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Abstract: This study demonstrates the utility of thermo-regulated phase separable alumina/camphene
suspensions containing poly(methyl methacrylate) (PMMA) microspheres as porogens for the pro-
duction of multi-scale porosity structures. The homogeneous suspension prepared at 60 ◦C could
undergo phase separation during freezing at room temperature. This process resulted in the 3D net-
works of camphene crystals and alumina walls containing PMMA microspheres. As a consequence,
relatively large dendritic pores with several tens of microns size could be created as the replica of
frozen camphene crystals. In addition, after the removal of PMMA microspheres via heat-treatment,
micron-sized small spherical pores could be generated in alumina walls. As the PMMA content with
respect to the alumina content increased from 0 vol% to 40 vol%, while the camphene content in
the suspensions was kept constant (70 vol%), the overall porosity increased from 45.7 ± 0.5 vol% to
71.4 ± 0.5 vol%. This increase in porosity is attributed to an increase in the fraction of spherical pores
in the alumina walls. Thus, compressive strength decreased from 153 ± 18.3 MPa to 33 ± 7.2 MPa.
In addition, multi-scale porosity alumina objects with a honeycomb structure comprising periodic
hexagonal macrochannels surrounded by dual-scale porosity walls were constructed using a 3D
plotting technique.

Keywords: freeze casting; porogen; sacrificial templates; multi-scale porous ceramic

1. Introduction

Porous ceramics can find very useful applications in diverse fields. For example, they
can be used as lightweight structural components with high specific strengths and stiffness,
scaffolds for bone regeneration [1–4], filters [5–7], thermal insulators [8,9], and electrical
components [10–12]. Fundamentally, the characteristics of porous structures (i.e., porosity,
pore size, pore geometry, pore interconnectivity, and pore size distribution) play key roles
in the functions of porous ceramics [13]. In this regard, special attention has been paid
to the creation of multiple pores at different length scales, in order to offer significantly
enhanced mechanical functions at given porosities [14–17]. In particular, when used as
bone scaffolds, macropores can provide favorable spaces for bone ingrowth and micropores
in ceramic walls can stimulate bone regeneration [18–20].

In the manufacture of porous ceramics, the freeze casting of ceramic suspensions has
demonstrated great advances, owing to its simplicity in processing and great ability to
tailor the porosity and pore size [21–26]. More specifically, ceramic suspensions, comprising
fine ceramic particles, freezing vehicle (e.g., water and camphene), and dispersant, are cast
into molds below the melting point of the freezing vehicle. After this, the frozen objects
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are freeze-dried to remove frozen crystals. The green objects can be then sintered at a
high temperature to densify ceramic walls. This approach can create three-dimensionally
interconnected pores with tunable pore sizes, which are hardly obtainable using traditional
manufacturing techniques (e.g., porogen leaching and sponge replication techniques) [13].
In addition, several approaches have been proposed to manufacture dual-scale porosity
ceramics comprised of large pores surrounded by microporous ceramic walls. For example,
micropores can be readily obtained by inducing necking between particles after partial
sintering [27]. Two-stage freeze casting can create lamellar microstructures with interlamel-
lar bridges [28]. The use of short fibers as a building block for freeze casting can create
fibrous walls [29]. Freeze casting coupled with a carbothermal reduction process can create
nanofibrous walls surrounding large lamellar pores [30,31]. In addition, ceramic/camphene
(C10H16) suspensions can be frozen at room temperature because of the relatively high melt-
ing point of camphene (~48 ◦C) [32–34]. Thus, frozen ceramic compounds can be used as a
feedstock for 3D printing, such as digital light processing [35] and UV-curing assisted 3D
plotting [36,37]. These approaches can manufacture dual-scale porosity ceramics comprised
of relatively large pores separated by porous ceramic walls. However, interconnectivity
between pores created as the replica of camphene crystals and overall porosity need to be
improved, in order to widen their applications.

