

doi: 10.1093/femsec/fiy125 Advance Access Publication Date: 22 June 2018 Research Article

RESEARCH ARTICLE

Identification of phenol- and *p*-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites

Yuki Saito^{1,*}, Tadashi Sato¹, Koji Nomoto^{1,2} and Hirokazu Tsuji¹

¹Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan. and ²Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan

*Corresponding author: Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan. Tel: +81-42-577-8960; Fax: +81-42-577-3020; E-mail: yuki-saito@yakult.co.jp

One sentence summary: We newly identified phenol- and *p*-cresol-producing bacteria by culture-based screening, and elucidated phylogenetic distribution of phenol- and *p*-cresol-producers.

Editor: Julian Marchesi

ABSTRACT

To identify intestinal bacteria that produce phenols (phenol and *p*-cresol), we screened 153 strains within 152 species in 44 genera by culture-based assay using broth media supplemented with 200 µM each of tyrosine and its predicted microbial metabolic intermediates (4-hydroxyphenylpyruvate, DL-4-hydroxyphenyllactate, 3-(*p*-hydroxyphenyl)propionate, 4-hydroxyphenylacetate and 4-hydroxybenzoate). Phenol-producing activity was found in 36 strains and *p*-cresol-producing activity in 55 strains. Fourteen strains had both types of activity. Phylogenetic analysis based on the 16S rRNA gene sequences of strains that produced 100 µM or more of phenols revealed that 16 phenol producers belonged to the *Coriobacteriaceae*, *Fusobacteriaceae* and *Clostridium* clusters I and XIVa; four *p*-cresol-producing bacteria belonged to the *Coriobacteriaceae* and *Clostridium* clusters XI and XIVa; and one strain producing both belonged to the *Coriobacteriaceae*. A genomic search for protein homologs of enzymes involved in the metabolism of tyrosine to phenols in 10 phenol producers and four *p*-cresol producers, the draft genomes of which were available in public databases, predicted that phenol producers harbored tyrosine phenol-lyase or hydroxyarylic acid decarboxylase, or both, and *p*-cresol producers harbored tyrosine phenol-lyase or tyrosine lyase, or both. These results provide important information about the bacterial strains that contribute to production of phenols in the intestine.

Keywords: phenol; p-cresol; intestinal bacteria; tyrosine; metabolite; phylogenetic analysis

INTRODUCTION

The more than 100 trillion bacteria in the human intestinal tract form a complicated ecosystem (Bäckhed et al. 2005). These bacteria produce many metabolites that can either harm or benefit host health (Nicholson et al. 2012). Short-chain fatty acids, which are produced mainly through the fermentation of carbohydrates, not only are used as energy sources for the host's colonocytes but also have anti-inflammatory effects (Verbeke *et al.* 2015). Polyamines in the intestinal lumen enhance longevity and delay senescence (Kibe *et al.* 2014). Equol produced by intestinal microbiota reduces the risk of prostate cancer (Sugiyama *et al.*

Received: 29 March 2018; Accepted: 21 June 2018

[©] FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

2013). In contrast to these beneficial metabolites, intestinal secondary bile acid concentrations are closely related to the incidence of colorectal cancer (Ajouz, Mukherji and Shamseddine 2014), and indole, which is a uremic toxin, promotes the progression of chronic kidney disease (Evenepoel et al. 2009; Ito and Yoshida 2014). Because of the increasing importance of metabolites to host health, many metabolomic analyses have been performed to identify novel factors. For example, it has been found that trimethylamine is a risk factor for cardiovascular disease (Wang et al. 2011). As shown in these studies, we are aware of the role of metabolites in host health, but few studies have attempted to identify the bacteria involved in producing each type of metabolite in the colon. Obtaining information about the bacteria producing these metabolites would provide new clues to our understanding of disease from the perspectives of morbidity risk evaluation and the establishment of prevention methods.

Phenols (phenol and p-cresol) are microbial metabolites produced from tyrosine (Windey, De Preter and Verbeke 2012). Phenol exhibits cytotoxicity and increases paracellular permeability in vitro (Verbeke et al. 2015); it acts as a promoter of skin cancer in an animal model (Boutwell and Bosch 1959). p-cresol exhibits cytotoxicity and genotoxicity and reduces endothelial barrier function in vitro (Andriamihaja et al. 2015; Verbeke et al. 2015). p-cresyl sulfate, a sulfate-conjugate of p-cresol, suppresses Th1-type cellular immune responses in mice (Shiba et al. 2014); an increase in its levels is associated with chronic kidney disease-associated events such as cardiovascular disease (Meyer and Hostetter 2012; Ito and Yoshida 2014). Furthermore, phenol and p-cresol suppress the differentiation of keratinocytes in humans and cause dermal disorders in mice (Iizuka et al. 2009a,b). Although studies focusing on the relationship between phenols and various diseases have been accumulating, to our knowledge there has been no comprehensive study to identify the bacteria contributing to phenol- and *p*-cresol-production, with the exception of reports focused only on the genus Clostridium or on limited species (Bone, Tamm and Hill 1976; Elsden, Hilton and Waller 1976; Smith and Macfarlane 1996).

Here, we screened bacteria producing phenol or *p*-cresol, or both, using 153 strains within 152 species in 44 genera—mainly of intestinal bacteria—to determine which strains had the ability to produce phenol or *p*-cresol or both. Strains that screened positive were analyzed to determine the relationship between the ability to produce phenols and phylogenetic classification. They were then genetically analyzed to predict their metabolic pathways from tyrosine to phenols.

MATERIALS AND METHODS

Chemicals

DL-4-hydroxyphenyllactic acid, 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid were obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Tyrosine and 3-(*p*-hydroxyphenyl)propionate were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Substrate solution was prepared by dissolving these compounds together in 18 mM NaOH solution (final 2 mM each) and filtered for sterilization through a 0.20 µm cellulose acetate filter (Toyo Roshi Kaisha, Ltd., Tokyo, Japan).

Bacterial strains and culture conditions

The 153 bacterial strains and culture conditions used for screening are listed in Table 1. The 153 strains represented 152 species

found in the human gut habitat and their phylogenetic relatives; they accounted for about 70% of the common species detected in human feces (Qin et al. 2010). Two types of media (rich medium and poor medium) were used for culture. Rich medium was used for its growth efficiency: modified Gifu anaerobic medium broth (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) supplemented with 1% glucose; MRS broth (Nissui Pharmaceutical Co., Ltd.); Trypticase soy broth (Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA); or peptone-yeast extract (PY) broth supplemented with 1% glucose was used. The PY broth (1 L) contained 5.0 g peptone, 5.0 g trypticase peptone, 10.0 g yeast extract, 0.5 g L-cysteine HCl • H₂O, 4.0 g Na₂CO₃, 7 mL 0.07% hemin solution, 1.0 mL 0.1% resazurin solution, 0.04 g K₂HPO₄, 0.04 g $\rm KH_2PO_4,~0.4$ g NaHCO_3, 0.08 g NaCl, 8 mg CaCl_2, 19 mg MgSO₄ • 7H₂O and 1 mg vitamin K₁ (pH 6.9). Basal Medium (Bone, Tamm and Hill 1976), which contains Tripticase Peptone (Becton, Dickinson and Company) instead of casein hydrolysate, was used as poor medium. As glucose supplementation can have critical effects on the production of phenols (Smith and Macfarlane 1996), basal medium that did not contain glucose as a carbon source was selected. The substrate solution described above was added to rich medium or poor medium to prepare test medium (final 200 µM each). Bacterial strains were pre-cultured in 4 mL of rich medium, and aliquots (40 μL) were inoculated into 4 mL of test media and incubated statically at 37°C for 6 days. An anaerobic chamber (N_2 :CO₂:H₂ = 88:5:7) was used for culture, except in the case of three strains: Cl. perfringens $\ensuremath{\text{YIT}}$ 6050 $^{\ensuremath{\text{T}}}$ and Cl. difficile YIT 10084^T were cultured under O_2 free N_2 gas, and Staphylococcus epidermidis YIT 6049^T was cultured aerobically.

