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Abstract

We propose a method to reconstruct damaged data based on statistical learning during data

acquisition. In the process of measuring the data using a sensor, the damage of the data

caused by the defect of the sensor or the environmental factor greatly degrades the perfor-

mance of data classification. Instead of the traditional PCA based on L2-norm, the PCA fea-

tures were extracted based on L1-norm and updated by iteratively reweighted fitting using

the generalized objective function to obtain robust features for the outlier data. The dam-

aged data samples were reconstructed using weighted linear combination using these fea-

tures and the projection vectors of L1-norm based PCA. The experimental results on

various types of volatile organic compounds (VOCs) data show that the proposed method

can be used to reconstruct the damaged data to the original form of the undamaged data

and to prevent degradation of classification performance due to data corruption through

data reconstruction.

Introduction

The human olfactory sense is easily fatigued and cannot sustain smell; it also has a limitation

whereby it cannot always precisely distinguish between similar smells. In contrast, an elec-

tronic nose system can continuously collect gas data and easily distinguish gas types, which is

an advantage in various fields in which the human nose cannot be utilized [1, 2].

The electronic nose system that classifies the types of gas can be roughly divided into a sen-

sor part that measures gas data and a computing system that extracts the features of the gas

from the measured data and identifies the type of gas through the classifier [3, 4]. Sensors com-

monly used in electronic nose systems are electrochemical sensors such as a metal-oxide sen-

sor [5], tin-oxide sensor [6], and piezoelectric sensor such as a carbon-black senor [7] or a

conducting organic sensor [8].

The computing system consists of three steps: a preprocessing step involving converting the

measured data into a form suitable for feature extraction, a step involving extracting features
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for gas classification, and a step involving a classifier for identifying the type of gas with the

extracted features. The features for gas classification can be extracted based on various statisti-

cal methodologies widely used in the field of pattern recognition [9–11]. Various methods

based on the linear discriminant analysis (LDA) [9, 12–14] or the principal component analy-

sis (PCA) [10, 15, 16] can be used for efficient classification of high-dimensional data such as

electronic nose data.

In most studies on feature extraction, it is assumed that the used data has no defect, so that

if the data is partially lost or damaged, the intended performance cannot be obtained. How-

ever, in the case of the electronic nose system, since the system operating environment in the

practical field is often poor, it may be difficult to collect high-quality data due to problems

such as power supply or sensor defect. In this case, the classification performance of the probe

data may be significantly degraded as it differs from the data used as the training data of the

feature extraction.

To solve this problem, statistical analysis methods can be used to restore corrupted data

and the reconstructed data can then be used for classification. In [11, 17], a conventional PCA

based on L2-norm was used for data reconstruction. However, the L2-norm based PCA finds

feature values to minimize the squared error between the sample and the reconstructed sam-

ple, which can excessively increase the sensitivity of the outliers [18]. Also, since the PCA fea-

tures are values obtained from a linear transformation of the data samples by the projection

vectors, if noise or defects occur in the training data, distortion occurs in the projection vec-

tors, rendering it difficult to obtain good features. In [19], joint formulation of recovering low-

rank and sparse subspace structures was proposed for robust representation and classification.

In [20, 21], the discriminative feature extraction method, which integrates linear subspace

learning and low-rank matrix recovery, was proposed to improve classification performance.

The method in [22] extracted discriminative features using the data from multiple views for

times series classification.

In this paper, we propose a method to reconstruct a data sample, some values of which are

lost due to sensor instability in the electronic nose system. The proposed method is composed

of a part for obtaining a feature vector for representing data in a low dimensional space and a

part for updating the feature values appropriately for data restoration. First, by using L1-norm

maximization-based PCA (L1-PCA) [18], projection vectors less affected by outlier samples

are obtained and the initial features are obtained through a linear transformation of data sam-

ples using projection vectors. Then, by repeatedly updating the initial feature values to satisfy

the generalized objective function for the errors between the reconstructed sample and the

original sample [23], better features for use in data reconstruction were obtained. While

L1-PCA is performed in the training phase, only the update of the feature values for the dis-

torted sample is performed in the test phase. The gas data samples reconstructed using the

updated new features are classified through the discriminant feature extraction process and

the classifier. The main contribution of this paper is as follows. 1) As a variant of PCA, we pro-

posed a more specialized method for data reconstruction. 2) By applying the proposed data

reconstruction method to the electronic nose data, the performance of the gas classification is

improved, by alleviating the influence of the damage that occurs in the data acquisition process

using the sensor.