Thus, we herein employed poly(methyl methacrylate) (PMMA) microspheres as a supple-
mentary pore-forming agent in camphene-based freeze casting for the manufacture of dual-scale
porosity ceramic structures. Basically, polymeric microspheres have been widely used to pro-
duce porous ceramics, since they can be readily removed by heat-treatment [38–41]. However,
little attention has been paid to the utilization of polymeric microspheres in freeze casting pre-
sumably due to the potential segregation of polymeric microspheres with relative low density
during freezing. We specially employed a PMMA polymer, since it is stable in molten cam-
phene [42]. It should be noted that polystyrene (PS) is not applicable to camphene-based freeze
casting because of its solubility in molten camphene [43]. In addition, PMMA microspheres with
several microns were used, in order to induce effective rejection by growing camphene crystals
without segregation. We examined how the addition of PMMA microspheres would affect
the freezing behavior of alumina/camphene suspensions prepared at 60 ◦C and generation
of dual-scale porosity. The effect of PMMA content on the overall porosity and compressive
strength - of dual-scale porosity alumina ceramics was examined. In addition, the effect of
camphene content at a given PMMA content was examined. In order to demonstrate the utility
of alumina/camphene suspensions containing PMMA porogen, multi-scale porosity structures
were also constructed using a 3D plotting technique.

2. Materials and Methods
2.1. Starting Materials

Table 1 summarizes the components of an alumina suspension prepared using cam-
phene as a thermo-regulated phase separable vehicle (i.e., freezing vehicle) and poly(methyl
methacrylate) (PMMA) microspheres as a porogen. All components were used as received.

Table 1. Components of an alumina suspension prepared using camphene as a thermo-regulated
phase separable vehicle (i.e., freezing vehicle) and poly(methyl methacrylate) (PMMA) microspheres
as a porogen.

Component Material (Supplier)

Ceramic Powder Alumina (Kojundo Chemical Co., Ltd., Sakado, Japan)

Freezing Vehicle Camphene (Sigma-Aldrich, St. Louis, MO, USA)

Porogen Poly(methyl methacrylate) (PMMA) (Sunjin Beauty Science,
Ansan-si, Korea)

Dispersant Hypermer KD-4 (UniQema, Everburg, Belgium)
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2.2. Freeze Casting of Alumina Suspensions

Alumina suspensions were prepared by mixing alumina particles, PMMA micro-
spheres, and dispersant with molten camphene at 60 ◦C by ball-milling for 24 h. To control
the overall porosity and porous structure of dual-scale porosity alumina objects, various
PMMA contents (0 vol%, 20 vol%, 30 vol%, and 40 vol%) with respect to the alumina
content were employed, while the same camphene content (70 vol%) with respect to the
alumina/PMMA content was used for all suspensions (Table 2). In a similar way, two
different camphene contents (60 vol% and 80 vol%) with the same PMMA content (30 vol%)
were also prepared.

Table 2. Compositions of various alumina suspensions used to produce multi-scale porosity alumina
structures with controlled porous structures.

Camphene [vol%] PMMA [vol%] Alumina [vol%] KD4 [vol%]

PMMA
Contents

70.00 0.00 27.57 2.43

70.00 6.00 21.91 2.09

70.00 9.00 19.08 1.92

70.00 12.00 16.25 1.75

Camphene
Contents

60.00 12.00 25.44 2.56

80.00 6.00 12.72 1.28

Prior to freeze casting, polyethylene (PE) molds with a diameter of ~6.3 mm were
cooled at −20 ◦C, in order to induce the rapid solidification of alumina suspensions at
room temperature. Alumina suspensions prepared at 60 ◦C were poured into the cool
PE molds. After that, the solidified samples were removed from the PE molds. The
diameter and height of the samples were ~6.3 mm and ~8.4 mm, respectively. In addition,
honeycomb structures composed of periodic hexagonal macrochannels surrounded by
dual-scale porosity alumina walls were constructed using a 3D plotting technique similar to
the ceramic/camphene-based 3D extrusion process [44]. To this end, an alumina suspension
was cast prepared at 60 ◦C into a metallic mold with an inner diameter of 10 mm, and
then frozen at room temperature. The frozen feedstock was then extruded through a 1 mm
diameter at a constant extrusion speed of 120 mm/min (Figure 1A). The extruded filaments
were then deposited at a constant speed of 110 mm/min according to a predetermined
build path (Figure 1B).
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Figure 1. (A) Custom-built 3D plotter used to manufacture a honeycomb structure and (B) design of
a honeycomb structure.