Extraction and preparation of phenols from culture

Phenols were extracted by using a previously reported method, with partial modification (Niwa 1993). The bacterial culture was centrifuged at 20,400 *g* for 5 min at 4°C, and the supernatant was filtered through a 0.20 μ m cellulose acetate filter. Filtrates were diluted if necessary, and 225 μ L of filtrate was mixed with 0.3 g sodium chloride, 180 μ L of 1 N hydrochloride, 45 μ L of 200 μ M 4-isopropylphenol as an internal control and 450 μ L of ethyl acetate, then vigorously vortexed for 30 s. The mixture was centrifuged at 2,350 *g* for 5 min at room temperature. The ethyl acetate layer was filtered by using 0.45 μ m PTFE filter vials (Thomson Instrument Company, Oceanside, California, USA), and the filtrate was subjected to HPLC analysis.

HPLC conditions

HPLC analysis was performed under the following conditions: pump: PU-2080 Plus (JASCO Corporation, Tokyo, Japan); column: L-column (Chemicals Evaluation and Research Institute, Tokyo, Japan); detector: FP-2025 Plus (excitation wavelength 260 nm and emission wavelength 305 nm); column temperature: 40°C; mobile phase: 0.1% phosphoric acid: acetonitrile (75:25) mixture; flow rate: 1 mL/min; sample injection volume: 6 μL.

Statistical analysis

Bacterial culture was performed three times independently. Bacterial strains were judged positive on screening if the concentrations of phenols in their cultures were significantly higher than those in uninoculated controls as background levels. Results were analyzed by using Student's t-test, and strains were considered positive if the P-value was less than 0.05.

No.	Species	Registration No.	Medium for culture		
	Acidaminococcus fermentans	YIT $6071^{T} = ATCC 25085^{T}$	modified GAM + 1% Glucose broth		
	Acinetobacter baumannii	YIT $12295^{T} = JCM \ 6841^{T}$	Trypticase Soy broth		
	Akkermansia muciniphila	YIT $11774^{T} = ATCC BAA-835^{T}$	modified GAM + 1% Glucose broth		
	Anaerococcus hydrogenalis	YIT $12837^{T} = JCM 7635^{T}$	modified GAM + 1% Glucose broth		
	Anaerococcus vaginalis	YIT $11698^{T} = DSM 7457^{T}$	modified GAM + 1% Glucose broth		
	Anaerostipes caccae	$YIT 10168^{T} = DSM 14662^{T}$	modified GAM + 1% Glucose broth		
	Anaerostipes hadrus	$YIT \ 10092^{T} = DSM \ 3319^{T}$	modified GAM + 1% Glucose broth		
	Bacteroides caccae	YIT $10226^{T} = JCM \ 9498^{T}$	modified GAM + 1% Glucose broth		
	Bacteroides dorei	YIT 12192	modified GAM + 1% Glucose broth		
)	Bacteroides eggerthii	$YIT 10227^{T} = DSM 20697^{T}$	modified GAM + 1% Glucose broth		
	Bacteroides fragilis	YIT $6158^{T} = ATCC 25285^{T}$	modified GAM + 1% Glucose broth		
	Bacteroides ovatus	YIT $6161^{T} = ATCC 8483^{T}$	modified GAM + 1% Glucose broth		
	Bacteroides plebeius	YIT 12661	modified GAM + 1% Glucose broth		
	Bacteroides stercoris	ATCC 43183 ^T	modified $GAM + 1\%$ Glucose broth		
	Bacteroides thethaiotaomicron	YIT $6163^{T} = JCM 5827^{T}$	modified $GAM + 1\%$ Glucose broth		
	Bacteroides uniformis	YIT $6164^{T} = JCM 5828^{T}$	modified $GAM + 1\%$ Glucose broth		
	5	$YIT 6159^{T} = ATCC 8482^{T}$			
	Bacteroides vulgatus	$YII 6159^{T} = AICC 8482^{T}$ $YIT 4011^{T} = ATCC 15703^{T}$	modified GAM + 1% Glucose broth		
	Bifidobacterium adolescentis		modified PYG broth		
	Bifidobacterium animalis	$YIT 4121^{T} = DSM 10140^{T}$	modified PYG broth		
	subsp. lactis				
	Bifidobacterium angulatum	YIT $4012^{T} = ATCC 27535^{T}$	modified PYG broth		
	Bifidobacterium bifidum	$YIT 4039^{T} = DSM 20456^{T}$	modified PYG broth		
	Bifidobacterium breve	$YIT 4014^{T} = ATCC 15700^{T}$	modified PYG broth		
	Bifidobacterium catenulatum	YIT $4016^{T} = ATCC 27539^{T}$	modified PYG broth		
	Bifidobacterium longum subsp.	YIT $4018^{T} = ATCC \ 15697^{T}$	modified PYG broth		
	infantis				
	Bifidobacterium longum subsp. longum	$YIT 4021^{T} = ATCC 15707^{T}$	modified PYG broth		
i	Bifidobacterium	$YIT 4072^{T} = JCM 1200^{T}$	modified PYG broth		
	pseudocatenulatum				
	Blautia coccoides	$YIT 6035^{T} = JCM 1395^{T}$	modified GAM + 1% Glucose broth		
	Blautia hansenii	$YIT 12129^{T} = DSM 20583^{T}$	modified GAM + 1% Glucose broth		
	Blautia hydrogenotrophica	$YIT \ 10080^{T} = DSM \ 10507^{T}$	modified GAM + 1% Glucose broth		
	Blautia producta	YIT $6141^{T} = JCM \ 1471^{T}$	modified GAM + 1% Glucose broth		
	Blautia schinkii	$YIT 6177^{T} = DSM 10518^{T}$	modified GAM + 1% Glucose broth		
	Butyrivibrio crossotus	$YIT 10152^{T} = DSM 2876^{T}$	modified GAM + 1% Glucose broth		
	Citrobacter freundii	YIT $6045^{T} = JCM \ 1657^{T}$	Trypticase Soy broth		
	Citrobacter koseri	YIT $10117^{\rm T} = \text{JCM } 1658^{\rm T}$	Trypticase Soy broth		
	Clostridium aminophilum	YIT $6167^{T} = DSM 10710^{T}$	modified GAM $+$ 1% Glucose broth		
	Clostridium aminophilain Clostridium aminovalericum	YIT $10174^{T} = JCM 11016^{T}$	modified $GAM + 1\%$ Glucose broth		
		$YIT 12840^{T} = DSM 15981^{T}$			
	Clostridium asparagiforme		modified $GAM + 1\%$ Glucose broth		
	Clostridium bifermentans	YIT $6053^{T} = \text{JCM } 1386^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium butyricum	YIT $10073^{T} = \text{JCM } 1391^{T}$	modified GAM + 1% Glucose broth		
	Clostridium celerecrescens	$YIT \ 6168^{T} = DSM \ 5628^{T}$	modified GAM + 1% Glucose broth		
	Clostridium clostridioforme	YIT $6051^{T} = JCM \ 1291^{T}$	modified GAM $+$ 1% Glucose broth		
	Clostridium cochlearium	YIT $12837^{T} = JCM \ 1396^{T}$	modified GAM $+$ 1% Glucose broth		
	Clostridium cocleatum	YIT $6036^{T} = JCM \ 1397^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium difficile	YIT $10084^{T} = JCM \ 1296^{T}$	modified GAM + 1% Glucose broth		
	Clostridium ghonii	YIT $11479^{T} = JCM \ 1400^{T}$	modified GAM + 1% Glucose broth		
	Clostridium glycolicum	YIT $6058^{T} = JCM \ 1401^{T}$	modified GAM + 1% Glucose broth		
	Clostridium hathewayi	YIT $12259^{T} = DSM \ 13479^{T}$	modified PYG broth		
	Clostridium hylemonae	$YIT 12258^{T} = DSM 15053^{T}$	modified PYG broth		
	Clostridium indolis	YIT $10077^{\rm T} = \rm{JCM} \ 1380^{\rm T}$	modified GAM +1% Glucose broth		
1	Clostridium innocuum	$YIT 10151^{T} = DSM 1286^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium leptum	$YIT 6169^{T} = DSM 753^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium limosum	$YIT 6061^{T} = JCM 1427^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium malenominatum	$YIT 12839^{T} = JCM 1427^{T}$ $YIT 12839^{T} = JCM 1405^{T}$			
		-	modified GAM + 1% Glucose broth		
	Clostridium nexile	YIT $6170^{T} = ATCC 27757^{T}$	modified GAM $+$ 1% Glucose broth		
	Clostridium orbiscindens	$YIT 10060^{T} = DSM 6740^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium oroticum	YIT $6037^{T} = JCM \ 1429^{T}$	modified $GAM + 1\%$ Glucose broth		
	Clostridium paraputrificum	YIT $10074^{T} = JCM \ 1293^{T}$	modified GAM + 1% Glucose broth		
	Clostridium perfringens	YIT $6050^{T} = JCM \ 1290^{T}$	modified GAM $+$ 1% Glucose broth		
)	Clostridium ramosum	YIT $10062^{T} = JCM \ 1298^{T}$	modified $GAM + 1\%$ Glucose broth		
)	Clostridium saccharolyticum	YIT $12747^{T} = DSM \ 2544^{T}$	modified GAM + 1% Glucose broth		
L	Clostridium scindens	YIT $6171^{T} = JCM \ 6567^{T}$	modified GAM + 1% Glucose broth		
2	Clostridium sordellii	YIT $6065^{T} = JCM \ 3814^{T}$	modified GAM + 1% Glucose broth		
		-			