For the reconstruction experiment of lost data, we used data measurement using the car-

bon-black sensors for 8 types of gas, and we partially lost values of the data randomly [24]. We

then evaluated the reconstruction performance by measuring the root mean squared (RMS)

error of the reconstructed result using the proposed method and the lossless data. In addition,

we confirmed the way in which the proposed reconstruction process can improve the gas clas-

sification performance by comparing the classification rates before and after reconstruction.

Data reconstruction using iteratively reweighted L1-PCA for an e-Nose
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This paper is structured as follows. In the next section, we present the data reconstruction

method using iteratively reweighted L1-principal component analysis. Then, we design the

electronic nose system using the proposed data reconstruction method. Finally, the experi-

mental results on data reconstruction and gas classification are described and the conclusion

follows.

Data reconstruction using iteratively reweighted L1-principal

component analysis

Iteratively reweighted L1-PCA

When dealing with high-dimensional data such as electronic nose data, we can simplify the

problem for effective analysis by using the dimension reduction method. PCA, which is a

multi-variate analysis method based on statistical methodology, is one of the most popular

methods for this purpose.

Let us consider a data set consisting of N samples. Each sample can be represented by a

point xk = [xk1, . ., xkn]T in the n-dimensional vector space. This space is called an input space,

and each component of xk is called a primitive variable. In the conventional PCA, we find the

projection vectors wl = [wl1, . ., wln]T, l = 1, . . .,m that satisfy the following objective function

based on L2-norm [25].

Jm ¼
XN

k¼1

jj mþ
Xm

l¼1

yklwl

 !

� xkjj
2

ð1Þ

Here, μ is the sample mean m ¼ 1

N

PN

k¼1

xk and ykls are principal components (PCA features

corresponding to wkls).

The global minimum of Jm can be obtained by using the singular value decomposition

(SVD) [26] to findW that satisfies the following object function.

Wð¼ ½w1;w2; ::;wm�Þ ¼ argmax
W
jjWTSTWjj ð2Þ

Here, ST is a total scatter matrix and is defined as ST ¼
PN

k¼1

ðxk � mÞðxk � mÞ
T
.

However, since the conventional PCA constructs a feature space that maximizes the disper-

sion of the samples based on the L2-norm, when an outlier data sample is present, the sample

tends to have an excessive influence on the process of obtaining the projection vector. There-

fore, we use L1-PCA [18] based on L1-norm, which is more robust to outlier data than

L2-norm for data reconstruction. In order to prevent distortion of the equidistance surface by

the rotation of L1-norm, L1-PCA finds a projection vector that maximizes the L1 dispersion

using L1-norm in the feature space by using the following objective function.

W� ¼ argmax
W

XN

k¼1

Xm

l¼1

j
Xn

i¼1

wlixkij

subject to WTW ¼ I 2 Rm�m
ð3Þ

The optimal l-th projection vector, wl, satisfying the objective function in (3) is changed

according to the number of projection vectors (m) to be obtained and it is very difficult to

obtain the global solution for (3) whenm> 1. In order to avoid this problem, as in [18], we
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also obtain w� by using the following objective function whenm = 1.

w� ¼ argmax
W

XN

k¼1

jwTxkj subject to jjwjj
2
¼ 1 ð4Þ

Then, we find an approximate solution (WL1 = [w1, w2, . ., wm]) to (3) by using the greedy

search method [18].

By usingWL1, the feature vector for the data sample is obtained through the following linear

transformation.

yk ¼WT
L1
ðxk � mÞ ð5Þ

The features are then updated through the iteratively reweighted fitting (IRF) process [23]

to improve the effect of data reconstruction. To achieve this, a generalized objective function

containing nonlinear mapping is defined as (6) and the projection vector is repeatedly

weighted using the iteratively reweighted least squares (IRLS) [27].

JðyÞ ¼
Xn

i¼1

Gððxi � WiyÞ
2
Þ

GðzÞ ¼ log
1

1þ exp ð� bðz � ZÞÞ

ð6Þ

In (6), β and η (which are tuning parameters) are the inverse temperature and saturation

value, respectively, andWi denotes the i-th row vector ofWL1.

