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Abstract

The nuclear receptor Liver X Receptor (LXR) is a ligand-activated transcription factor that

has been implicated in control of chronic inflammation by downregulating pro-inflammatory

T cell responses. An impaired function of regulatory T cells, a subset of CD4+ T cells with a

crucial role in maintaining lymphocytes homeostasis and immune regulation, is frequently

observed in chronic inflammatory diseases. We observed that pharmacological activation of

LXR in T cells not only resulted in a thorough suppression of Th1 and Th17 polarization in

vitro, but also significantly induced regulatory T cells (Treg) cell differentiation in a receptor-

specific fashion. In line with this, systemic LXR activation by oral treatment of mice with the

LXR agonist GW3965 induced gut-associated regulatory T cells in vivo. Importantly, such

LXR-activated Tregs had a higher suppressive capacity in functional in vitro coculture

assays with effector T cells. Our data thus point towards a dual role of LXR-mediated control

of inflammation by suppression of pro-inflammatory T cells and reciprocal induction of regu-

latory T cells.

Introduction

Regulatory T cells (Treg) are a subset of CD4+ T cells that play a key role in prevention of

autoimmune diseases, maintainance of immune homeostasis and modulation of immune

responses during infection [1]. Forkhead box P3 (FoxP3), the master transcription factor of

Treg, is crucial for development of suppressive function [2, 3].

Interestingly in a variety of autoimmune diseases, including both organ-specific (multiple

sclerosis, type 1 diabetes) and systemic (rheumatoid arthritis) diseases a loss of Treg function-

ality has been observed, while Treg numbers were unaffected or even increased [4–6].

In vivo, Treg are comprised of either thymus-derived Treg (tTreg, also natural Treg (nTreg))

or differentiate from peripheral naïve CD4+ T cells (induced Treg–iTreg) [7]. Besides express-

ing FoxP3, Treg are characterized by constitutive CD25 expression and low / absent CD127

expression [8–11]. CD25 is part of a high-affinity IL-2 receptor (IL-2R) and is essential for gen-

eration, expansion and suppressive capacity of Treg [12, 13]. FoxP3 induces high expression of

CD25 as well as expression of CTLA-4, a Treg-associated surface molecule [14]. CTLA-4 is also

PLOS ONE | https://doi.org/10.1371/journal.pone.0184985 September 19, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Herold M, Breuer J, Hucke S, Knolle P,

Schwab N, Wiendl H, et al. (2017) Liver X receptor

activation promotes differentiation of regulatory T

cells. PLoS ONE 12(9): e0184985. https://doi.org/

10.1371/journal.pone.0184985
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implicated in the suppressive capacity of Treg and mediates cell contact-dependent downregu-

lation of the costimulatory molecules CD80 and CD86 on APCs [10, 14, 15], which results in

tolerogenized dendritic cells (DCs) that further augment Treg induction [16, 17].

Induced Treg develop extrathymically from conventional CD4+ cells under inflammatory

and non-inflammatory conditions [18]. Similar to nTreg, iTreg express FoxP3, CD25, and

CTLA-4, and exhibit a potent suppressive capacity as their main feature [19]. Recently Helios,

a member of the Ikaros transcription factor family, was identified as a potential marker to dis-

criminate between nTreg and iTreg, as Helios is upregulated in nTreg compared to iTreg [20].

Although there is evidence, that Helios might be induced during T cell activation and prolifer-

ation in both subsets, Helios remains the best marker so far to distinguish nTreg from iTreg

and allows discrimination in both humans and mice [21–24].

The liver X receptor (LXR) is a ligand-activated transcription factor that belongs to the

group of nuclear receptors (NR) and exists in two isoforms: The first is LXRα, which is

expressed specifically in liver, intestine, adipose tissue, lung and macrophages. The second is

LXRβ, which is ubiquitously expressed [25–27]. Both isoforms are expressed by CD4+ T cells

and macrophages [28, 29]. Ligand-based activation of LXRs leads to the formation of a hetero-

dimer with retinoid X receptor (RXR), which in turn allows the regulation of genes with a cen-

tral role in the modulation of cholesterol homeostasis and fatty acid metabolism [30]. Besides

physiological ligands, such as oxysterols and intermediates of the biosynthetic cholesterol

pathway, potent synthetic ligands are available including T0901317 and GW3965 [31].