Table 1. Continued

No.	Species	Registration No.	Medium for culture
64	Clostridium spiroforme	YIT $10342^{T} = JCM \ 1432^{T}$	modified GAM $+$ 1% Glucose broth
65	Clostridium sporogenes	$YIT 6060^{T} = JCM 1416^{T}$	modified GAM + 1% Glucose broth
66	Clostridium symbiosum	$YIT 11480^{T} = JCM 1297^{T}$	modified GAM + 1% Glucose broth
67	Clostridium tetanomorphum	$YIT 12841^{T} = DSM 4474^{T}$	modified GAM + 1% Glucose broth
68	Clostridium xylanovorans	$YIT 12130^{T} = DSM 12503^{T}$	modified PYG broth
69	Collinsella aerofaciens	$YIT \ 10235^{T} = DSM \ 3979^{T}$	modified GAM + 1% Glucose broth
70	Coprococcus eutactus	YIT $10160^{T} = ATCC 27759^{T}$	modified GAM + 1% Glucose broth
71	Cronobacter sakazakii	YIT $10246^{T} = \text{JCM } 1233^{T}$	Trypticase Soy broth
72	Dorea formicigenerans	$YIT \ 10093^{T} = DSM \ 3992^{T}$	modified GAM + 1% Glucose broth
73	Edwardsiella tarda	YIT $10118^{T} = \text{JCM } 1656^{T}$	Trypticase Soy broth
74	Eggerthella lenta	YIT $6077^{T} = ATCC 25559^{T}$	modified GAM + 1% Glucose broth
75	Enterobacter aerogenes	YIT $6042^{T} = JCM \ 1235^{T}$	Trypticase Soy broth
76	Enterobacter cloacae	YIT $6041^{T} = JCM \ 1232^{T}$	Trypticase Soy broth
77	Enterococcus avium	YIT $10255^{T} = \text{JCM } 8722^{T}$	MRS broth
78	Enterococcus durans	YIT $2036^{T} = GIFU 9960^{T}$	MRS broth
79	Enterococcus faecalis	$YIT 2031^{T} = ATCC 19433^{T}$	MRS broth
80	Enterococcus faecium	YIT $2032^{T} = ATCC \ 19434^{T}$	MRS broth
81	Enterococcus gilvus	$YIT 11114^{T} = DSM 15689^{T}$	MRS broth
82	Enterococcus hirae	YIT $2004^{T} = ATCC \ 8043^{T}$	MRS broth
83	Enterococcus malodoratus	YIT $11175^{T} = JCM \ 8730^{T}$	MRS broth
84	Enterococcus mundtii	YIT $11176^{T} = \text{JCM } 8731^{T}$	MRS broth
85	Enterococcus pseudoavium	$YIT 11177^{T} = JCM 8732^{T}$	MRS broth
86	Enterococcus raffinosus	$YIT 11178^{T} = JCM 8733^{T}$	MRS broth
87	Escherichia coli	YIT $6044^{T} = \text{JCM } 1649^{T}$	Trypticase Soy broth
88	Eubacterium biforme	$YIT 6076^{T} = ATCC 27806^{T}$	modified GAM $+$ 1% Glucose broth
89	Eubacterium cellulosolvens	$YIT 12261^{T} = ATCC 43171^{T}$	modified GAM + 1% Glucose broth
90	Eubacterium cylindroides	$YIT 10236^{T} = DSM 3983^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
91	Eubacterium dolichum	$YIT 100250^{T} = DSM 3505^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
92	Eubacterium eligens	$YIT 10078^{T} = DSM 3376^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
93	Eubacterium hallii	$YIT 10064^{T} = DSM 3353^{T}$	modified GAM $+$ 1% Glucose broth
94	Eubacterium rectale	$YIT 6082^{T} = ATCC 33656^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
95	Eubacterium siraeum	$YIT 10049^{T} = DSM 3996^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
96	Eubacterium uniforme	$YIT 12318^{T} = ATCC 35992^{T}$	modified GAM + 1% Glucose broth
97	Eubacterium ventriosum	$YIT 10066^{T} = ATCC 27560^{T}$	modified GAM + 1% Glucose broth modified GAM + 1% Glucose broth
98	Faecalibacterium prausnitzii	$YIT 10067^{T} = ATCC 27768^{T}$	modified PYG broth
99	Fusobacterium necrogenes	$YIT 10362^{T} = ATCC 25556^{T}$	modified $GAM + 1\%$ Glucose broth
100	Fusobacterium necrogenes	$YIT 10343^{T} = JCM 3718^{T}$	modified GAM $+$ 1% Glucose broth
100	subsp. necrophorum	111 105 15 -)610 57 10	
101	Fusobacterium nucleatum	YIT $6069^{T} = JCM 8532^{T}$	modified GAM + 1% Glucose broth
101	subsp. nucleatum	111 0009 = JGW 8552	mounied Grav + 1% Glacose broth
102	Fusobacterium russii	YIT $10363^{T} = ATCC 25533^{T}$	modified GAM + 1% Glucose broth
102	Fusobacterium varium	YIT 11855 = JCM 3722	modified GAM $+$ 1% Glucose broth
105	Hafnia alvei	$YIT 10121^{T} = JCM 1666^{T}$	Trypticase Soy broth
104	Holdemania filiformis	YIT 12717	modified GAM $+$ 1% Glucose broth
105	Klebsiella oxytoca	YIT $10122^{T} = \text{JCM } 1665^{T}$	Trypticase Soy broth
		FIT 10122 = JCM 1003 YIT 6046 ^T = JCM 1662 ^T	
107 108	Klebsiella pneumoniae Lactobacillus acidophilus	$Y_{11} 0046^{T} = JCM 1062^{T}$ $Y_{1T} 0070^{T} = ATCC 4356^{T}$	Trypticase Soy broth MRS broth
	Lactobacillus brevis	$YIT 0070^{T} = ATCC 4356^{T}$ $YIT 0076^{T} = ATCC 14869^{T}$	
109		$YIT 0180^{T} = ATCC 334^{T}$	MRS broth
110	Lactobacillus casei		MRS broth
111	Lactobacillus fermentum	$YIT \ 0081^{\mathrm{T}} = \text{ATCC} \ 14931^{\mathrm{T}}$	MRS broth
112	Lactobacillus fructivorans	$YIT 0235^{T} = JCM 1117^{T}$	MRS broth
113	Lactobacillus gasseri	$YIT 0192^{T} = DSM 20243^{T}$	MRS broth
114	Lactobacillus plantarum	$\text{YIT } 0102^{\text{T}} = \text{ATCC } 14917^{\text{T}}$	MRS broth
115	Lactobacillus reuteri	YIT $0197^{\rm T} = \text{JCM } 1112^{\rm T}$	MRS broth
116	Lactobacillus ruminis	YIT $0221^{T} = \text{JCM } 1152^{T}$	MRS broth
117	Lactobacillus sakei subsp. sakei	$YIT 0247^{T} = JCM \ 1157^{T}$	MRS broth
118	Lactococcus garvieae	$YIT 2071^{T} = NCFB 2155^{T}$	MRS broth
119	Lactococcus lactis subsp. lactis	$YIT 2008^{T} = ATCC 19435^{T}$	MRS broth
120	Lactococcus plantarum	$YIT 2061^{T} = ATCC 43199^{T}$	MRS broth
121	Lactococcus raffinolactis	YIT $2062^{T} = ATCC 43920^{T}$	MRS broth
122	Megasphaera elsdenii	YIT $6063^{T} = JCM \ 1772^{T}$	modified GAM + 1%Glucose broth
123	Morganella morganii	$YIT 10124^{T} = JCM 1672^{T}$	Trypticase Soy broth
	Olsenella uli	$YIT 12014^{T} = JCM 12494^{T}$	modified $GAM + 1\%$ Glucose broth
124			
124 125	Parabacteroides distasonis	YIT $6162^{T} = JCM 5825^{T}$	modified GAM + 1%Glucose broth

