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Introduction
Nasopharyngeal carcinoma (NPC) is the most common type 
of head and neck squamous cell carcinoma. According to the 
2018 Global Cancer Statistics, 129 100 new cases and 73 000 
NPC deaths were expected to occur globally in 2018.1 The 
incidence of NPC has apparent regional aggregation. Globally, 
NPC is more common in southern China, southeastern Asia, 
and northern Africa; in China, it is common in the southern 
and southwestern provinces.2,3 Medical imaging examinations, 
such as computed tomography (CT), magnetic resonance 
imaging (MRI), or positron emission tomography (PET), play 
an important role in the diagnosis and treatment of NPC and 
are widely used in the early detection, diagnosis, staging, and 
evaluation of treatment response. However, emerging radiom-
ics studies have shown that much invisible high-dimensional 
information remains to be discovered. Recently, radiomics has 
provided information on tumor heterogeneity, such as tumor 
cellularity, degenerative changes, and neovascularization, which 
are difficult to assess visually.4 As an effective tumor biomarker 
of NPC, the radiomic signature has been widely used in grad-
ing, differential diagnosis, prediction of prognosis, evaluation 
of treatment response, and early identification of therapeutic 
complications. The development of machine-learning algo-
rithms provides powerful tools for processing and analyzing 
high-dimensional image data. Radiomic features combined 
with machine learning can achieve precise stratification of 
tumor patients, providing more evidence for individualized 
diagnosis and treatment.5 The purpose of this review was to 

summarize the application of radiomics in NPC and to intro-
duce the basic process of radiomics research.

Grading and stratif ication of risk

For patients with NPC, treatment options vary greatly among 
patients at different stages of disease. It is important to identify 
effective biomarkers for stratifying patients into different risk 
groups. Currently, the American Joint Committee on Cancer 
(AJCC) 8th tumor, nodes, and metastases (TNM) staging sys-
tem, widely used in the staging of patients with NPC, has 
guidelines for the selection of treatment plans and the evalua-
tion of prognosis. However, studies have shown that the cur-
rently used AJCC 8th TNM staging system has limitations 
regarding risk stratification; the survival curves for T2 and T3 
patients almost overlap, without significant differences in 
locoregional recurrence-free survival (LRFS) (P = .606) and 
disease-free survival (DFS) (P = .735); similarly, the overall sur-
vival (OS) and DFS curves for stage II and III patients were 
overlapping.6 Radiomic nomograms can be developed for the 
staging and stratification of patients with NPC, and studies 
have shown superiority over the current clinical TNM staging 
system. Kim et al established survival models based on MRI 
radiomics for early risk assessment by predicting the progres-
sion-free survival (PFS) of patients with NPC. The prognostic 
performances of clinical + stage + radiomics survival models 
(area under the receiver operating characteristics [ROC] curve 
[AUC], 0.80; 95% confidence interval [CI]: 0.80-0.81) was 
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better than that of the clinical stage (AUC, 0.70, 95% CI, 0.69-
0.71).7 Moreover, Zhuo et al analyzed the feasibility of MRI-
based radiomic features of 658 non-metastatic patients  
with NPC to stratify them into distinct survival subgroups. 
The obtained model achieved a better classification effect 
(C-index = 0.827, P < .004, and C-index = 0.814, P < .002) 
than the T-stage (C-index = 0.815, P = .002 and C-index = 0.803, 
P = .024). It showed a competitive but more stable classification 
effect than the TNM staging system (C-index = 0.842, P = .003 
and C-index = 0.765, P = .050).8 In addition, Feng et  al used 
PET/MR image characteristics to establish models for grading 
patients with NPC. In the PET model, the AUC, accuracy, 
sensitivity, and specificity of the training cohort were 0.84, 
0.75, 0.90, and 0.69, respectively. For the MR model, these 
were 0.85, 0.83, 0.75, and 0.86, respectively (Table 1).9

Radiomic features can also be used to assess intratumor 
radio resistance so that patients with a high risk of recurrence 
can be identified early. Akram et al compared the components 
extracted from recurrent and non-recurrent tumor regions at 
pretreatment MRI of 14 patients with recurrent NPC. They 
found a difference in the radiomic pattern between the recur-
rent and non-recurrent regions within the tumor.10 Li et  al 
analyzed pretreatment MRI features to distinguish patients 
with in-field recurrence or non-progression after intensity-
modulated radiation therapy (IMRT). The AUC values of the 
classification models ranged from 0.727 to 0.835.11 The results 
showed that radiomic features could serve as imaging biomark-
ers to identify patients at risk of in-field recurrence.