Pharmacological LXR activation has been shown to be efficient in preclinical models of

inflammation including atherosclerosis [32], contact dermatitis [33], rheumatoid arthritis

[34], multiple sclerosis [35] and colitis [36]. LXR-deficient mice show a higher susceptibility

and aggravated disease progression in the colitis model, which is linked to increased pro-

inflammatory cytokine and chemokine expression [36]. In turn, pharmacological receptor

activation ameliorated disease progression and increased survival. In a mouse model of multi-

ple sclerosis pharmacological activation of LXR resulted in an ameliorative effect linked to

decreased effector T cell responses and inhibition of IL-23 receptor and IL-17 expression [35,

37, 38]. Furthermore mice deficient for LXR were reported to develop an aggravated disease.

Taken together, these studies suggest that LXR is a strong negative regulator of pro-

inflammatory processes [34–36] with a direct relevance in pro-inflammatory T cells.

Interestingly, it is known that LXR-related receptor RXR regulates pro-inflammatory T

cell differentiation while reciprocally inducing Treg differentiation when heterodimeriz-

ing with the retinoid acid receptor (RAR). Moreover, dietary changes in cholesterol

uptake of chronic hepatitis C patients, known for increased levels of Th17 cells, were

reported to result in increased expression of LXR and LXR-target genes while improving

the Treg/Th17 balance in peripheral immune cells. This raised the question whether phar-

macological LXR activation in T cells might also promote formation of functional Treg,

thereby further supporting control of inflammation. Hence, we addressed the role of LXR-

activation in Treg.

Results

LXR ligand GW3965 controls pro-inflammatory T cell polarization while

reciprocally enhancing regulatory T cell differentiation

To assess whether T cell differentiation is modulated by LXR activation, we in vitro differen-

tiated CD4+ T cells with polarizing cytokines in the presence of TCR activation into either

regulatory T cells (Treg) or pro-inflammatory Th1 and Th17 cells. In the presence of LXR

activation using the pharmacological ligand GW3965, we observed significantly enhanced
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differentiation into FoxP3+ Tregs (Fig 1A), whereas, as expected from previously published

data, Th1 and Th17 polarization was substantially suppressed [35]. Of note, the secretion of

both IFNγ and IL-17A was significantly reduced under Treg polarizing conditions (S1A Fig),

while IL-10, IL-4, GM-CSF and IL-6 secretion remain unaffected (S1B Fig). We next sought

to clarify whether GW3965-dependent promotion of Treg differentiation is specific for LXR.

To this end, LXRα/βKO T cells where exposed to Treg-polarizing conditions in the presence of

LXR agonist GW3965. Importantly, enhanced Treg differentiation was completely abrogated

in LXRα/β-deficient T cells (Fig 1B), demonstrating that effects of GW3965 were indeed

receptor-specific. Furthermore, we addressed the capacity of other commonly used LXR ago-

nists, i.e. synthetic ligand T0901317 and endogenous LXR ligand 22(R)-OHC, to modulate T

cell differentiation. Both ligands elicited a comparable suppressive effect on Th17 cells (Fig

1C, left) and inductive effect on Treg (Fig 1C, right). Moreover, GW3965-based LXR activa-

tion acted in a dose-dependent manner in enhancement of Treg differentiation (Fig 1D, left).
Interestingly, LXR-mediated Treg induction was most prominent in the presence of lower

TGFβ concentrations (Fig 1D, right) suggesting that LXR might promote Treg induction espe-

cially under suboptimal Treg conditions.

Taken together, LXR activation not only restricts pro-inflammatory T cell generation, i.e.

Th17 and Th1, but also reciprocally enhances Treg differentiation.