The process of minimizing the objective function in (6) can be divided into a weight calcu-

lation step and a least squares step [23]. In the weighting step at each (t-th) iteration, a weight

vector ωðtÞ ¼ ½oðtÞ1 ;o
ðtÞ
2 ; ::;o

ðtÞ
n �

T
is defined for a feature vector y(t), and its values are calculated

as follows [23].

o
ðtÞ
i ¼

exp ð� bðzðtÞi � ZÞÞ

1þ exp ð� bðzðtÞi � ZÞÞ
ð7Þ

zðtÞi ¼ ðxi � WiyðtÞÞ
2 ð8Þ

In the least squares step at the (t + 1)-th iteration, the feature vector y(t+1) is updated with

the weight vector ω(t) calculated in the weight step as follows.

yðtþ1Þ ¼
Xn

i¼1

o
ðtÞ
i WT

i Wi

 !� 1
Xn

i¼1

o
ðtÞ
i WT

i xi ð9Þ

In this manner, while repeating the weighting step and the least square step, the feature vec-

tor (y(t)) updating is repeated until the convergence or termination condition (t = tmax) is

satisfied.

Reconstruction of distorted data

Fig 1 shows typical time-responses of a 16 channel sensor array for ethanol vapor. In the case

of sensor data, data measurement may be partially lost or damaged depending on the installa-

tion environment and electrical environmental conditions. The lost or damaged data can be

reconstructed using the projection vectors of the L1-PCA and the updated new L1-PCA fea-

tures, which can be accomplished by simple matrix operations.

Data reconstruction using iteratively reweighted L1-PCA for an e-Nose
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As shown in (3), the projection vectors obtained through L1-PCA are orthogonal to each

other; hence, xk is approximated as a linear combination of the basis wls that constitutes a fea-

ture space as follows.

xk ¼WL1yk þ m ð10Þ

The reconstructed data xre for the damaged data sample xdmg can be obtained by using m
projection vectors with high data representation power and the feature vector yðtÞ ¼
½yðtÞ1 ; y

ðtÞ
2 ; ::; yðtÞm �

T
updated through the IRF as follows.

yk ¼ WT
L1
ðxdmg � mÞ � !

IRF
yðtÞk

xrek ¼ WL1y
ðtÞ
k þ m

ð11Þ

Fig 2 shows a graph plotting the cumulative sum percentage of eigenvalues after sorting the

eigenvalues of the scatter matrix of electronic nose data samples in descending order. In Fig 2,

the magnitude of the eigenvalue λl decreases sharply at the beginning with an increasing

Fig 1. Typical time-response of 16 channel sensor array with respect to inflow of ethanol vapor.

https://doi.org/10.1371/journal.pone.0200605.g001
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index l, which means that most of the eigenvalues are concentrated in a few major eigenvec-

tors. The eigenvalue of the projection vector refers to the variance of the data samples in the

feature space. However, the estimated eigenvalue λl from the training samples somewhat dif-

fers from the true variance of the projected vector, due to the limited number of training sam-

ples. In particular, eigenvectors with small eigenvalues are sensitive to noise [28]. Therefore, in

this paper, we only use eigenvectors with large eigenvalues instead of using whole eigenvectors

in the data reconstruction process.

In order to determine the optimalm value for data reconstruction, the root mean squared

(RMS) error between the data before loss and the reconstructed data defined as in (12) was

Fig 2. Cumulative sum percentage of eigenvalues after sorting the eigenvalues of the scatter matrix of e-nose data samples in descending order.

https://doi.org/10.1371/journal.pone.0200605.g002
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calculated.

ERMS ¼
1

N

XN

k¼1

jjxk � xrek jj2 ð12Þ

Fig 3 shows the RMS errors when the data is reconstructed using theWL1 composed ofm
L1-PCA projection vectors and the feature vector y(t) while varying the value ofm, given a loss

of an arbitrary ratio to the values of the training data samples. Fig 3 shows that when the num-

ber of eigenvectors used for reconstruction is small, the RMS error decreases sharply as the

number of eigenvectors increases, and RMS errors converge when a certain degree of

Fig 3. Observations of RMS errors for different numbers of projections vectors (m).

https://doi.org/10.1371/journal.pone.0200605.g003
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eigenvectors are secured. This can be seen in the same context as the interpretation of Fig 2

mentioned above. In this paper, we evaluate the reconstruction performance by changing the

m value several times based on the result of Fig 3, and set the value ofm to 15.

Fig 4 shows the overall procedure of the proposed data reconstruction method using the

iterative reweighted L1-PCA.

Design of electronic nose system

Data acquisition

Fig 5 shows a schematic diagram of the electronic nose system used in this paper. While poly-

mer composites have limitations in sensor life, sensor drift, and sensitivity to temperature and

humidity, they are widely used in electronic nose systems compared to other gas sensors due

to low cost, low power, stable operation at room temperature, etc. [11, 16, 29].

