the normal distribution of the absolute spatial concepts and relative spatial concepts where a chair at the bottom is used as a reference
object. The ellipses do not represent the boundaries of the concepts. The locations are associated with concepts that have the same color as the dot.
The spatial concepts in the egocentric coordinate system are drawn using the trainer’s location.
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• Coordinate system accuracy rate (CAR) Percentage of

scenes where the coordinate system ρCL
n
of the selected

spatial concept CL
n is the correct value for the training

data. We evaluated whether the coordinate system could

be estimated accurately.

• Reference object accuracy rate (RAR)Percentage of scenes

in which the reference object πn could be correctly

estimated among the scenes that were correctly

estimated as the relative spatial concept for the

training data.

• Estimation accuracy rate of the spatial concepts (ARI). For

the training data, the estimation accuracy of the index of the

spatial concept CL
n . The adjusted Rand index (ARI) (Hubert

and Arabie, 1985), which represents the similarity between

two data clustering, evaluates the similarity between the

correct and estimated values. The ARI was 1.0, when the

estimated values were exactly the same as the correct values.

• Word Accuracy Rate (WAR)Percentage at which the

location word w estimated from the test data of

locations xtestn matches the correct answer using the

learned parameters. This metric assumes that the task

of the robot is to answer the name of the requested

location. This metric evaluates whether the spatial

concepts and word distributions are learned correctly.

The robot may have several candidate words to answer

by changing the coordinate system and reference objects.

The preferred coordinate system and reference objects

are unclear. However, as the focus was on learning the

concepts in each coordinate system, this problem was

not addressed in this study. Using coordinate system ρtest

and reference object πtest, we evaluated whether the robot

could estimate the word correctly. The location word w

was estimated using the following equation:

w � argmax
w

p(w|xtestn ,Θ, πtest, ρtest)
� argmax

w
∑

s: ρs�ρtest
p(w|ϕL

s )p(CL
n � s|αL)p(xtestn |μ,Λ, πn

� πtest, CL
n � s, ρs) (9)

5.3 Results and discussion

In this section, we discuss whether these methods can learn

spatial concepts in different coordinate systems. Table 4 lists the

averages of the evaluation values.

5.3.1 Evaluation of the learning results of the
proposed method

We evaluated the results of proposed methods D and E. First,

we considered the best learning result example (result D-best) of

proposed method (D), as shown in Figure 4C. The figure shows

that the distributions of the relative as well as absolute spatial

concepts are successfully learned. It also shows that the

coordinate systems and the relationship between the concepts

and words are correctly estimated. In result D-best, the

evaluation values are CAR = 0.990, RAR = 1.000, ARI =

0.976, and WAR = 1.000. This result shows that the location

data are clustered ideally if the reference objects and coordinate

systems are correctly estimated. In contrast, we focus on the

typical learning result (called Result D-typical) of proposed

method (D) shown in Figure 4D. In Result D-typical, the

evaluation values are close to the average: CAR = 0.903,

RAR = 0.819, ARI = 0.855, and WAR = 0.800. The figure

shows that the coordinate systems and relationships between

concepts and words of the learned concepts are estimated

correctly. However, concept “oku” (behind) was not learned.

In addition, concept “ushiro” (back) was erroneously learned as a

distribution far in front of a chair. This is caused by a

combination of the following two conditions: i) objects in the

same category are placed facing each other and ii) when teaching

“ushiro,” the reference objects are the same (chairs). In case i),

clustering is also possible by learning as a distribution far in front

of the reference object using the intrinsic coordinate system. In

case ii), even if another chair is selected as the reference object,

the likelihood does not decline because the object categories are

the same. The learned concept “ushiro” can be used only when

the conditions do not change.WAR is low because the position of

the chair is changed. Concept “ushiro” is more difficult to learn

than the other concepts in a home environment because most

furniture are placed near the wall and face inward. It can be

correctly learned by increasing the variation in the teachings, e.g.,

using other reference objects or moving reference objects. In

another learning result of proposed method (D), the learning

accuracy is reduced owing to the learning of relative spatial

concepts that are extremely far from the reference object. The

evaluation values are CAR = 0.452, RAR = 0.000, ARI = 0.353,

andWAR = 0.400. RAR is below 0.800 in only one out of 10 cases.

Consequently, although proposedmethod (D) can learn concepts

to a certain extent, it has a problem with the learning stability.

For proposed method (E), setting λR0 � 1.00 reduces the

learning of such erroneous concepts and improves the

performance. The learning results (result E) are shown in

Figure 4E. For visibility, four concepts, in which only one

location data point is classified, are not displayed in the

figure. These concepts do not affect WAR because p(CL
n �

s|αL) of the concept in Eq. 9 is small. Except these concepts

and concept “ushiro,” the spatial concepts are learned correctly.