LXR-activation in vivo induces gut-associated regulatory T cells with

enhanced suppressive capacity

We next asked whether LXR activation induces Treg also in vivo, which could potentially help

to regulation of enhanced effector T cell responses. In vivo, Treg play a key role in the mainte-

nance of gut homeostasis as both, nTreg and iTreg subpopulations, contribute to colitis sup-

pression [20]. We therefore aimed to assess the impact of systemic LXR activation on gut-

associated Treg. To this end, we treated wildtype mice with GW3965 by daily oral gavage and

analyzed the frequency of Treg after seven days of treatment in gut-associated mesenteric

lymph nodes (Mes. LN) as well as gut-associated lymphoid structures, i.e. Peyer’s Patches and

non-draining inguinal LN (Ing. LN). We observed a significant increase in the frequency of

CD4+CD25+FoxP3+ Treg in both, mesenteric LN (Mes. LN) as well as in Payer’s patches (Fig

2A) upon LXR activation, whereas no alteration of Treg frequency was observed in inguinal

LN (Fig 2A, Ing. LN). Flow-cytometric analysis of Helios expression in Treg of mesenteric LN

and Peyer’s Patches revealed no differences in Helios expression, indicating that LXR activa-

tion does not promote recruitment of thymic Treg to gut-associated lymphoid tissue, but

instead results in induction of naïve CD4+ T cells to differentiate into Treg (Fig 2B). Further-

more, it was of interest to evaluate the potential suppressive character of LXR-induced gut-

associated Treg. We therefore investigated CTLA-4 expression on Treg in mesenteric LN and

Peyer’s Patches (Fig 2C) upon daily oral treatment of mice with the LXR ligand GW3965.

Interestingly, we observed an increase in CTLA-4 expression on Treg in mesenteric LN,

whereas no alteration in CTLA-4 expression was observed on Peyer’s Patches-derived Treg

(Fig 2C). This suggests that, at least in mesenteric LN, Treg not only increase in frequency but

also in their suppressive function. Taken together, also in vivo LXR activation results in induc-

tion of Treg, which is associated with an increase in CTLA-4 expression.

We next wanted to assess whether LXR activation additionally modulates the suppressive

capacity of Treg. Accordingly, we analyzed whether LXR-induced Treg display an increased

capacity to restrict proliferation of activated CD4+ T cells and made use of a classical in vitro
suppression assay setup. Here, isolated splenic Treg were treated with GW3965 for LXR activa-

tion for 24h or were left untreated, before setup of a coculture with effector T cells in the
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presence or absence of the agonist. We observed that LXR-activated Treg exhibited signifi-

cantly enhanced suppressive properties when compared to untreated control Treg (Fig 2D)

and induced a significant reduction of IFNγ and IL-17A secretion (S1C Fig), while IL-10, IL-4,

GM-CSF and IL-6 secretion remain unaffected (S1D Fig.). This demonstrates that LXR-activa-

tion not only results in an increase in Treg numbers, but more importantly functionally alters

Treg, which then display enhanced suppressive capacity.

Discussion

In the current study, we investigated the influence of pharmacological LXR activation on the

polarization of CD4+ T cells. We here report that LXR suppresses pro-inflammatory T cell dif-

ferentiation while reciprocally promoting Treg differentiation in vitro and inducing gut-associ-

ated Treg in vivo. Furthermore, LXR-activated Treg not only increase in numbers but also

exhibit enhanced suppressive capacity. Of interest, LXR activation was especially effective in

Treg induction under suboptimal TGFβ concentrations.

Irrespective of their subtype, inflammatory effector T cells are controlled by regulatory

immune cells, such as Treg. The pivotal role of Treg has been revealed in various animal

models for inflammatory diseases [31–33] and mutations in the FoxP3 gene lead to the

development of the fatal autoimmune disorder immunodysregulation polyendocrinopa-

thy enteropathy X-linked (IPEX) syndrome (or scurfy phenotype in mice), that results in

systemic autoimmunity [39–41]. Also, the conditional depletion of Treg in adult mice

results in the development of autoimmunity [42], further emphasizing their importance

in immune homeostasis.

NRs have been shown to be involved in the homeostasis of effector T cell and Treg balance,

and genetic deletion of NRs often results in dysregulated immune responses. For example,

deletion of either PPARγ [43], PPARδ [44], or LXRα/β [35] results in aggravated disease pro-

gression in experimental autoimmune encephalomyelitis (EAE), the animal model of Multiple

Sclerosis. Aggravated disease is characterized by enhanced frequencies of pro-inflammatory T

cell subsets, whereas ligand-mediated activation ameliorates clinical signs and restricts Th1

and Th17 effector responses.