The green samples were freeze-dried to remove camphene crystals. Thereafter, the
porous green bodies were slowly heat-treated, particularly in the temperature range of
400 ◦C–600 ◦C, in order to carefully remove PMMA microspheres, and then finally sintered
at 1550 ◦C for 3 h, in order to densify alumina walls.
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2.3. Porous Structure and Microstructure Evaluations

The sintering shrinkages of dual-scale porosity alumina structures produced using var-
ious PMMA and camphene contents were computed by measuring their diameters before
and after sintering. The densities of the sintered objects were calculated by measuring their
mass and volume. Relative density and overall porosity were computed by considering
the theoretical density of alumina (3.97 g/cm3). Porous structures and microstructures
of the green and sintered objects were characterized by field emission scanning electron
microscopy (FE-SEM; JSM-6701F, JEOL Techniques, Tokyo, Japan).

2.4. Compressive Strength Tests

Mechanical properties of the dual-scale porosity alumina structures produced using
various PMMA and camphene contents were characterized using a universal testing machine
(Instron 5582, Instron Corp., Canton, MA, USA). Samples of ~5.2 mm in diameter and ~7.0 mm
height were compressed at a constant crosshead speed of 1 mm/min. During the tests,
compressive loads were recorded as a function of displacement. Compressive strengths of the
samples were computed by considering their peak load and cross-sectional area. Five samples
were tested for each condition, in order to obtain the mean value and deviation.

3. Results and Discussion
3.1. Effect of PMMA Addition on Pore Structure and Microstructure of Green Objects

In this study, we investigated the utility of thermo-regulated phase separable alu-
mina/camphene suspensions containing PMMA microspheres as a supplementary pore-
forming agent for the production of multi-scale porosity structures. PMMA polymer
was specially employed, since it would not dissolve in molten camphene [42] unlike
polystyrene (PS) [43]. Fundamentally, our approach adopts the principle of camphene-
based ceramic freeze casting [33]. More specifically, when placed below the melting point
of camphene (~42 ◦C), alumina suspensions can undergo phase separation, resulting in
a three-dimensional network of camphene crystals, surrounded by walls composed of
alumina particles and PMMA microspheres. Thus, large interconnected dendritic pores can
be created by the removal of camphene crystals via freeze-drying, while relatively small
spherical pores can be generated in alumina walls by the removal of PMMA microspheres
via heat treatment [38–40].

To examine the effect of PMMA addition on the development of dual-scale porosity
structures, four kinds of alumina/camphene suspensions with various PMMA contents
(Table 2)—0 vol%, 20 vol%, 30 vol%, and 40 vol% with respect to the alumina content—were
prepared at 60 ◦C. The prepared suspensions were then cast into cool PE molds, followed
by solidification at room temperature. After freeze-drying for the removal of camphene
crystals, the porous structures and microstructure of the green samples were characterized
by FE-SEM, as shown in Figure 2A–H. Without PMMA addition, the sample showed the
typical porous structure of a freeze-cast ceramic body (Figure 2A). Interconnected pores
with high aspect ratios were created as the replica of camphene crystals that had grown
dendritically along the direction of heat conduction [43,45].