Table 1. Continued

No.	Species	Registration No.	Medium for culture		
127	Parabacteroides merdae	ATCC 43184 ^T	modified GAM + 1%Glucose broth		
128	Peptoniphilus asaccharolyticus	$YIT \ 10026^{T} = GIFU \ 7656^{T}$	modified GAM + 1%Glucose broth		
129	Porphyromonas gingivalis	$YIT 12766^{T} = JCM 12257^{T}$	modified GAM + 1%Glucose broth		
130	Prevotella denticola	YIT 6131 = JCM 8528	modified GAM + 1%Glucose broth		
131	Prevotella intermedia	$YIT 12886^{T} = JCM 11150^{T}$	modified GAM + 1%Glucose broth		
132	Prevotella melaninogenica	YIT $6039^{T} = ATCC 25845^{T}$	modified GAM + 1%Glucose broth		
133	Prevotella oris	$YIT 6134^{T} = JCM 8540^{T}$	modified GAM + 1%Glucose broth		
134	Proteus mirabilis	$YIT 6047^{T} = JCM 1669^{T}$	Trypticase Soy broth		
135	Proteus penneri	$YIT 10252^{T} = JCM 3948^{T}$	Trypticase Soy broth		
136	Proteus vulgaris	$YIT \ 10335^{T} = DSM \ 13387^{T}$	Trypticase Soy broth		
137	Providencia alcalifaciens	$YIT 10128^{T} = JCM 1673^{T}$	Trypticase Soy broth		
138	Providencia rettgerii	$YIT 10108^{T} = DSM 4542^{T}$	Trypticase Soy broth		
139	Pseudomonas aeruginosa	$YIT 6108^{T} = IFO 12689^{T}$	Trypticase Soy broth		
140	Romboutsia lituseburensis	$YIT \ 10059^{T} = JCM \ 1404^{T}$	modified GAM + 1% Glucose broth		
141	Roseburia faecis	$YIT 11921^{T} = DSM 16840^{T}$	modified GAM + 1% Glucose broth		
142	Roseburia hominis	$YIT 11920^{T} = DSM 16839^{T}$	modified GAM + 1% Glucose broth		
143	Roseburia intestinalis	$YIT 10172^{T} = DSM 14610^{T}$	modified GAM + 1% Glucose broth		
144	Ruminococcus bromii	$YIT 6078^{T} = ATCC 27255^{T}$	modified GAM + 1% Glucose broth		
145	Ruminococcus gnavus	YIT $6176^{T} = ATCC 29149^{T}$	modified GAM + 1% Glucose broth		
146	Ruminococcus lactaris	$YIT 10225^{T} = ATCC 29176^{T}$	modified GAM + 1% Glucose broth		
147	Ruminococcus obeum	$YIT 6085^{T} = ATCC 29174^{T}$	modified GAM + 1% Glucose broth		
148	Ruminococcus torques	$YIT \ 10159^{T} = ATCC \ 27756^{T}$	modified GAM + 1% Glucose broth		
149	Staphylococcus epidermidis	$YIT 6049^{T} = ATCC 14990^{T}$	Trypticase Soy broth		
150	Streptococcus mitis	$YIT \ 2069^{T} = GIFU \ 12458^{T}$	MRS broth		
151	Streptococcus salivarius	YIT $10260^{T} = JCM 5707^{T}$	MRS broth		
152	Streptococcus thermophilus	$YIT \ 2037^{T} = ATCC \ 19258^{T}$	MRS broth		
153	Veillonella parvula	YIT $6072^{T} = GIFU 7884^{T}$	modified GAM + 1% Glucose broth		

Phylogenetic analysis

Sequences of the 16S rRNA genes of bacterial strains identical to, or the same species as, the strains used in this study were collected from the Ribosomal Database Project (http://rdp.cme. msu.edu/index.jsp) or GenBank (http://www.ncbi.nlm.nih.gov/g enbank/). Sequences were aligned by using Clustal X 2.1 (Larkin et al. 2007) and analyzed by using the Neighbor Joining method (Saitou and Nei 1987). The phylogenetic tree was visualized by using the TreeView 32 program (ver.1.6.6) (Page 1996). The 16S rRNA sequence of *Desulfovibrio desulfuricans* ATCC 29577^T was used as an outgroup.

Search for homologous protein

Files on the proteins that phenol- or p-cresol-producing bacteria were expected to have were obtained from the National Center for Biotechnology Information (NCBI) database (http://www.nc bi.nlm.nih.gov/); the accession numbers of the derived genomes are listed in Tables 2 and 3. The amino acid sequences of tyrosine phenol-lyase (TPL) from Citrobacter freundii MT-10419 (Iwamori et al. 1991), TyrB (tyrosine aminotransferase) from Escherichia coli K-12 substr. MG1655 (Accession No. NP_418478), and ThiH (tyrosine lyase) from E. coli K-12 (Accession No. NP_418417) were used as queries. Homology searches between queries and obtained protein lists were performed by using GENETYX ver.11. Searches for proteins homologous to KpdB, KpdC and KpdD (Klebsiella pneumoniae decarboxylase) from K. pneumoniae NCTC 418 (Accession Nos. AAY57854, AAY57855 and AAY57856, respectively); HpdA, HpdB and HpdC (p-hydroxyphenylacetate decarboxylase) from Cl. difficile DSM 1296^T (Accession Nos. AJ543427, AJ543425 and AJ543426, respectively); FldH (phenyllactate dehydrogenase); FldBC (phenyllactate dehydratase); AcdA (acyl-CoA

dehydrogenase) and PorA (pyruvate:ferredoxin oxidoreductase A) were performed by using MultiGeneBlast (Medema, Takano and Breitling 2013) with the default parameters. Amino acid sequences encoded by gene clusters consisting of fldL, fldA, fldI, fldB, fldC, acdA, etfB, etfA, permease and fldH from Cl. sporogenes ATCC 15579^T (Accession Nos. EDU39251 to 39261) were used as queries to identify homologs of FldH, FldBC and AcdA. Similarly, amino acid sequences encoded by porA from Cl. sporogenes ATCC 15579^T (Accession Nos. EDU39094 to 39096) were used to search for homologous proteins.