Interestingly, ligand-based activation of the NR aryl hydrocarbon receptor (AHR) induces

Treg that suppress CNS autoimmunity in EAE by a TGF-β1-dependent mechanism [45]. Fur-

thermore, RXR activation reciprocally induces Treg and suppresses Th17 differentiation [46]

and transferred RAR-activated Treg are more potent suppressors in an acute, small intestinal

inflammation model compared with control Treg [47]. In spite of the apparent association

between LXR and RXR, so far only suppressive effects on pro-inflammatory T cells have been

reported for LXR. We here observed strong induction of Treg differentiation upon pharmaco-

logical LXR activation in vitro, while reciprocally Th1 and Th17 differentiation was suppressed.

LXR-mediated Treg induction was most prominent under suboptimal TGFβ concentrations,

which indicates that this mechanism might be especially relevant under chronic inflammatory

conditions with potentially disturbed Treg formation [48, 49].

Importantly, we could show that pharmacological LXR activation in vivo resulted in a clear

induction of Treg in gut-associated lymphoid tissue, i.e. Peyer’s patches and mesenteric LN,

Fig 1. Pharmaceutical LXR activation controls pro-inflammatory Th1 and Th17 polarization while reciprocally enhancing

regulatory T cell differentiation. (a-d) Purified CD4+ T cells from WT mice were subjected to in vitro Th17-, Th1- and Treg-

differentiation in the absence (w/o) or presence of LXR agonists GW3965 (3μM), T0901317 (2μM) or 22(R)-OHC (20μM) for 72 hours

and subsequently stained intracellularly for IL-17A, IFNγ, and FoxP3 expression. The percentage of positive cells was determined by

flow cytometry with triplicates measured in each experiment. Data shows pooled results of three individual experiments. Graphs show

percentage ± SEM. * p<0.05 **p<0.01 ***p<0.001.

https://doi.org/10.1371/journal.pone.0184985.g001
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Fig 2. LXR-activation induces gut-associated regulatory T cells in vivo with enhanced suppressive capacity. (a) FoxP3

expression of CD4+ T cells was assessed by flow cytometry. T cells were isolated from inguinal LN (Ing. LN), mesenteric LN (Mes.

LN) and peyer’s patches (PP) of wildtype mice treated orally for seven days with DMSO (vehicle) or GW3965 (n = 16). Treg
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which was not observed in unrelated lymphatic tissue. Moreover, the increase in Treg frequen-

cies was not due to recruitment of thymic-derived Treg, as the frequency of Helios positive

Treg remained unchanged under GW3965-treatment [24]. These findings indicate that LXR

activation via oral application of a LXR agonist might be especially relevant for control of intes-

tinal autoimmune responses, such as in colitis. However, in light of the increasingly acknowl-

edged role of intestinal immune responses for control of systemic autoimmunity, this effect

might also be relevant in other autoimmune diseases such as Multiple sclerosis, arthritis or

type 1 diabetes [50–53]. Furthermore, CTLA-4 expression was induced on Treg in mice orally

treated with GW3965. This allows the hypothesis that, besides locally increased differentiation

of Treg, LXR activation also enhances the suppressive capacity of gut-associated Treg. This

hypothesis is supported by our finding that LXR-activation enhances the suppressive capacity

of splenic Treg in vitro. After an exposition time of 96h, LXR activation was capable to boost

the Treg-mediated suppression of effector T cells, thus indicating that LXR is not only involved

in the generation of inducible Tregs but also enhances the suppressive capacity of existing

Treg.

The possibility to differentially control Treg with anti-inflammatory properties and self-

reactive conventional effector T cells by activation of NR is a potent basis to restore imbalances

of immune regulation, e.g. during T cell-mediated autoimmune diseases. However, despite

these promising results, NR are known to have strong metabolic properties, which limits the

dosage to modulate pro- and anti-inflammatory activity. With regard to clinical use of LXR

ligands, it is of interest to note, that the tolerability of pharmaceutical LXR activation is cur-

rently addressed in a clinical trial (NCT02922764) targeting LXR activation in the context of

cancer treatment. These data will further reveal the potential of LXR ligands in treatment of

human diseases. In addition, our findings further strengthen the therapeutic potential of LXR

to ameliorate T cell-mediated chronic inflammatory diseases.