In the electronic nose system used in this paper, a micoromachined sensor array chip used

in [11] was used. The sensor array consists of 16 channels, and each channel has a carbon-

black (CB) polymer composites sensor with an interdigitated electrode, a microheater, and a

Fig 4. Overall procedure of the proposed data reconstruction method.

https://doi.org/10.1371/journal.pone.0200605.g004
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machined membrane. Table 1 shows 16 types of (CB) polymer composites. The measurement

of the sensor was performed by observing the change in resistance when the chemical gas was

bonded to each polymer composite film and recording it for a total of 200 seconds at 0.1 sec-

ond intervals.

First, after the sensor array is placed in the chamber and the resistance signal stabilizes for

30 seconds (stabilization), the flow control of the system exposes the gas for 60 seconds (expo-

sure) and leaves the remaining gas to the outside for 110 seconds [27]. The measured data are

stored on a PC using the DAQ6062E data acquisition (DAQ) board and LabVIEW (National

Instrumentation, USA). The voltage-divider operates from -10V to 10V and the gain of 16

identical amplifiers is set to 10 for maximum DAQ resolution [24].

Feature extraction for classification from reconstructed data

If extracting features that are effective for gas classification from the reconstructed data, the

classifier takes these features as inputs and finally determines the type of gas. In this paper, we

use the linear discriminant analysis (LDA) method [10], which is a typical supervised learning

Fig 5. Schematic diagram of our electronic nose system. The gas data sample is stored as a vector through a digital interface. Then, the computing

system classifies the types of gas through the data reconstruction and feature extraction steps.

https://doi.org/10.1371/journal.pone.0200605.g005
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method, as a feature extraction method for classification. LDA constructs a low-dimensional

feature space such that the ratio of the variance of each class mean and the variance of the sam-

ples in the same class increases. While feature extraction methods other than LDA can also be

employed for this purpose, the LDA method was selected in this study for convenience.

When N training data samples xk (k = 1, . . ., N) are composed of C classes and each class ci
(i = 1, . . ., C) has Ni samples, the between-class scatter matrix (SB) and the within-class scatter

matrix (SW) are defined as follows.

SB ¼
1

N

XC

i¼1

Niðmi � mÞðmi � mÞ
T

SW ¼
XC

i¼1

X

xk2ci

ðxk � miÞðxk � miÞ
T

mi ¼
1

Ni

X

xk2ci

xk; m ¼
1

N

XC

i¼1

X

xk2ci

xk

ð13Þ

LDA constitutes a feature space that can be distinguished between classes by maximizing

the ratio of SB and SW. Therefore, the objective function of LDA can be expressed as follows.

WLDA ¼ argmax
W

jWTSBWj
jWTSWWj

ð14Þ

The solution satisfying (14) corresponds to the eigenvector of S� 1
W SB. In the high-dimen-

sional data such as the electronic nose sensor data, the small sample size (SSS) problem [30]

occurs in which the number of training data is smaller than the dimension of training data,

and no inverse matrix is available. To avoid this problem, we first reduce the dimension of

data to less than the rank of SW using PCA and then applied LDA in the PCA feature space

(PCA + LDA [9]). If letting the projection matrix of the PCA beWPCA, the final projection

Table 1. CB polymer composites in the sensor array.

Channel Polymer

1 Poly(methyl methacrylate)

2 Polyvinylpyrrolidone

3 Poly(vinyl acetate)

4 Poly(ethylene oxide)

5 Polycaprolactone

6 Poly(4-methylstyrene)

7 Poly(styrene-co-methyl methacrylate)

8 Poly(enthylene-co-vinylacetate)

9 Poly(bisphenol A carbonate)

10 Poly(4-vinyl pyridine)

11 Poly(vinyl butyral)-co-vinyl alcohol-co-vinyl acetate

12 Poly(vinyl stearate)

13 Ethyl cellulose

14 Polystyrene-block-polyisoprene-block-polystyrene

15 Hydroxypropyl cellulose

16 Cellulose acetate

https://doi.org/10.1371/journal.pone.0200605.t001
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matrix by PCA + LDA can be expressed as follows.