RESULTS

Evaluation of phenol-producing ability

We determined the phenol concentrations in cultures of the 153 strains. The cultures of 36 strains had higher phenol concentrations than the background level (Fig. 1A). Of these 36 strains, 16 (Cl. malenominatum YIT 12839^T, Cl. tetanomorphum YIT 12841^T, Fusobacterium varium YIT 11855, Morganella morganii YIT 10124^T, Cl. cochlearium YIT 12837^T, Cl. saccharolyticum YIT 12747^T, Citrobacter koseri YIT 10117^T, K. pneumoniae YIT 6046^T, Olsenella uli YIT 12014^T, Enterobacter aerogenes YIT 6042^T, Citrobacter freundii YIT 6045^T, Cronobacter sakazakii YIT 10246^T, K. oxytoca YIT 10122^T, En. cloacae YIT 6041^T, F. necrophorum subsp. necrophorum YIT 10343^T and F. russii YIT 10363^T) exhibited phenol production at 100 µM or more in their cultures (Fig. 1C). They were calculated to convert at least half of the supplemented substrates, even if only one of the substrates were metabolized. The remaining 20 strains produced less than 100 μM of phenol in their cultures (Fig. 2A, blue).

We then determined the p-cresol concentrations in the cultures of the 153 strains. The p-cresol concentrations in the

Table 2. Predicted proteins homologous to enzymes involved in metabolic pathways from tyrosine to phenol

		Genome (Accession No.)	% of identity / E-value				
Species	Strains		TPL ^{a)}	TyrB ^{b)}	HadB ^{c)}	HadC ^{d)}	HadD ^{e)}
Citrobacter freundii	YIT 6045 ^T	NZ.JMTA0000000	99/0.0	90/0.0	83/6e ⁻⁹⁸	97/0.0	87/3e ⁻³⁷
Clostridium saccharolyticum	YIT 12747 ^T	NC_014376	70/0.0	-	-	-	-
Cronobacter sakazakii	YIT 10246 ^T	NZ_CP011047	-	85/0.0	82/3e ⁻⁹¹	93/0.0	88/7e ⁻³⁸
Enterobacter aerogenes	YIT 6042 ^T	NC_015663	-	88/0.0	92/2e ⁻¹⁰⁶	98/0.0	92/7e ⁻⁴⁰
Enterobacter cloacae	YIT 6041^{T}	NC_014121	-	87/0.0	90/4e ⁻¹⁰³	96/0.0	94/6e ⁻³⁸
Fusobacterium necrophorum	YIT 10343 ^T	NZ_FMXX0000000	76/0.0	_	-	-	_
Fusobacterium russii	YIT 10363 ^T	NZ_ARMK0000000	82/0.0	-	-	-	-
Klebsiella pneumoniae	YIT 6046 ^T	NZ_AJJI0000000	-	84/0.0	100/2e ⁻¹¹⁴	100/0.0	100/5e ⁻⁴²
Morganella morganii	YIT 10124 ^T	NZ_BCZU00000000	90/0.0	66/0.0	-	-	-
Olsenella uli	YIT 12014 ^T	NC_014363	-	-	48/6e ⁻¹²⁷	40/9e ⁻¹²	48/1e ⁻⁴⁸

^{a)}Iwamori et al. **1991**

^{b)}Accession No. NP-418478

^{c)}Accession No. AAY57854

^{d)}Accession No. AAY57855

^{e)}Accession No. AAY57856

Table 3. Predicted proteins homologous to enzymes involved in metabolic pathways from tyrosine to p-cresol

		Genome (Accession No.)	% of identity / E-value				
Species	Strains		ThiH ^{a)}	TyrB ^{b)}	HpdA ^{c)}	HpdB ^{d)}	HpdC ^{e)}
Blautia hydrogenotrophica Clostridium difficile Olsenella uli Romboutsia lituseburensis	YIT 10080 ^T YIT 10084 ^T YIT 12014 ^T YIT 10059 ^T	NZ_ACBZ00000000 NZ_AUOX00000000 NC_014363 NZ_FNGW00000000	- 36/8e ⁻⁸⁵ - 35/2e ⁻⁸²	- - -	57/2e ⁻¹⁰⁸ 99/0.0 56/6e ⁻¹⁰⁹ 68/9e ⁻¹³³	55/0.0 100/0.0 55/0.0 76/0.0	42/5e ⁻¹⁷ 100/9e ⁻⁴⁷ 34/4e ⁻⁸ 59/2e ⁻²⁸

^{a)}Accession No. NP 418417

^{b)}Accession No. NP_418478

^{c)}Accession No. AJ543427

^{d)}Accession No. AJ543425

e) Accession No. AJ543426

cultures of 55 strains were higher than the background level (Fig. 1B). Blautia hydrogenotrophica YIT 10080^{T} , Cl. difficile YIT 10084^{T} , O. uli YIT 12014^{T} and Romboutsia lituseburensis YIT 10059^{T} produced at least $100 \ \mu$ M of *p*-cresol (Fig. 1D). These four strains had markedly higher *p*-cresol production than the other 51, which produced less than $10 \ \mu$ M (Fig. 2B, blue).

Fourteen strains produced both phenol and p-cresol (Anaerostipes hadrus YIT 10092^T, Bacteroides caccae YIT 10226^T, B. ovatus YIT 6161^T, B. vulgatus YIT 6159^T, Cl. celerecrescens YIT 6168^T, Cl. clostridioforme YIT 6051^T, Cl. cochlearium YIT 12837^T, Cl. indolis YIT 10077^T, Cl. innocuum YIT 10151^T, Cl. saccharolyticum YIT 12747^T, Cl. sphenoides YIT 6059^T, F. varium YIT 11855, O. uli YIT 12014^T and Veillonella parvula YIT 6072^T). Of these strains, only O. uli YIT 12014^T produced both products at more than 100 μ M; the others produced phenol or p-cresol, or both, at less than 10 μ M.

Phylogenetic analysis of phenol-producing strains

All strains used in the screening were phylogenetically analyzed on the basis of the DNA sequences of the 16S rRNA gene. Phylogenetic tree analysis indicated that the phenol-producing strains were widely distributed in the Enterobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Prevotellaceae, Porphyromonadaceae, Fusobacteriaceae, Enterococcaceae and Lactobacillaceae, as well as Clostridium clusters XVIII, XVI, IX, I and XIVa (Fig. 2A). The 16 strains that produced high levels of phenol (100 μ M or more) belonged to specific families, namely the Coriobacteriaceae, Enterobacteriaceae and Fusobacteriaceae, along with Clostridium clusters I and XIVa. *p*-cresol-producing strains were dispersed across the Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Fusobacteriaceae and Lactobacillaceae, along with Clostridium clusters XVI, IX, IV, I, XI, XIII and XIVa (Fig. 2B). Among them, four high *p*cresol producers (100 μ M or more) belonged to the specific family Coriobacteriaceae, or to Clostridium clusters XI and XIVa. The 14 strains that produced both phenol and *p*-cresol fell into the Fusobacteriaceae, Coriobacteriaceae or Bacteroidaceae, or Clostridium clusters XVI, IX, I and XIVa (Fig. 2). O. uli YIT 12014^T, which had strong ability to produce phenol and *p*-cresol, belonged to the Coriobacteriaceae.