The evaluation values are CAR = 0.952, RAR = 0.889, ARI =

0.917, andWAR = 0.900. Although RAR is the lowest in 10 trials,

it is higher than the average of proposed method (D). This shows

that proposed method (E) can learn spatial concepts stably when

the reference objects are correctly estimated by setting λR0 and λA0
to ensure that the relative and absolute spatial concepts have

different properties.
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5.3.2 Verification of the effectiveness of
coordinate system selection

For RAR, ARI, andWAR, shown in Table 4,Wilcoxon rank sum

tests5 were performed on the results of proposed method (D) and

methods (A, B, C), respectively. For both ARI and WAR, proposed

method (D) generates significantly higher evaluation values. On the

other hand, proposedmethod (D) generates significantly higher RAR

than method (B), and significantly lower RAR than method (C). We

discuss the results of eachmethod in the following order.Method (A)

has a lowARI because the learning of the relative spatial concept fails.

The position for teaching the relative spatial concept was learned as

an absolute spatial concept by estimating an object word as a

location word. In addition, even if the concepts and word

distributions are correctly learned using only the absolute

coordinate system, the versatility of the learned concept is low

for the following reasons. First, they cannot respond to the

changes in the location or direction of an object. In addition,

they cannot respond to utterances that are newly encountered

combinations of reference objects and relative spatial

concepts.

Next, using method (B), the absolute spatial concepts were

learned as relative spatial concepts by selecting a specific reference

object. Using the learned distribution, if the reference object can be

estimated correctly, the word and position can bemutually estimated.

However, with this method, the absolute spatial concepts are not

correctly expressed when the position or direction of the object

changes. Moreover, because the teaching of the concept of the

egocentric coordinate system depends on the trainer’s location,

clustering cannot be performed correctly by this method, which

does not consider the trainer’s location. Consequently, the WAR of

this method is lower than that of the proposed method, despite the

high RAR value.

Furthermore, using method (C), the RAR is higher than

method (D) because method (C) does not use the intrinsic

coordinate system, which causes erroneous learning results for

concept “ushiro” (see section 5.3.1). However, the absolute

spatial concepts are divided into several distributions because

the relative location of the absolute spatial concept changes

depending on the trainer’s location, unlike the case of the

intrinsic coordinate system. As a result, method (C) generates

low ARI and WAR.

The above discussion shows that the proposed method,

which selects the coordinate systems, is excellent in learning

from the teaching of concepts in different coordinate systems.

The discussion implies that concepts cannot be learned

without selecting coordinate systems. In addition, it is shown that the proposed method significantly outperforms

the other methods.

6 Conclusion

This study proposed a method for learning relative and

absolute spatial concepts while appropriately selecting the

TABLE 4 Evaluation results.

Methods CAR RAR ARI WAR

(A) learning only in the absolute sys N/A N/A 0.283a 0.360a

(B) learning only in the intrinsic sys N/A 0.563a 0.426a 0.230a

(C) learning only in the egocentric sys N/A 0.925b 0.422a 0.200a

(D) proposed method (λR0 � 0.01) 0.883 0.782 0.832 0.800

(E) proposed method (λR0 � 1.00) 0.964 0.984 0.945 0.960

aSignificantly lower at 0.05 level in comparison with the method (D).
bSignificantly higher at 0.05 level in comparison with the method (D).

The bold values indicate the highest values.

FIGURE 5
Locations taught by the trainer and spatial concepts learned in
experiments with utterances. This is an example of the learning results
usingproposedmethod (D)withoutwordboundaries. Theword “ushiro”
was recognized as the wrong phoneme sequence “oshiro.”

5 We performed Shapiro-Wilk tests for testing the normality of RAR, ARI,
and WAR of the proposed method. The null hypothesis that the values
were from normal distributions was rejected for RAR (p � 8.72 × 10−6),
ARI (p � 1.22 × 10−4), and WAR (p � 1.22 × 10−4). Therefore, we
performed Wilcoxon rank sum tests instead of Welch’s t-tests.
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coordinate systems. In the proposed method, a latent variable

that represented three types of coordinate systems was adopted.

The coordinate system was estimated simultaneously with the

spatial concept. Experiments were conducted using data that

taught the spatial concepts expressed in the intrinsic, egocentric,

and absolute coordinate systems. The experimental results

showed that the proposed method could learn spatial concepts

while selecting the coordinate system. In addition, it was

demonstrated that the estimation accuracy of the spatial

concept was improved by selecting the coordinate system.

This enables the robot to learn the spatial concept using more

natural utterances that do not specify a coordinate system.

Furthermore, the proposed method demonstrated that it could

automatically extract words representing concepts from

unlabeled word sequences. We believe that this method can

be extended to a more practical method that can learn

concepts using utterances without word boundaries. The work

can be beneficial for service robots to flexibly understand a new

environment through the interactions with humans.