WPCAþLDA ¼WT
LDAW

T
PCA

WLDA ¼ argmax
W

jWTWT
PCASBWPCAWj

jWTWT
PCASWWPCAWj

ð15Þ

If selecting n0(�C − 1) projection vectors constitutingWPCA+LDA in order of their eigenval-

ues, the gas data sample xk is an n0-dimensional feature vector composed of n0 discriminant

features as follows.

yLk ¼W
T
PCAþLDAðxk � mÞ ¼ ½yLk1; y

L
k2; ::; y

L
kn0 �

T
ð16Þ

Experimental results

Reconstruction of electronic nose data

In order to verify the effectiveness of the proposed method, we attempted to classify the volatile

organic compounds (VOCs) measurement data for 8 types of gases. The gases used in the

experiments were acetone, benzene, cyclo-hexane, ethanol, heptane, methanol, propanol, and

toluene [24]. Twenty samples were collected for each type of gas and a total of 160 samples

were collected. Each sample consists of the measurements for 2,000 time points measured at a

sampling rate of 10 Hz per channel for 200 seconds. The measurement values of 16 channels

are stored in the form of 2,000 × 16 matrix, and then converted to a 32,000 dimensional vector

using a lexicographic ordering operator [29] (Fig 6).

To see the effectiveness of the proposed method in reconstructing the data, we analyzed the

performance for the data samples with data loss of 20% (xdmg20%) of the total measurements and

the data sample (xdmgGN ) to which the random Gaussian noises were added. For this purpose,

considering the electrical problems that may occur in the actual electronic nose installation

environment, it is assumed that the loss interval occurs in 2 second units (20 time points), and

the data value of the corresponding interval is set to zero. All data values used in the experi-

ments were normalized [29] using the mean and standard deviation of the training data.

Fig 7 shows (a) the data samples having the loss (xdmg25%) and (b) the data sample with Gauss-

ian noise (xdmgGN ). As shown in Fig 7, the shapes of the damaged data samples were reconstructed

by the proposed method to be similar to the respective shapes of the original data.

Fig 6. Representation of data sample in 32,000 dimensional vector form.

https://doi.org/10.1371/journal.pone.0200605.g006
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Fig 7. Representation of the data sample before and after the reconstruction process. (a) Original data sample. (b) Data

samples with data loss xdmg20%. (c) Reconstructed data sample from loss xre
20%

. (d) Data sample with Gaussian noise xdmgGN . (e)

Reconstructed data samples from noise xreGN .

https://doi.org/10.1371/journal.pone.0200605.g007
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For a total of 160 gas data samples of 8 types, the gas classification experiments were con-

ducted to verify the effect of the data reconstruction on the gas classification performance of

the electronic nose. All samples were tested using 8-fold cross validation [31]. In other words,

data were randomly mixed and then divided into training data sets consisting of 140 samples

and test data of 20 samples for each fold. The final classification rates were calculated by aver-

aging the classification rates in 8 experiments.

As mentioned previously, the discriminant features to be used as input to the classifier were

extracted using the PCA + LDA method. In the PCA phase of PCA+LDA, the dimension of

original sample space (32,000 dim.) was reduced to the 105 dimensional feature space corre-

sponding to 99% of the total eigenvalues of ST, and then, LDA was performed in the reduced

feature space. Since the PCA+LDA method can extract up to 7 features in the problem of 8

classes, the classification performance is measured in the 7-dimensional PCA + LDA feature

space. The feature vector for xdmg and xre can be expressed in a maximum 7-dimensional space

as ydmg and yre. One-nearest neighbor (One-NN) classifier was used as the classifier, and the

distance between samples was measured based on L2-norm [11]. Similar to the reason for

using PCA + LDA, we used One-NN using L2-norm based distance measure for convenience.

The time required for the L1-PCA to obtain the projection vectors is about 0.20s, which is

slightly longer than that of L2-PCA (about 0.15s), but this is done only in the training process.

We compared the classification performance of the proposed method ðyreL1� IÞ with that of

other methods for electronic nose classification, including FF (Feature Feedback) method

(yFF) [32], the DCV (Discriminant Common Vector) method (yDCV) [14], and the L2-PCA

based data reconstruction method ðyreL2
Þ [17]. Classification rates were obtained from data sam-

ples of the loss of 5% * 20%. Fig 8 shows the comparison of classification rates between the

proposed method and other methods and Fig 9 shows the classification rates for various

dimensions of the feature space. As shown in Figs 8 and 9, each method exhibited favorable

classification performance with the data sample of less loss (5% and 10%), showing that even

when the data was not reconstructed (ydmg5% and ydmg10%), the classification rate were as high as

98.2%. However, as the amount of data loss increased from 15% to 20%, the classification rates

decreased significantly in the absence of data reconstruction. This is because the data samples

that were more than 15% lost seem to have lost much of the inherent characteristics of the

class in the PCA + LDA feature space. However, as the degree of data loss increases, while the

classification performances of the other methods decrease rapidly, the proposed method main-

tains a certain level of classification performance (91.9%).