Prediction of metabolic pathways in phenol-producing strains

Three enzymes are involved in the initial or final steps of metabolic pathways from tyrosine to phenol: TPL, which metabolizes tyrosine to phenol in one step; TyrB, which metabolizes tyrosine to 4-hydroxyphenylpyruvate; and Had (hydroxyarylic acid decarboxylase), which metabolizes 4-hydroxybenzoate to phenol (Fig. 3A and B). Their activities were examined by using TPL from *C. freundii* MT-10419 (Iwamori *et al.* 1991), TyrB from

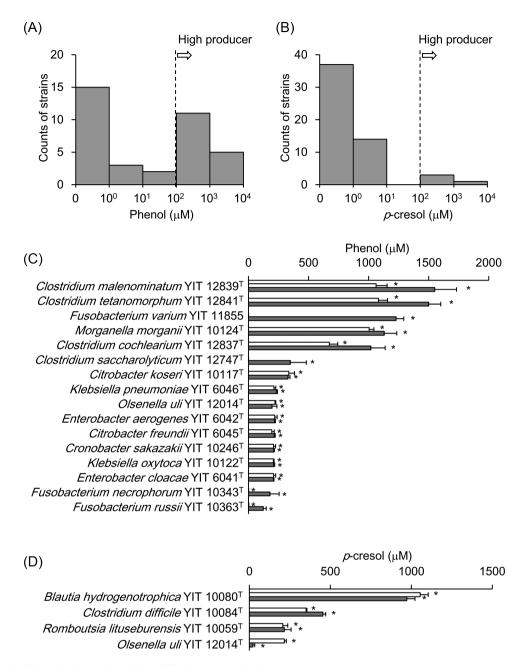
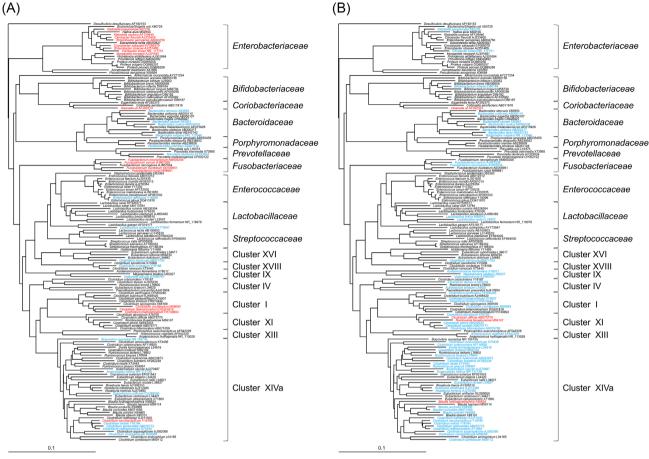
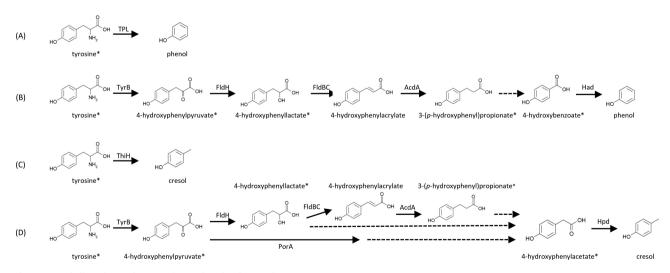



Figure 1. Evaluation of phenol and *p*-cresol production ability in 153 screened strains


One-hundred fifty three strains were cultured in rich or poor medium for 6 days. The counts of (A) phenol-positive strains and (B)p-cresol-positive strains are shown as histograms. The concentrations of (C) phenol and (D)p-cresol produced in culture by high producers are shown. White bars indicate results using rich-medium; gray bars indicate those using basal medium. Error bars indicate standard deviations. Asterisks represent P < 0.05 as analyzed by Student's t-test (increased compared with uncultured control medium).

E. coli strain K-12 (Kuramitsu et al. 1985), and Had from K. pneumoniae NCTC 418 (Lupa 2005), respectively. We then analyzed 10 strains with high phenol-producing ability, namely C. freundii YIT6045^T, Cl. saccharolyticum YIT 12747^T, C. sakazakii YIT 10246^T, En. aerogenes YIT 6042^T, En. cloacae YIT 6041^T, F. necrophorum subsp. necrophorum YIT 10343^T, F. russii YIT 10363^T, K. pneumoniae YIT 6046^T, M. morganii YIT 10124^T and O. uli YIT 12014^T, the draft genomes of which had already been sequenced, to determine whether homologous proteins of TPL, TyrB or Had were encoded in their genomes. A search for homologs of TPL derived from C. freundii MT-10419 revealed that homologs were encoded in the genomes of C. freundii YIT 6045^T (99% identity of amino acid sequences), Cl. saccharolyticum YIT $12747^{T}(70\%)$, F. necrophorum subsp. necrophorum YIT $10343^{T}(76\%)$, F. russii YIT $10363^{T}(82\%)$ and M. morganii YIT 10124^{T} (90%) (Table 2). Similarly, we found that homologs of TyrB from E. coli strain K-12 were encoded in the genomes of C. freundii YIT 6045^{T} (90% identity of amino acid sequences), C. sakazakii YIT 10246^{T} (85%), En. aerogenes YIT $6042^{T}(88\%)$, En. cloacae YIT 6041^{T} (87%), K. pneumoniae YIT 6046^{T} (84%) and M. morganii YIT 10124^{T} (66%) (Table 2). Had activity depended on three clusters encoded in the hadBCD operon and a cell lysate of E. coli transformed with kpdBCD; the hadBCD operon derived from K. pneumoniae NCTC 418 can metabolize 4-hydroxybenzoate to phenol (Lupa 2005). Thus, homologs

Figure 2. Phylogenetic analysis of phenol or *p*-cresol producing bacteria

DNA sequences of 16S rRNA from 153 strains were subjected to phylogenetic analysis using Clustal X 2.1 and phylogenetic trees were constructed. (A) Phenol- or (B)p-cresol-producing strains are colored red (strains that produced at least 100 µM product) or blue (strains that produced less than 100 µM product). Strains in black font are phenol non-producers. Cluster no. represents the Clostridium 16S rRNA phylogenic cluster number (Collins et al. 1994). Accession numbers used for analysis are displayed according to the name of each species, respectively.

Figure 3. Metabolic pathways from tyrosine to phenol and p-cresol

Metabolic pathways from tyrosine to phenol (A, B) and p-cresol (C, D) are shown as indicated by previous reports (Enei et al. 1973; Gelfand and Steinberg 1977; Kriek et al.2007; Windey, De Preter and Verbeke 2012; Dodd et al.2017). Known enzymes-tyrosine phenol-lyase (TPL), tyrosine aminotransferase B (TyrB), phenyllactate dehydrogenase (FldH), phenyllactate dehydratase (FldBC), acyl-CoA dehydrogenase (AcdA), hydroxyarylic acid decarboxylase (Had), tyrosine lyase (ThiH), pyruvate:ferredoxin oxidoreductase A (PorA) and hydroxyphenylacetate decarboxylase (Hpd)—are shown near the arrows for each step. Steps with unidentified enzymes are indicated by dotted lines. Compounds used in this study are marked with asterisks.

of KpdBCD were found to be encoded in the genome of *C. fre*undii YIT 6045^T, *C. sakazakii* YIT 10246^T, *En. aerogenes* YIT 6042^T, *En. cloacae* YIT 6041^T and *K. pneumoniae* YIT 6046^T with more than 80% identity of amino acid sequences; in the case of *O. uli* YIT 12014^T there was 40% to 48% identity (Table 2). The three homologs were encoded on these genomes in the order of HadB, HadC and HadD, except in the case of *O. uli* YIT 12014^T, the three homologs of which were encoded on the genome in the order of hadC, hadD and hadB; the ORF encoding cation transporter was inserted between hadD and hadB (Fig. S1A, Supporting Information). FldBC homologs and AcdA homologs were not detected in the genomes of these six hadBCD-operon-positive strains (data not shown).