Differential diagnosis

Several previous studies have shown that radiomics can be 
applied for the differential diagnosis of tumors.12,13 In NPC, 
PET-based radiomic features have achieved good performance 
that are superior to traditional PET parameters in differential 
diagnosis.14,15 Traditional parameters commonly used to reflect 
metabolic information in PET include standardized uptake 
value (SUV)max, SUVmean, metabolic tumor volume (MTV), 

and total lesion glycolysis (TLG), among others. These param-
eters are associated with the patients’ prognosis.16,17 Lv et  al 
reported that some PET/CT-based radiomic features, such as 
SumEntropy, short-zone low gray-level emphasis (SZLGE), 
and low gray-level zone emphasis (LGZE), performed better 
than conventional metrics for differentiating NPC from 
chronic nasopharyngitis.14 Du et  al15 showed that a PET/
CT-based radiomic signature achieved a higher AUC value 
than conventional metrics in the differentiation between local 
recurrence and inflammation (Table 2).

Prediction of prognosis

In NPC, prognosis varies greatly among patients at different 
stages of disease. In addition, the prognosis may vary signifi-
cantly after the standard treatment in patients at the same TNM 
stage of disease because the TNM stage is mainly based on the 
traditional imaging data of the anatomical structure. Therefore, a 
large amount of structural and functional information may be 
missed.18 Radiomic signatures obtained from CT, MRI, and 
PET can be used as an effective tool for predicting local recur-
rence, distant metastasis, OS, and PFS in patients with NPC. A 
nomogram developed by the CT-based Radscore and potential 
clinical characteristics was used by Zhu et al to predict the risk of 
local recurrence in patients with NPC who received IMRT. The 
C-index, specificity, and sensitivity of the nomogram were 0.931 
(95% CI, 0.8765-0.9856), 91.2%, and 82.8% in the training 
cohort, and 0.799 (95% CI, 0.6458-0.9515), 79.4%, and 69.2% 
in the validation cohort, respectively.19 Yan et  al developed a 
CT-based radiomic nomogram to predict PFS in patients with 
locoregionally advanced NPC. They found that the nomogram 
integrating the radiomic signature and clinical characteristics 
achieved better predictive performance (C-index, 0.873; 95% CI, 
0.803-0.943) than that of the clinical nomogram (C-index, 
0.729; 95% CI, 0.620-0.838) and the TNM staging system 
(C-index, 0.689; 95% CI, 0.592-0.787) (Table 3).20

Moreover, recent evidence suggests that MRI-based radi-
omics, combined with clinical information, can be used as an 

Table 1. NPC radiomics studies of grading and stratification of risk.

STuDiES PuBLiSHED 
TimE

PATiENTS NumBER Of PATiENTS 
(TRAiNiNG, TEST) OR 
(TRAiNiNG, vALiDATiON, TEST)

NumBER Of 
EXTRACTED 
fEATuRES

ENDPOiNT imAGE TyPE

Kim et al7 July 2021 NPC  81 (57, 24) 213 PfS CE-T1Wi, T2Wi

Zhuo et al8 march 2019 Non-metastatic 
NPC

658 (424, 234) 4863 Risk score T1Wi, T2Wi, 
CE-T1Wi

feng et al9 September 2020 NPC 100 (70, 30) 396 Clinical staging PET/mR

Akram et al10 October 2020 T4Nxm0 NPC  14 40 Recurrent and 
non-recurrent 
regions

T1Wi

Li et al11 December 2018 NPC patients 
with recurrence

 20 1117 Recurrence 
Patterns

T2Wi

Abbreviations: NPC, nasopharyngeal carcinoma; PfS, progression-free survival.
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Table 2. NPC radiomics studies of differential diagnosis.