Alumina particles were highly concentrated (Figure 2E), which would result in highly
densified alumina walls after sintering. In addition, all samples produced using PMMA
addition showed highly porous structures (Figure 2B–D). This finding suggests that PMMA
addition did not hinder the dendritic growth of camphene crystals during freezing. How-
ever, interestingly, PMMA addition resulted in larger dendritic pores, and the size increased
slightly with the increase in PMMA content. Although a further study is required, it is
reasonable to suppose that the size of camphene crystals is limited when the force generated
by packed particles starts to exceed the force generated by the growing crystal to push parti-
cles [46]. Thus, PMMA microspheres with much lower density and larger size (a size range
of 0.3–6.55 µm used in this study) than alumina particles could be more easily pushed by
growing camphene crystals. This resulted in larger dendritic pores. All samples produced
with PMMA addition showed highly concentrated walls, composed of alumina particles
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surrounding PMMA microspheres that are indicated by the yellow arrows (Figure 2F–H).
More PMMA microspheres were observed for the higher initial PMMA content added into
suspensions. This finding suggests that, during the dendritic growth of camphene crystals,
PMMA microspheres added into alumina suspensions could be effectively pushed with
alumina particles without segregation.
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Figure 2. Representative FE-SEM images of green objects produced using different PMMA contents:
0 vol% (A,E), 20 vol% (B,F), 30 vol% (C,G), and 40 vol% (D,H). The yellow arrows indicate PMMA
microspheres in alumina walls.

3.2. Dual-Scale Pore Structures of Sintered Objects

Green objects produced using various PMMA contents (0 vol%, 20 vol%, 30 vol%, and
40 vol%) were carefully heat-treated particularly at the temperature range of 400 ◦C–600 ◦C to
remove PMMA microspheres, followed by sintering at 1550 ◦C for 3 h. Sintering shrinkage
decreased from 17.8 ± 0.4% to 15.3 ± 0.7 vol% with the increase in PMMA content from 0 vol%
to 30 vol% (Table 3). However, a very small change was observed for higher PMMA content
(40 vol%). This was attributed to the reduction in the fraction of alumina walls required
for densification.

Table 3. Sintering shrinkages of dual-scale porosity structures produced using different PMMA
contents (0 vol%, 20 vol%, 30 vol%, and 40 vol%).

PMMA Content [vol%] 0 20 30 40

Sintering shrinkage [%] 17.8 ± 0.4 16.2 ± 0.7 15.3 ± 0.7 15.6 ± 1.0

Figure 3A–H show representative FE-SEM images of sintered objects. Without PMMA
addition, the sample showed the typical porous structure of a freeze-cast ceramic [33]. That
is, a 3-dimensional network of dendritic pores was created as a replica of camphene crystals
(Figure 3A). In addition, the alumina walls were almost fully densified (Figure 3E), which
is attributed to the high packing density of alumina particles after phase separation. On the
other hand, with PMMA addition, the objects showed two types of pores—relatively large
dendritic pores and small pores in alumina walls (Figure 3B–D). The creation of spherical
pores by the removal of PMMA microspheres is more clearly visible in Figure 3F–H. No
noticeable defects were observed in the alumina walls. A higher PMMA content resulted
in a more porous structure in the alumina walls. Such small pores are expected to enhance
pore interconnectivity, which is useful for some applications. For examples, when used as
bone scaffolds, they can provide excellent bone regeneration ability with reasonably high
mechanical properties [19,20]. This finding suggests that a dual-scale porosity alumina
structure could be constructed using a combination of camphene and PMMA microspheres.
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In other words, camphene as a thermo-regulated phase separable vehicle can construct a
3D dendritic pore network, while PMMA microspheres as a pore-forming agent can create
small pores in the alumina walls.
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Figure 3. Representative FE-SEM images of dual-scale porosity structures produced using different
PMMA contents: 0 vol% (A,E), 20 vol% (B,F), 30 vol% (C,G), and 40 vol% (D,H). The yellow arrows
indicate the pores created by the removal of PMMA microspheres via heat treatment.