Prediction of metabolic pathways in *p*-cresol-producing bacteria

TyrB and Hpd, which metabolize 4-hydroxyphenylacetate to pcresol, and ThiH, which metabolizes tyrosine to p-cresol in one step, are metabolic enzymes that act in metabolic pathways from tyrosine to p-cresol (Fig. 3C and D). We therefore examined whether TyrB, Hpd or ThiH homologous proteins were found in all four strains (B. hydrogenotrophica YIT 10080^T, Cl. difficile YIT 10084 $^{\rm T}$, O. uli YIT 12014 $^{\rm T}$ and R. lituseburensis YIT 10059^T) with high *p*-cresol-producing ability. We used information already reported on their draft genome sequences. No proteins with more than 30% amino acid sequence identity to TyrB of E. coli strain K-12 were found. In Cl. difficile DSM 1296^T, three enzymes—HpdA, an activating enzyme; HpdC, a large subunit; and HpdC, a small subunit—are responsible for Hpd activity and are encoded in the hpdBCA operon (Andrei et al. 2004). Homologs of HpdBCA were identified in all four strains, with more than 30% identity of amino acid sequences (Table 3). In all four strains, the three homologs were encoded in a line in the order of hpdB, hpdC and hpdA (Fig. S1B, Supporting Information). ThiH from E. coli strain K-12 metabolizes tyrosine to dehydroglycine as the first step of the thiamine synthesis pathway, and p-cresol is formed as a by-product of this step (Kriek et al. 2007). We then found ThiH homologs encoded by the genome of Cl. difficile YIT 10084^T (36% amino acid sequence identity) and R. lituseburensis YIT 10059^T (35%) (Table 3). Analysis of homologs of other enzymes involved revealed that all four strains harbored FldH or PorA or both (data not shown). FldBC homologs were identified in B. hydrogenotrophica YIT 10080^T and O. uli YIT 12014^T. No AcdA homologs were identified in any strain (data not shown).

DISCUSSION

Screening conditions

To identify phenol- and *p*-cresol-producing bacteria, we used two major strategies. First, we supplemented the culture media with metabolic intermediates. Some of the supplemented intermediates—for example, 4-hydroxyphenyllactate and 4hydroxyphenylacetate—are formed by intestinal bacteria in vitro (Smith and Macfarlane 1996; Beloborodova *et al.* 2012), suggesting that phenol- and *p*-cresol-producing bacteria further metabolize these intermediates in the intestinal environment. Cl. difficile YIT 10084^T and O. uli YIT 12014^T, which lacked a gene encoding TyrB in their genomes, might produce phenols from 4-hydroxyphenylpyruvate, 4-hydroxyphenyllactate, 3-(*p*-hydroxyphenyl)propionate, 4-hydroxybenzoate or 4hydroxyphenylacetate as initial substrates in the intestine (Fig. 3B and D). Considering the complicated nature of the intestinal ecosystem, adding predicted metabolic intermediates to the culture media for screening was an effective strategy.

Second, we considered that other factors in the media might have affected phenol-production ability. Enei *et al.* (1973) reported that the presence of glucose in culture media suppressed TPL production in *Erwinia herbicola* ATCC 21434. Indeed, some TPL-positive strains, as represented by Cl. saccharolyticum YIT 12747^T and *F. russii* YIT 10363^T, produced much more phenol in glucose-limited media (poor media) than glucose-supplemented media (rich media) (Fig. 1C). On the other hand, glucose-limited media might be disadvantageous to growth. For example, *O. uli* YIT 12014^T produced less *p*-cresol in poor medium than in rich medium (Fig. 1D), possibility because of this growth limitation. Thus it is a reasonable strategy to use both rich and poor media supplemented with tyrosine metabolites.

Identification of strains producing phenols

This study newly found 29 strains with phenol-producing potential and 51 with p-cresol-producing potential. Of the 36 phenol-positive strains, three-Cl. malenominatum YIT 12839^T, Cl. tetanomorphum YIT 12841^T and Cl. cochlearium YIT 12837^T have already been reported to produce phenol (Elsden, Hilton and Waller 1976). Moreover, K. pneumoniae YIT 6046^T, En. cloacae YIT 6041^T and M. morganii YIT 10124^T are known as phenolproducing bacteria at the species level (Patel and Grant 1969; Valkova et al. 2001; Matsui et al. 2006; Iizuka et al. 2009b). The phenol-producing ability of C. freundii YIT 6045^T had not been reported but had been surmised, because the phenol-forming activity of the purified TPL gene product from C. freundii species has been well characterized (Chandel and Azmi 2013). To our knowledge, the remaining 29 strains were identified here for first time as phenol producing. Among the 55 p-cresol-producing strains identified in this study, B. longum subsp. infantis YIT 4018^T, Cl. difficile YIT 10084^T, Cl. paraputrificum YIT 10074^T and F. necrogenes YIT 10362^T have already been examined for their ability to produce p-cresol (Bone, Tamm and Hill 1976; Elsden, Hilton and Waller 1976; Smith and Macfarlane 1996). Here, we identified, for the first time, the remaining 51 strains as p-cresolproducing bacteria.

An abundance of strong producers of phenols in the intestine could affect the host's health. The 16 phenol producers with high activity belonged to the Fusobacteriaceae, Enterobacteriaceae or Coriobacteriaceae, or to Clostridium clusters I and XIVa, and the four p-cresol producers with high activity belonged to the Coriobacteriaceae or to Clostridium cluster XI or XIVa. Kaur, Das and Mande (2017) have reported a relationship between the abundance of specific bacterial groups or specific putrefaction pathways in the intestine and the host's stage of colorectal cancer. The information from our study could be a new clue to understanding diseases associated with phenols (Boutwell and Bosch 1959; Iizuka et al. 2009a; b, Windey, De Preter and Verbeke 2012; Ito and Yoshida 2014; Shiba et al. 2014; Andriamihaja et al. 2015; Verbeke et al. 2015). For this purpose, we need to examine whether fecal concentrations of phenols are related to the intestinal counts of phenol- and *p*-cresol-producing clusters. Furthermore, clinical studies are needed to investigate whether the occurrence of diseases associated with phenols is relevant to the abundance of intestinal producers of phenols.

Metabolic pathways from tyrosine to phenols

The metabolic pathways by which bacteria produce phenols are linked to the possession of pathway-related metabolic enzymes. In the genomes of 10 of the strong phenol producers analyzed here (Table 2; genome information for the remaining six was not available in the public database), homologs of TPL or Had were encoded, suggesting that each strain used pathways relevant to the enzymes they possessed (Fig. 3A and B). Cl. saccharolyticum YIT 12747^T, F. necrophorum subsp. necrophorum YIT 10343^T, F. russii YIT 10363^T, and M. morganii YIT 10124^T used TPLdependent pathways; C. sakazakii YIT 10246^T, En. aerogenes YIT 6042^{T} , En. cloacae YIT 6041^{T} , K. pneumoniae YIT 6046^{T} and O. uli YIT 12014^T used Had-dependent pathways, and C. freundii YIT 6045^T used both TPL- and Had-dependent pathways. None of the Had-positive strains harbored FldBC homologs, indicating that these strains could use 3-(p-hydroxyphenyl)propionate or 4hydroxybenzoate as initial metabolic substrates. More detailed analysis is needed to clarify the enzymes involved in the unknown parts of the Had-dependent pathways (Fig. 3B).