Materials and methods

Mice

Mice were maintained under specific pathogen–free conditions at the animal facility of the Uni-

versity of Münster (ZTE, Münster, Germany) or were purchased from either Charles River Lab-

oratories (Sulzfeld, Germany) or from Harlan Laboratories (Horst, Netherlands). All animal

experiments were performed according to the guidelines of the animal ethics committee and

were approved by the governmental authorities of Nordrhein-Westfalen, Germany. LXRα/βKO

mice were generated by mating LXRαKO [54] and LXRβKO [26] mice, both acquired from The

Jackson Laboratory (USA).

Nuclear receptor activation

All NR ligands were reconstituted and stored according to the supplier’s instructions. Cell cul-

ture assays were carried out applying 2μM T0901317 (Tocris), 3μM GW3965 (Tocris) or

2.5μM 22(R)-OHC (Sigma-Aldrich). Mice were orally administered 20 mg/kg body weight

population (CD4+, FoxP3+) from the gut-associated tissue (mes. LN, PP) was further analyzed for expression of (b) Helios and (c)

CTLA-4 (n = 10). (d) Murine splenic Treg, which were incubated with DMSO or GW3965, were functionally characterized in a

suppression assay. Suppression assays were performed by coculturing Treg (Treg; CD4+CD25+) with allogenic responder T cells

(Tresp; CD4+CD25-) in a 2:1 ratio in the presence of anti-CD3/CD28 beads (cell to bead ratio = 30:1) and GW3965 (1.5 μM) or

vehicle control (DMSO), respectively. Proliferation was assessed by flow cytometry (n = 7) and suppression was calculated and is

displayed as % suppression (as described in chapter 4.6). Graphs show percentage ± SEM. *p<0.05 **p<0.01.

https://doi.org/10.1371/journal.pone.0184985.g002
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GW3965 (Tocris) prepared in 0.5% carboxymethylcellulose (CMC) or vehicle only (DMSO in

0.5% CMC) by daily oral gavage.

Isolation of CD4+ T cells

Splenic CD4+ T cells were isolated by immunomagnetic separation using MACS microbeads

(Miltenyi Biotec) according to the manufacturer’s instructions.

Isolation of LN and Peyer’s Patches lymphocytes

LN and individual PPs were carefully excised, washed and grinded through a metal cell

strainer. PPs were incubated for 15 min in Spleen Dissociation Medium (Miltenyi Biotech) at

37˚C while shaking at 250 rpm. Both LN and PPs were subsequently grinded through a 40 μm

nylon mesh cell strainer and washed twice.

Murine Th cell differentiation

Purified CD4+ cells were stimulated with 4 μg/ml plate-bound anti-CD3 (eBioscience, Clone:

145-2C11) and 1 μg/ml soluble anti-CD28 (BD, Clone: 37.51;). For Th17 differentiation, cells

were cultured in the presence of 5 ng/ml recombinant human TGFβ (R&D Systems), 20 ng/ml

murine IL-6 (eBioscience), 10 μg/ml anti-IFNγ (eBioscience, Clone: XMG1.2), and 10 μg/ml

anti-IL-4 (eBioscience, Clone 11B11). For Th1 differentiation, cells were cultured for up to 7 d

with 10 ng/ml IL-12 (PeproTech) and 10 μg/ml anti-IL-4. For Treg induction purified mouse

CD4+ T cells were stimulated with 1 ng/ml rhTGF-β for 72 h if not indicated differently. Cells

were restimulated and intracellularly stained for flow cytometric analysis.

Suppression assays

Suppression assays were performed as previously described [55]. Briefly, splenic CD4+CD25

+ Treg and CD4+CD25- responder T cells (Tresp) of C57BL/6 mice were isolated by MACS

(Miltenyi Biotec, Bergisch Gladbach, Germany) or by nylon wool enrichment, respectively.