3.3. Total Porosities of Dual-Scale Porosity Structures

Figure 4 show the total porosities (PT) of the dual-scale porosity structures produced
using different PMMA contents (0 vol%, 20 vol%, 30 vol%, and 40 vol%), computed by
measuring their weight and volume. Total porosity increased from 45.7 ± 0.5 vol% to
71.4 ± 0.5 vol% with an increase in PMMA content from 0 vol% to 40 vol%. A linear
relationship between the total porosity and initial PMMA content, marked by the dashed
line, can be observed. This finding suggests that most of the PMMA microspheres could be
effectively pushed by camphene crystals without engulfment within camphene crystals,
and thus PP can be readily tailored by adjusting the initial PMMA content in an alumina
suspension, resulting in tunable PT.
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3.4. Compressive Strengths of Dual-Scale Porosity Structures

The mechanical properties of dual-scale porosity alumina structures produced using
different PMMA contents (0 vol%, 20 vol%, 30 vol%, and 40 vol%) were measured by
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compressive strength tests. Figure 5A shows the representative compressive stress versus
the strain responses of samples. Without PMMA addition, the sample showed a rapid
increase in stress with an increase in strain. After reaching the maximum value, it rapidly
decreased, indicating the brittle fracture of the alumina walls [47,48]. The sample produced
using the lowest PMMA content (20 vol%) showed a similar stress–strain curve. However,
even after the maximum value, a retention of noticeable stress was observed. This ten-
dency became more obvious with an increase in PMMA contents to 30 vol% and 40 vol%.
This was attributed to the local fractures of the porous alumina walls. More specifically,
some of the porous alumina walls were first fractured instead of an entire fracture occur-
ring. Thus, the remaining alumina walls could to a certain extent withstand additional
loads. Compressive strengths, computed from the peak loads observed, decreased from
152.9 ± 18.3 MPa to 32.6 ± 7.2 MPa with an increase in PMMA content from 0 vol% to
40 vol%, as shown in Figure 5B. These values are comparable to, or even higher than, those
obtained for the porous alumina produced using camphene-based freeze casting [45,49].
This finding suggests the utility of dual-scale porosity structures compared to uniform
porous structures.
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3.5. Control over Dual-Scale Pore Structures by Camphene Content

To further tailor the porous structure and compressive strength of dual-scale porosity
alumina structures, we examined the effect of camphene content, while the same PMMA
content (30 vol% with respect to the alumina) was used. Figure 6A–D show representative
FE-SEM images of green samples produced using different camphene contents (60 vol%
and 80 vol%). Both samples showed highly porous structures without any notable defects
in alumina walls (Figure 6A,B), while MMA microspheres, indicated by the red arrows,
were well dispersed in the alumina walls (Figure 6C,D). However, a higher camphene
content resulted in a higher pore fraction and larger pore size, which is often the case with
camphene-based freeze casting [33].

Figure 7A–D show representative FE-SEM images of sintered alumina samples with a
dual-scale porosity structure produced using different camphene contents (60 vol% and
80 vol%). Both samples showed highly porous structures (Figure 7A,B) composed of two
kinds of pores, i.e., three-dimensional dendritic pores and small spherical pores, indicated
by red arrows (Figure 7C,D).
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The total porosities of samples produced using camphene contents of 60 vol% and
80 vol% were 55.6 ± 0.7 vol% and 76.3 ± 0.3 vol%, respectively. To interpret the effect of
camphene content on the total porosity of the dual-scale porosity structures, Figure 8 plots
the total porosities obtained using different camphene contents (60 vol%, 70 vol%, and
80 vol%). The total porosity (PT) was observed to increase almost linearly with an increase
in camphene content (Vc), which can be described as follows:

PT = (1.03 × Vc) − 6.34 (1)
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This linear relationship was attributed to the fact that since they used the same PMMA
content (30 vol%), they could have a similar fraction of spherical pores, while the fraction of
dendritic pores could increase linearly with an increase in camphene content. This finding
suggests that total porosity can be readily tuned by adjusting the camphene content at a
constant PMMA content.