STuDiES PuBLiSHED 
TimE

PATiENTS NumBER Of PATiENTS 
(TRAiNiNG, TEST) OR  
(TRAiNiNG, vALiDATiON, TEST)

NumBER Of 
EXTRACTED 
fEATuRES

ENDPOiNT imAGE 
TyPE

Lv et al14 march 2018 NPC, CN 106 (69, 37)  57 NPC vs CN PET/CT

Du et al15 July 2019 NPC  76 487 Recurrence or 
inflammation

PET/CT

Abbreviations: CN, chronic nasopharyngitis; CT, computed tomography; NPC, nasopharyngeal carcinoma; PET, positron emission tomography.

Table 3. NPC radiomics studies on prediction of prognosis.

STuDiES PuBLiSHED 
TimE

PATiENTS NumBER Of 
PATiENTS (TRAiNiNG, 
TEST) OR (TRAiNiNG, 
vALiDATiON, TEST)

NumBER Of 
EXTRACTED 
fEATuRES

ENDPOiNT imAGE TyPE

Zhu et al19 march 2021 NPC patients 
treated with imRT

156 (109, 47) 1452 LR CT

yan et al20 September 
2021

Locoregionally 
advanced NPC

311 (218, 93) 1409 PfS CT

Zhang et al21 June 2017 Advanced NPC 110 (70, 40) 970 Local failure and 
distant failure

CE-T1Wi, T2Wi

Zhang et al22 August 2017 Advanced NPC 113 (80, 33) 970 Progression (LR or 
Dm)