Purified Tresp cells were labeled with 2.5 μM Cell Proliferation Dye eFluor 670 (eBioscience,

Frankfurt, Germany). Labeled Tresp cells (0.5 × 105 cells) were cultured alone or together with

CD4+CD25+ Treg cells (mixed at a 2:1 ratio) in the presence of anti-CD3/CD28 beads (cell to

bead ratio 30:1; Dynal Biotech, Hamburg, Germany) and 1.5 μM GW3965 or vehicle control

(DMSO), respectively. Flow cytometric analysis of proliferation was performed after 96 hours

of coculture. Experiments were performed in triplicates. Percent suppression was calculated

using the following formula: ((proliferation of TResp alone–proliferation of TResp cells cultured

with Treg)/proliferation of TResp alone) x 100.

Flow cytometry and antibodies

For intracellular staining, T cells were restimulated with 5 ng/ml PMA (Cayman Chemical)

and 200 ng/ml ionomycin (Cayman Chemical) for 4 h in the presence of GolgiPlug (BD Phar-

mingen). Subsequently, surface staining was performed at 4˚C for 30 min. Cells were fixed and

permeabilized using Cytofix/Cytoperm plus Fixation/Permeabilization Kit (BD Pharmingen).

For analysis of intranuclear markers, cells were fixed and stained using the FoxP3 intranuclear

staining kit (eBioscience), again incubating cells at 4˚C for 30 min both during fixation and

intranuclear staining. Antibodies are summarized in Table 1. Analysis was performed using a

Gallios Flow Cytometer (Beckman Coulter) and results were analyzed with FlowJo software

(Tree Star).
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Cytokine detection

Cytokines in cell culture supernatants were detected using Enzyme-linked Immunosorbent

Assay (ELISA) Ready-SET-Go!1 (eBioscience) and Luminex1 Screening Assay (R&D

systems) according to the manufacturer’s instructions. Analysis of Luminex1 assay was

performed on a Bio-Plex1 MAGPIX™ Multiplex Reader (Bio-Rad) according to the manu-

facturer’s instructions.

Statistical analysis

All results are presented as the mean±SEM. We performed statistical analyses using Student’s

t-test for normally distributed data or Mann-Whitney test for non-normally distributed data

sets. P< 0.05 (�) was considered statistically significant; p< 0.01 (��) and p< 0.001 (���)

highly significant.

Conclusions

We could demonstrate that LXR activation reduces effector T cell responses (Th1 and Th17)

while concomitantly enhancing Treg differentiation. Importantly, LXR activation not only

resulted in increased numbers of Treg but also promoted their capacity to suppress effector T

cell proliferation. These data allow to speculate on the potential of therapeutically targeting

LXR in T cells and Treg, respectively, to ameliorate T cell-mediated chronic inflammatory

diseases.

Supporting information

S1 Fig. GW3965 reduces proinflammatory cytokine production during regulatory T cell

differentiation and suppression assays. (a+b) Purified CD4+ T cells from WT mice were

subjected to in vitro Treg-differentiation in the absence (w/o) or presence of LXR agonists

GW3965 (3μM) for 72 hours (n = 6). (a) Cytokine production in the supernatant was deter-

mined after 72h by ELISA. (b) Cytokine production in the supernatant was determined

after 72h by Luminex1 Screening Assay. (c+d) Suppression assays were performed by

coculturing murine splenic Treg (Treg; CD4+CD25+) with allogenic responder T cells

(Tresp; CD4+CD25-) in a 2:1 ratio in the presence of anti-CD3/CD28 beads (cell to bead

ratio = 30:1) and GW3965 (1.5 μM) or vehicle control (DMSO), respectively (n = 6). (c)

Cytokine production in the supernatant was determined after 72h by ELISA. (d) Cytokine

production in the supernatant was determined after 72h by Luminex1 Screening Assay.

Data shows pooled results of two individual experiments. Graphs show percentage ± SEM.
�p<0.05 ��p<0.01.

(EPS)

Table 1. Antibodies used in this study.

Application Antigen Clone Company

Flow-cytometry HELIOS 22F6 Biolegend

CD4 GK1.5 Biolegend

CD25 PC61.5 eBioscience

Foxp3 FJK-16s eBioscience

IFNγ XMG1.2 eBioscience

IL-17A eBio17B7 eBioscience

CTLA-4 UC10-4B9 Biolegend

https://doi.org/10.1371/journal.pone.0184985.t001
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