Compressive strengths, computed from the peak loads observed, decreased from
92.1 ± 21.7 MPa to 13.0 ± 1.9 MPa with an increase in camphene content from 60 vol%
to 80 vol%, as shown in Figure 9.
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3.6. Overall Relationship between Total Porosity and Compressive Strength

The compressive strengths of the dual-scale porosity structures produced using cam-
phene contents of 60 vol% and 80 vol% were 92.1 ± 21.7 MPa and 13.0 ± 1.9 MPa, respec-
tively. To demonstrate the ability to tailor the total porosity and compressive strengths of
the dual-scale porosity alumina structures produced using our approach, Figure 10 plots
the compressive strengths obtained using different PMMA (20 vol%, 30 vol%, and 40 vol%)
and camphene contents (60 vol%, 70 vol%, and 80 vol%) as a function of total porosity. As
expected, the compressive strength decreased with an increase in total porosity. However,
this reduction is not exponential [50], presumably due to the creation of dual-scale porosity.
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In addition, the sample with the lowest porosity (~55.6 vol%) obtained using a camphene
content of 60 vol% with a PMMA content of 30 vol% showed a slightly lower compressive
strength than that obtained using a higher camphene content of 70 vol% with a lower
PMMA content of 20 vol%. This was attributed to the dual-scale porosity structures being
more likely to fracture by large dendritic pores at given porosities. Thus, it is reasonable
to suppose that the creation of dual-scale porosity can be one of the most promising ap-
proaches for the achievement of high porosities with reasonably high mechanical properties.
Note that the measured compressive strengths are in the range of ~94.9–32.6 MPa, which is
comparable to that of natural bones [2], and thus dual-scale porosity alumina structures
can be used as bone scaffolds.
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3.7. Feasibility as Feedstock for 3D Printing of Multi-Scale Porosity Structures

We examined the feasibility of an alumina/camphene suspension containing PMMA
porogen as a feedstock for a 3D plotting process, in order to construct multi-scale porosity
structures. To this end, frozen feedstock was extruded through a 1 mm diameter nozzle, and
the extruded filaments were then deposited using our custom-made 3D plotter according
to predetermined build paths. As a model, a honeycomb structure was manufactured. It
was observed that the frozen feedstock, composed of camphene dendrites surrounded
by alumina particles with PMMA microspheres, could be extruded without difficulty,
owing to the good extrudability of camphene with soft wax-like behavior [44,51]. The
produced sample showed a well-defined honeycomb structure even after sintering at
1550 ◦C for 3 h (Figure 11A). In addition, filaments were well bonded together without
any noticeable defects. Two types of pores—relatively large and small pores due to the
removal of camphene crystals and PMMA microspheres—were observed (Figure 11B,C).
This new approach can allow for the creation of three different types of pores—periodic
hexagonal macrochannels by 3D plotting process, highly elongated pores by camphene
crystals, and small spherical pores by PMMA microspheres. This finding suggests that a
variety of multi-scale porosity structures can be constructed.
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Figure 11. (A) Representative optical image of a multi-scale porosity object with a honeycomb
structure and FE-SEM images showing elongated pores created by the removal of camphene crystals
at different magnifications (B,C).

4. Conclusions

Dual-scale porosity alumina structures could be constructed using a combination of
camphene as a thermo-regulated phase separable vehicle and PMMA microspheres as
a pore-forming agent in alumina suspensions, which could create three-dimensionally
interconnected large dendritic pores and relatively small spherical pores in alumina walls,
respectively. In addition, the overall porosity and compressive strength could be readily
tailored simply by adjusting the PMMA and camphene contents. Reasonably high compres-
sive strengths in the range of ~94.9–32.6 MPa could be obtained for high overall porosities
(~60.3 vol%–~71.4 vol%) owing to the creation of dual-scale porosity. In addition, these
newly formulated alumina suspensions could be utilized as a feedstock to manufacture
multi-scale porosity structures using a 3D plotting process.
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