CE-T1Wi, T2Wi

Zhang et al23 march 2017 Advanced NPC 113 (80, 33) 970 PfS CE-T1Wi, T2Wi

Zhang et al24 January 2019 NPC 176 (123, 53) 2780 Dm CE-T1Wi, T2Wi

Zhang et al25 July 2019 NPC 140 (80, 60) 970 LR CE-T1Wi, T2Wi

Bologna et al26 December 
2020

Non-endemic 
EBv-related NPC

136 (136, 0) 530 OS, DfS, LRfS, 
DmfS

T1Wi, T2Wi

ming et al27 July 2019 NPC 303 (200, 103) 208 OS, DfS, LRfS, 
DmfS

CE-T1Wi

Ouyang et al28 August 2017 Stage iii-ivB NPC 100 (70, 30) 970 PfS CE-T1Wi, T2Wi

yang et al29 September 
2019

Locoregionally 
advanced NPC

224 (149, 75) 260 PfS CE-T1Wi, T2Wi

Shen et al30 may 2020 Non-metastatic 
NPC

327 (230, 97) 2454 PfS CE-T1Wi, T2Wi

Zhang et al31 march 2019 Non-metastatic T4 
NPC

737 (360, 120, 257) 1176 LR, LRfS (2D) T1Wi, T2Wi, 
CE-T1Wi

Wu et al32 march 2021 T1-2 stage and 
T3-4 stage NPC

778 (525, 253) 4410 PfS T1Wi, T2Wi, 
CE-T1Wi

Zhang et al33 December 
2020

NPC 220 (132,44,44) 2364 ffS, OS, D-ffS, 
LR-ffS

T1Wi, T2Wi, 
CE-T1Wi and WSi

Zhong et al34 July 2020 iC + CCRT T3N1m0 
NPC

638 (447, 191) 702 DfS T1Wi, T2Wi, 
CE-T1Wi

Zhong et al35 August 2021 iC + CCRT or CCRT 
T3N1m0 NPC

1206 (684, 324, 198) – DfS T1Wi, T2Wi, 
CE-T1Wi

Xu et al36 October 2019 NPC 128 (85, 43) 202 PfS PET/CT

Peng et al37 february 2021 Stage iii-ivB NPC   85 114 LR and Dm PET/CT

Abbreviations: AC, adjuvant chemotherapy; CCRT, concurrent chemotherapy radiation treatment; DfS, disease-free survival; D-ffS, distant failure-free survival; Dm, 
distant metastasis; DmfS, distant metastasis-free survival; ffS, failure-free survival; iC, induction chemotherapy; imRT, intensity-modulated radiation therapy; LR, local 
recurrence; LRfS, locoregional recurrence-free survival; LR-ffS, locoregional failure-free survival; OS, overall survival; WSi, whole slide images.
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effective tool for predicting local recurrence, distant metastasis, 
OS, and PFS in patients with NPC. Zhang et al built classifiers 
for the prediction of locoregional recurrences or distant metas-
tases in patients with advanced NPC. Results showed that the 
combination of feature selection method random forest (RF) 
and classification method RF achieved the best performance 
(AUC, 0.8464 ± 0.0069; test error, 0.3135 ± 0.0088).21 In 
another study, Zhang et al22 showed that the radiomic classifi-
ers based on the combined contrast-enhanced T1-weighted 
imaging (CET1WI) and T2-weighted imaging (T2WI) 
(AUC: 0.886, 95% CI, 0.815-0.956) achieved better predictive 
performance to identify patients with progression than classi-
fiers based on CET1WI (AUC: 0.793, 95% CI, 0.698-0.889) 
or T2WI alone (AUC: 0.813, 95% CI, 0.721-0.904). Zhang 
et al also built a nomogram based on the radiomics signature 
and TNM staging system to predict PFS, which achieved bet-
ter performance than the TNM staging system only (C-index, 
0.761 vs 0.514; P < 2.68 × 10–9). In addition, a radiomics nom-
ogram established by the radiomics signature and clinical char-
acteristics achieved better performance than the nomogram 
based on clinical characteristics alone (C-index, 0.776 vs 0.649; 
P < 1.60 × 10–7).23 Furthermore, Zhang et  al built an MRI-
based model with 7 features to classify patients into high- or 
low-risk distant metastasis groups. Results showed a significant 
difference in OS between the high- and low-risk groups 
(P < .001). In addition, a nomogram based on combined radi-
omic and clinical features achieved a significant predictive per-
formance for distant metastasis (AUC, 0.827; 95% CI, 
0.754-0.900 in the training cohort and AUC, 0.792; 95% CI, 
0.633-0.952 in the validation cohort).24 In another Zhang 
et  al25 study, a nomogram combining radiomic features with 
clinical features achieved good predictive performance of 
LRFS (C-index: 0.74 95% CI, 0.58-0.85) in the validation 
cohort, and successfully categorized the patients into low- or 
high-risk groups with significant differences in LRFS (P < .05). 
Bologna et  al developed MRI-based radiomic signatures to 
predict the OS, DFS, LRFS, and distant metastasis-free sur-
vival (DMFS) of non-endemic Epstein–Barr virus (EBV)-
related patients with NPC. The results showed that radiomic 
signature achieved good predictive performance for OS and 
LRFS, with C-index values of 0.68 and 0.72, respectively. They 
also found that the combination of radiomic and clinical fea-
tures improved prognostic performance.26 In another study, 
Ming et al also developed nomograms to predict the OS, DFS, 
LRFS, and DMFS of patients with NPC. They found that 
nomograms combining radiomic features with clinical charac-
teristics could predict DFS with a C-index of 0.751 (0.639, 
0.863) and OS with a C-index of 0.845 (0.752, 0.939), which 
improved the prediction accuracy for clinical characteristics 
only.27 In addition, Ouyang et al established predictive models 
to stratify stage III to IVB patients with NPC into low- or 
high-risk groups for PFS. The results revealed radiomic  
signature as an independent predictor of PFS (hazard ratio 
[HR] = 5.14 in the training set, HR = 7.28 in the validation 

set).28 Yang et al29 developed a nomogram based on radiomic 
signatures of nasopharynx gross tumor volume (GTVnx) and 
GTV of cervical lymph node (GTVnd), planning score (PS), 
and clinical characteristics to predict the PFS of locoregionally 
advanced patients with NPC, with a C-index of 0.811 (95% 
CI, 0.74-0.882), and outperformed that of the TNM stage 
alone (C-index, 0.613, 95% CI, 0.532-0.694) in the validation 
cohort. In another study, 5 models based on clinical data, over-
all stage, radiomics, radiomics + overall stage, radiomics + over-
all stage + EBV-DNA, respectively, were established by Shen 
et al to predict the PFS of non-metastatic patients with NPC. 
Among them, the model incorporating radiomics, overall stage, 
and EBV DNA yielded the highest C-index (training cohort: 
0.805, validation cohort: 0.874).30