We intend to explore a method that improves the learning

accuracy through modeling based on human recognition. First,

we plan to adopt other coordinate systems. In this study, three

coordinate systems were selected. However, in reality, humans

may use other coordinate systems (Herskovits, 1986). Future

work will involve accurate estimation of the coordinate system

using a model closer to human recognition. Further, we plan to

change the distribution of the spatial concepts. In the proposed

method, normal distributions were used to express relative and

absolute spatial concepts for facilitating analysis. However, in

reality, most relative spatial concepts are related to the

direction, such as “right” and “behind”, or the distance, such

as “close to .”. Concepts can be learned more accurately by

expressing the distribution of the distance and angle. In

addition, we plan to consider the size and shape of the

object. In this study, we used the center point of the

reference objects. However, when expressing a relative

spatial concept using a large reference object, the represented

range is wide. Therefore, learning will fail if reference objects of

extremely different sizes are used. The same problem occurs

when a long-or complex-shaped object is used. It is a future task

to be able to learn relative spatial concepts considering the size

and shape of the object. Furthermore, we plan to use extra-geometric

relations to learn spatial concepts in addition to geometric relations.

From the perspective of cognitive psychology, Coventry and Garrod

argue that comprehension and production of spatial prepositions

involves two types of constraints: geometric (spatial) constraints, and

extra-geometric constraints (Coventry and Garrod, 2004). The

teaching concepts in our task setting are affected by extra-

geometric relations, e.g., object functions. It is a future task to

improve the learning accuracy considering extra-geometric

relations.

For an actual robot to learn a spatial concept using our

method, it is necessary to eliminate the constraints further. For

example, it is desirable to obtain the location and direction of an

object from its environment. In particular, the direction of an

object is highly ambiguous and difficult to learn. The object’s

face, which defines the direction, can be estimated through

supervised learning using the image and shape features of the

object. In addition, it may be possible to learn the direction by

simultaneous unsupervised learning of the object’s direction and

spatial concepts, as well as those of the reference objects and

coordinate systems.

TABLE 5 Examples of the word segmentation results. The green and red words denote an object word and a location word, respectively.

Translation to English Word sequences Segmentation results

Here is in front of the bed sokowa/beqdo/no/mae sokowa/beqto/no/mae

You are left of the chair isu/no/hidari/niimasu isuno/hidari/ni/ma/su

You are in the entrance geNkaN/niirune gye/NkaNgiru/ne

Here is the bedroom sokowa/shiNshitsu/dayo sokowa/shiNshitsu/dayo

TABLE 6 Evaluation results using the proposed method.

Condition Method Results

Word
boundaries are obtained

CAR RAR ARI PAR

✓ (D) λR0 � 0.01 0.883 0.782 0.832 0.818

✓ (E) λR0 � 1.00 0.964 0.984 0.945 0.964

(D) λR0 � 0.01 0.805 0.757 0.698 0.748

(E) λR0 � 1.00 0.787 0.963 0.723 0.773
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Appendix A: Learning concepts using
user utterances

We verified whether the proposed method could learn

concepts using user utterances in which word boundaries

were not obtained.

A.1 Conditions

We used the utterances of the word sequences used in

Section 5 spoken by a Japanese speaker. Julius 4.5 (Lee et al.,

2001; Lee and Kawahara, 2009) was used for speech

recognition. Only Japanese syllables were registered in the

initial language model. Latticelm v0.4 was used for step (a)

described in Section 4.2. The word segmentation results were

obtained by skipping steps (b) and (c) and repeating steps (a)

and (d) thrice. Examples of the obtained word sequences are

shown in Table 5. There are segmentation errors such as “isu/

no” becoming “isuno” and “geNkaN/niirune” becoming “gye/

NkaNgiru/ne.” In addition, there are phoneme errors such as

“beqdo” becoming “beqto.” In contrast, some are recognized

as “beqdo” correctly. Thus, there are cases where one word is

segmented into multiple types of words. To tolerate these

phoneme recognition errors, a metric PAR defined as the

average value of the phoneme accuracy rate of each utterance

is used instead of metric WAR. We compared the result of the

proposed method (D, E) when word boundaries were obtained

(experiment in Section 5) and not obtained.

A.2 Results

The experimental results are listed in Table 6. As expected,

when either method was used, the result without word

boundaries was lower than the result with word boundaries.

The failure to learn word distributions owing to word

segmentation errors causes inappropriate clustering of the

locations. Figure 5 shows a learning example by method (D)

whose evaluation values are close to the average: CAR = 0.731,

RAR = 0.806, ARI = 0.750, PAR = 0.797. Some concepts are

incorrectly learned. Concept “hidari” is erroneously learned as an

egocentric coordinate system rather than an intrinsic coordinate

system. In addition, concept “oku” is not learned. This is due to

incorrect word segmentation because the word “oku” appears

relatively infrequently. Word “oku” is divided into three types,

“oku,” “nooku,” and “mooku.” This shows that the relationship

between the concept and word is not learned correctly. The

learning accuracy may be improved by increasing the variations

in teaching. In addition, this can be solved by improving the word

segmentation using the distribution of the spatial concept, such

as steps (c) and (d) of ReSCAM+O. As we focus on learning the

spatial concepts by selecting the coordinate system in this study,

such an improvement is needs to be undertaken in future.
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