Reconstruction of high-dimensional data - Face image

In order to confirm the effect of the proposed data reconstruction method, we experimented

with face images that are high dimensional data such as electronic nose data, from the AR

database [33]. The AR database contains images with many variations, such as illumination

and facial expressions, and consists of two sessions taken at a two week interval. We used the

images without partial occlusion for 118 subjects in the experiment. The images taken at ‘ses-

sion 1’ were used as training images for image reconstruction and recognition, and the recon-

struction and recognition performances were tested with neutral images in ‘session 2’.
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Fig 10 shows the original image, the partially occluded image, and the reconstructed images

using the method in [17] and the proposed method (m = 45). In Fig 10, the qualities of the

reconstructed images by L2-PCA ðxreL2
Þ and those of the proposed method ðxreL1� IÞ appear to be

similar overall. However, in detail, it can be seen that the traces of the eyeglass frame in are

thinner than in and the glare of the spectacle lens is effectively removed. In addition, we com-

puted the peak signal to noise ratio (PSNR) based on the original image as

PSNR ¼ 20 � log10ð255=
ffiffiffiffiffi
M
p

SEÞ, whereMSE ¼ 1=N
PN

i¼1
jjxorii � xrei jj

2
, and the PSNR of xreL1� I

is higher than that of xreL2
.

Fig 8. Comparison of classification rates between the proposed method and other methods.

https://doi.org/10.1371/journal.pone.0200605.g008

Data reconstruction using iteratively reweighted L1-PCA for an e-Nose

PLOS ONE | https://doi.org/10.1371/journal.pone.0200605 July 25, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0200605.g008
https://doi.org/10.1371/journal.pone.0200605


We also performed recognition experiments on damaged face images and reconstructed

images. As in the experiment on the electronic nose data, the discriminant features for recog-

nition were extracted by using the PCA+LDA method, and up to 117 features were extracted.

Fig 11 shows the recognition rates for various dimensions of the feature space. In Fig 11, the

recognition rate of 94.1% for the original face images (xori) dropped to 83.1% for the occluded

face images (xdmg). However, by reconstructing the images by the proposed method, the recog-

nition rate was restored to around 92.4%, which was better than the results given by the other

methods.

Fig 9. Classification rates for various dimensions of the feature space. (a) 5% data loss (b) 10% data loss (c) 15% data loss (d) 20% data loss.

https://doi.org/10.1371/journal.pone.0200605.g009
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Fig 10. Reconstruction of an occluded face image.

https://doi.org/10.1371/journal.pone.0200605.g010

Fig 11. Recognition rates for various dimensions of the feature space.

https://doi.org/10.1371/journal.pone.0200605.g011
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Conclusions

In an electronic nose system, data loss caused by the installation environment or electrical

instability of the sensor deteriorates the stability of the gas classification performance. In this

paper, we proposed a method to reconstruct the damaged data effectively to improve the sta-

bility of the electronic nose system. PCA is used not only for dimension reduction or represen-

tation of high-dimensional data such as electronic sensor data, but also for reconstructing the

original dimension data by a linear combination of projection vectors and the PCA features.

We used L1-norm based PCA, instead of conventional L2-norm based PCA, to reduce the

influence of outlier data. In addition, by repeatedly updating the features using the generalized

objective function for the reconstruction error, we reduced the distortion of the L1-PCA fea-

tures due to the outlier samples, and obtained high-quality features. The damaged data samples

were reconstructed by the weighted linear combination of the projection vectors of L1-PCA

and the updated features.

In order to verify the effectiveness of the proposed method, the reconstruction and gas clas-

sification experiments were performed with eight types of gas data measured by the carbon-

black sensor. As a result, the lost data was reconstructed to a shape similar to the original data.

The result of the gas classification experiment on the reconstructed data confirmed that the

data reconstruction process mitigates the deterioration of the gas classification performance

due to the data loss.

For the implementation of a practical electronic nose system, it is important to classify the

data containing combinations of gases and different concentrations, etc., while experiments

need to be performed on data measured using various types of sensors. Further studies will be

carried out using experiments involving various types of complex data to investigate a combi-

nation of diverse features.

Acknowledgments

This research was supported by the National Research Foundation of Korea(NRF) grant

funded by the Korea government(MSIT) (No. 2018R1A2B6001400) and was also supported by

the Human Resources Program in Energy Technology of the Korea Institute of Energy Tech-

nology Evaluation and Planning (KETEP) granted financial resource from the Ministry of

Trade, Industry and Energy, Republic of Korea (20174030201740).

Author Contributions

Conceptualization: Sang-Il Choi.