All four strong *p*-cresol-producing bacteria are predicted to harbor homologs of ThiH or Hpd that are involved in the final steps of *p*-cresol production. (Fig. 3C and D). This result suggests that ThiH or Hpd, or both, are key enzymes in producing *p*-cresol in these strains. We can predict from the genomic analysis that B. hydrogenotrophica YIT 10080^{T} and O. uli YIT 12014^{T} could utilize Hpd-dependent pathways, whereas Cl. difficile YIT 10084^{T} and R. lituseburensis YIT 10059^{T} could use both Hpdand ThiH-dependent pathways. The lack of TyrB homologs and the presence of Hpd homologs in the four abovementioned strains suggest that these strains utilize tyrosine metabolites such as 4-hydroxyphenylpyruvate, 4-hydroxyphenyllactate, 3-(*p*-hydroxyphenyl)propionate or 4-hydroxyphenylacetate as initial substrates (Fig. 3D). This information could be a clue to identifying the metabolic scheme of *p*-cresol formation.

Revealing overall metabolic pathways is important for understanding intestinal microbial ecology. Draft genome sequencing of six strains not analyzed in this study (*Cl. malenominatum* YIT 12839^T, *Cl. tetanomorphum* YIT 12841^T, *F. varium* YIT 11855, *Cl. cochlearium* YIT 12837^T, *C. koseri* YIT 10117^T and *K. oxytoca* YIT 10122^T) is needed. We also need to identify the currently unknown enzymes involved in the metabolism of phenols.

Limitations of this study

This screening took into account the intestinal environment, but there were three major limitations. First, the number of strains examined was limited from the perspective of the diversity of intestinal bacteria. Second, because the ability to produce phenols was evaluated in only one representative strain of each species, we did not consider variations in the ability to produce phenols among strains within a species. Third, the results of this *in vitro* screening might not always reflect the ability to produce phenols in the intestinal environment. Despite these limitations, this study was meaningful in that we were able to relate producers of phenols to clusters by phylogenetic analysis. This should give new insights into production of phenols in the intestine from the perspective of molecular genetics.

CONCLUSION AND FUTURE PERSPECTIVES

We identified 36 phenol-producing bacteria and 55 *p*-cresolproducing bacteria. Strong phenol producers belonged to the Coriobacteriaceae, Enterobacteriaceae, Fusobacteriaceae and Clostridium clusters I and XIVa, and strong *p*-cresol producers belonged to the Coriobacteriaceae and Clostridium clusters XI and XIVa. Such information on phenol- and *p*-cresol-producing bacteria should help identify the relationships between microbiota and host disease, as well as the underlying mechanisms.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.

ACKNOWLEDGMENTS

All of the authors are employed by Yakult Honsha Co., Ltd. The authors thank Dr. Koji Kawakami from our institute for their technical help and useful advice and discussions.

Conflict of interest. None declared.

REFERENCES

- Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 2014;12:164.
- Andrei PI, Pierik AJ, Zauner S *et al.* Subunit composition of the glycyl radical enzyme *p*-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. *Eur J Biochem* 2004;**71**:2225–30.
- Andriamihaja M, Lan A, Beaumont M et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite *p*-cresol on colonic epithelial cells. Free Radic Biol Med 2015;85:219–27.
- Bäckhed F, Ley RE, Sonnenburg JL et al. Host-bacterial mutualism in the human intestine. *Science* 2005;**307**:1915–20.
- Beloborodova N, Bairamov I, Olenin A et al. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci 2012;19:89.
- Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr 1976;29:1448–54.
- Boutwell RK, Bosch DK. The tumor-promoting action of phenol and related compounds for mouse skin. *Cancer Res* 1959;**19**:413–24.
- Chandel M, Azmi W. Purification and characterization of tyrosine phenol lyase from Citrobacter freundii. Appl Biochem Biotechnol 2013;171:2040–52.
- Collins MD, Lawson PA, Willems A et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–26.
- Dodd D, Spitzer MH, Van Treuren W et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017;551:648–52.
- Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol 1976;**107**:283–8.
- Enei H, Yamashiti K, Okumura S et al. Culture conditions for the preparation of cells containing high tyrosine phenol lyase activity. Agr Biol Chem 1973;**37**:485–92
- Evenepoel P, Meijers BK, Bammens BR et al. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 2009;114:S12–9.

- Gelfand DH, Steinberg RA. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 1977;**130**:429–40.
- Iizuka R, Kawakami K, Chiba K. Gut bacteria producing phenols disturb keratinocyte differentiation in human skin. *Microbial Ecol Health Dis* 2009;**21**:221–7
- IIzuka R, Kawakami K, Izawa N et al. Phenols produced by gut bacteria affect the skin in hairless mice. Microbial Ecol Health Dis 2009;**21**:50–6
- Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. *Toxins (Basel)* 2014;6:665–78.
- Iwamori S, Yoshino S, Ishiwata K et al. Structure of tyrosine phenol-lyase genes from Citrobacter freundii and structural comparison with tryptophanase from Escherichia coli. J Ferment Bioeng 1991;**72**:147–51
- Kaur H, Das C, Mande SS. In Silico Analysis of putrefaction pathways in bacteria and its implication in colorectal cancer. Front Microbiol. 2017;8:2166.
- Kibe R, Kurihara S, Sakai Y et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 2014;4:4548.
- Kriek M, Martins F, Challand MR et al. Thiamine biosynthesis in Escherichia coli: identification of the intermediate and by-product derived from tyrosine. Angew Chem Int Ed Engl 2007;46:9223–6.
- Kuramitsu S, Inoue K, Ogawa T et al. Aromatic amino acid aminotransferase of Escherichia coli: nucleotide sequence of the tyrB gene. Biochem Biophys Res Commun 1985;**133**:134–9.
- Larkin MA, Blackshields G, Brown NP et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–8.
- Lupa B, Lyon D, Gibbs MD et al. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. *Genomics* 2005;**86**:342–51.
- Matsui T, Yoshida T, Hayashi T et al. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch Microbiol 2006;**186**:21–9.
- Medema MH, Takano E, Breitling R. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 2013;**30**:1218–23.

- Meyer TW, Hostetter TH. Uremic solutes from colon microbes. Kidney Int 2012;81:949–54.
- Nicholson JK, Holmes E, Kinross J et al. Host-gut microbiota metabolic interactions. *Science* 2012;**336**:1262–7.
- Niwa T. Phenol and *p*-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. *Clin Chem* 1993;**39**:108–11
- Page RD. TreeView: an application to display phylogenetic trees on personal computers.. Comput Appl Biosci 1996;12:357–8.
- Patel JC, Grant DJ. The formation of phenol in the degradation of *p*-hydroxybenzoic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek 1969;**35**:53–64.
- Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–25.
- Shiba T, Kawakami K, Sasaki T et al. Effects of intestinal bacteriaderived *p*-cresyl sulfate on Th1-type immune response in vivo and in vitro. Toxicol Appl Pharmacol 2014;**274**:191–9.
- Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 1996;81:288–302.
- Sugiyama Y, Masumori N, Fukuta F et al. Influence of isoflavone intake and equol-producing intestinal flora on prostate cancer risk. Asian Pac J Cancer Prev 2013;14:1–4.
- Valkova N, Lépine F, Valeanu L et al. Hydrolysis of 4hydroxybenzoic acid esters (parabens) and their aerobic transformation into phenol by the resistant Enterobacter cloacae strain EM. Appl Environ Microbiol 2001;67:2404–9.
- Verbeke KA, Boobis AR, Chiodini A et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015;28:42–66.
- Wang Z, Klipfell E, Bennett BJ et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57–63.
- Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;**56**:184–96