Formal analysis: Hong-Min Jeon, Je-Yeol Lee, Gu-Min Jeong, Sang-Il Choi.

Funding acquisition: Sang-Il Choi.

Methodology: Sang-Il Choi.

Project administration: Sang-Il Choi.

Software: Hong-Min Jeon.

Supervision: Sang-Il Choi.

Validation: Sang-Il Choi.

Visualization: Je-Yeol Lee.

Data reconstruction using iteratively reweighted L1-PCA for an e-Nose

PLOS ONE | https://doi.org/10.1371/journal.pone.0200605 July 25, 2018 17 / 19

https://doi.org/10.1371/journal.pone.0200605


Writing – original draft: Hong-Min Jeon, Sang-Il Choi.

Writing – review & editing: Je-Yeol Lee, Gu-Min Jeong, Sang-Il Choi.

References
1. Berna AZ, Anderson AR, Trowell SC. Bio-benchmarking of electronic nose sensors. PloS one. 2009; 4

(7):e6406. https://doi.org/10.1371/journal.pone.0006406 PMID: 19641604

2. Fonollosa J, Gutierrez-Galvez A, Marco S. Quality coding by neural populations in the early olfactory

pathway: analysis using information theory and lessons for artificial olfactory systems. PloS one. 2012;

7(6):e37809. https://doi.org/10.1371/journal.pone.0037809 PMID: 22719851

3. Ampuero S, Bosset J. The electronic nose applied to dairy products: a review. Sensors and Actuators

B: Chemical. 2003; 94(1):1–12. https://doi.org/10.1016/S0925-4005(03)00321-6

4. Gardner JW, Bartlett PN. A brief history of electronic noses. Sensors and Actuators B: Chemical. 1994;

18(1-3):210–211. https://doi.org/10.1016/0925-4005(94)87085-3

5. Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research: How to? Sensors and Actua-

tors B: Chemical. 2007; 121(1):18–35. https://doi.org/10.1016/j.snb.2006.09.047

6. Watson J. The tin oxide gas sensor and its applications. Sensors and Actuators. 1984; 5(1):29–42.

https://doi.org/10.1016/0250-6874(84)87004-3

7. Kim YS, Ha SC, Yang Y, Kim YJ, Cho SM, Yang H, et al. Portable electronic nose system based on the

carbon black–polymer composite sensor array. Sensors and Actuators B: Chemical. 2005; 108(1):285–

291. https://doi.org/10.1016/j.snb.2004.11.067

8. Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nature materials. 2003; 2

(1):19. https://doi.org/10.1038/nmat768 PMID: 12652667

9. Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class spe-

cific linear projection. IEEE Transactions on pattern analysis and machine intelligence. 1997; 19

(7):711–720. https://doi.org/10.1109/34.598228

10. Fukunaga K. Introduction to statistical pattern recognition. Academic press; 2013.

11. Wang ZM, Tao JH. Reconstruction of partially occluded face by fast recursive PCA. In: Computational

Intelligence and Security Workshops, 2007. CISW 2007. International Conference on. IEEE; 2007.

p. 304–307.

12. Martı́nez AM, Kak AC. Pca versus lda. IEEE transactions on pattern analysis and machine intelligence.

2001; 23(2):228–233. https://doi.org/10.1109/34.908974

13. Kim C, Choi CH. A discriminant analysis using composite features for classification problems. Pattern

Recognition. 2007; 40(11):2958–2966. https://doi.org/10.1016/j.patcog.2007.02.008

14. Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative Common Vectors for Face Recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005; 27(1):4–13. https://doi.org/10.

1109/TPAMI.2005.9 PMID: 15628264

15. Turk M, Pentland A. Eigenfaces for recognition. Journal of cognitive neuroscience. 1991; 3(1):71–86.

https://doi.org/10.1162/jocn.1991.3.1.71 PMID: 23964806

16. Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R. Chemical gas sensor drift compensa-

tion using classifier ensembles. Sensors and Actuators B: Chemical. 2012; 166:320–329. https://doi.

org/10.1016/j.snb.2012.01.074

17. Choi SI, Jeon HM, Jeong GM. Data reconstruction using subspace analysis for gas classification. IEEE

Sensors Journal. 2017; 17(18):5954–5962. https://doi.org/10.1109/JSEN.2017.2716967

18. Kwak N. Principal component analysis based on L1-norm maximization. IEEE transactions on pattern

analysis and machine intelligence. 2008; 30(9):1672–1680. https://doi.org/10.1109/TPAMI.2008.114

PMID: 18617723

19. Zhang Z, Li F, Zhao M, Zhang L, Yan S. Joint low-rank and sparse principal feature coding for enhanced

robust representation and visual classification. IEEE Transactions on Image Processing. 2016; 25

(6):2429–2443. https://doi.org/10.1109/TIP.2016.2547180 PMID: 27046875

20. Li S, Fu Y. Learning robust and discriminative subspace with low-rank constraints. IEEE transactions

on neural networks and learning systems. 2016; 27(11):2160–2173. https://doi.org/10.1109/TNNLS.

2015.2464090 PMID: 26340784

21. Li S, Fu Y. Robust subspace discovery through supervised low-rank constraints. In: Proceedings of the

2014 SIAM International Conference on Data Mining. SIAM; 2014. p. 163–171.

Data reconstruction using iteratively reweighted L1-PCA for an e-Nose

PLOS ONE | https://doi.org/10.1371/journal.pone.0200605 July 25, 2018 18 / 19

https://doi.org/10.1371/journal.pone.0006406
http://www.ncbi.nlm.nih.gov/pubmed/19641604
https://doi.org/10.1371/journal.pone.0037809
http://www.ncbi.nlm.nih.gov/pubmed/22719851
https://doi.org/10.1016/S0925-4005(03)00321-6
https://doi.org/10.1016/0925-4005(94)87085-3
https://doi.org/10.1016/j.snb.2006.09.047
https://doi.org/10.1016/0250-6874(84)87004-3
https://doi.org/10.1016/j.snb.2004.11.067
https://doi.org/10.1038/nmat768
http://www.ncbi.nlm.nih.gov/pubmed/12652667
https://doi.org/10.1109/34.598228
https://doi.org/10.1109/34.908974
https://doi.org/10.1016/j.patcog.2007.02.008
https://doi.org/10.1109/TPAMI.2005.9
https://doi.org/10.1109/TPAMI.2005.9
http://www.ncbi.nlm.nih.gov/pubmed/15628264
https://doi.org/10.1162/jocn.1991.3.1.71
http://www.ncbi.nlm.nih.gov/pubmed/23964806
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1109/JSEN.2017.2716967
https://doi.org/10.1109/TPAMI.2008.114
http://www.ncbi.nlm.nih.gov/pubmed/18617723
https://doi.org/10.1109/TIP.2016.2547180
http://www.ncbi.nlm.nih.gov/pubmed/27046875
https://doi.org/10.1109/TNNLS.2015.2464090
https://doi.org/10.1109/TNNLS.2015.2464090
http://www.ncbi.nlm.nih.gov/pubmed/26340784
https://doi.org/10.1371/journal.pone.0200605


22. Li S, Li Y, Fu Y. Multi-view time series classification: A discriminative bilinear projection approach. In:

Proceedings of the 25th ACM International on Conference on Information and Knowledge Manage-

ment. ACM; 2016. p. 989–998.

23. Zuo W, Wang K, Zhang D. Robust recognition of noisy and partially occluded faces using iteratively

reweighted fitting of eigenfaces. Lecture Notes in Computer Science. 2006; 4261:844–851. https://doi.

org/10.1007/11922162_96

24. Yang YS, Ha SC, Kim YS. A matched-profile method for simple and robust vapor recognition in elec-

tronic nose (E-nose) system. Sensors and Actuators B: Chemical. 2005; 106(1):263–270. https://doi.

org/10.1016/j.snb.2004.08.008

25. Duda RO, Hart PE, Stork DG. Pattern classification. Wiley, New York; 1973.

26. Golub GH, Reinsch C. Singular value decomposition and least squares solutions. Numerische mathe-

matik. 1970; 14(5):403–420. https://doi.org/10.1007/BF02163027

27. Ha SC, Kim YS, Yang Y, Kim YJ, Cho SM, Yang H, et al. Integrated and microheater embedded gas

sensor array based on the polymer composites dispensed in micromachined wells. Sensors and Actua-

tors B: Chemical. 2005; 105(2):549–555. https://doi.org/10.1016/j.snb.2004.01.019

28. Martinez AM. The AR face database. CVC technical report. 1998;.

29. Choi SI, Jeong GM. A discriminant distance based composite vector selection method for odor classifi-

cation. Sensors. 2014; 14(4):6938–6951. https://doi.org/10.3390/s140406938 PMID: 24747735

30. Chen LF, Liao HYM, Ko MT, Lin JC, Yu GJ. A new LDA-based face recognition system which can solve

the small sample size problem. Pattern recognition. 2000; 33(10):1713–1726. https://doi.org/10.1016/

S0031-3203(99)00139-9
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