Moreover, patients have been stratified according to T-stage 
in some research, and predictive models were developed based 
on patients with a specific T-stage. Zhang et al established a 
radiomics signature to predict LRFS in multicenter patients 
with non-metastatic T4 NPC. A nomogram that combined 
the Radscore with clinical characteristics showed good predic-
tion performance (C-index: 0.810 in the training cohort, 0.807 
in the internal validation cohort, and 0.753 in the external vali-
dation cohort).31 Wu et al32 stratified patients with NPC into 2 
groups (T1-2 and T3-4 stages) to explore the performance of a 
model for predicting PFS of MRI-based radiomics signatures 
and the radiomic models based on pre-stratified tumor stages 
had better predictive performance.

Furthermore, deep-learning-based radiomics has also been 
widely used as a tumor biomarker for predicting the prognosis 
of patients with NPC. It is usually combined with other clini-
cal characteristics and achieves good predictive performance. 
In a study by Zhang et al, radiomic and deep-learning-based 
histopathologic signatures were established to predict the fail-
ure-free survival (FFS) of patients with NPC, both of which 
have presented good predictive performance for treatment fail-
ure (C-index: 0.689-0.779, all P < .050). The multiscale nom-
ogram showed better performance than the clinical model in 
the external test cohorts (C-index: 0.834 vs 0.679, P < .050).33 
Zhong et al developed 3 deep-learning-based radiomic signa-
tures based on T1WI, T2WI, and CET1WI to predict DFS of 
patients with T3N1M0 NPC, all of which were significantly 
correlated with DFS (C-index: 0.695-0.731, all P < .001 in the 
training cohort and C-index: 0.706-0.755, all P < .001 in the 
validation cohort). The combined model of radiomic signatures 
and clinical features improved the predictive effect compared 
with the clinical model (C-index: 0.771 vs 0.640, P < .001 in 
the training cohort and C-index: 0.788 vs 0.625, P = .001 in the 
validation cohort).34 In a multicenter study, Zhong et  al 
revealed that deep-learning-based radiomic nomograms for 
predicting the DFS of advanced patients with NPC who 
received concurrent chemoradiotherapy (CCRT) or induction 
chemotherapy (ICT) + CCRT showed excellent prognostic 
ability in all groups. In the ICT-preferred group, patients who 
received ICT + CCRT showed better survival than those who 
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received only CCRT (HR: 0.17, P < .001 in the internal cohort 
and 0.24, P = .02 in the external test cohort), whereas the oppo-
site was observed in the CCRT-preferred group (HR: 6.24, 
P < .001 in the internal cohort and 12.08, P < .001 in the 
external test cohort).35

In addition, recent studies have suggested that PET/
CT-based radiomics can be used to predict PFS in patients 
with NPC.36,38 Local recurrence and distant metastasis of 
locally advanced NPC can be predicted using the radiomic sig-
nature of pretreatment PET/CT.37

Prediction of treatment response and identif ication 
of therapeutic complications

For patients with NPC, the treatment response of patients in 
the same stage may differ because of different levels of sensi-
tivities to the treatment. The selection of radiotherapy dose and 
chemotherapy regimen often requires careful consideration of 
disease control and prevention of therapeutic side effects. 
Research has shown that when CCRT is performed, patients 
may experience increased toxicity while achieving good local 
control.39 Radiomics has been used to evaluate therapeutic 
responses after radiotherapy or CCRT in some studies.40,41 In 
addition, Yu et  al analyzed radiomic features extracted from 
pretreatment MRI to predict tumor shrinkage. The results 
showed that the model obtained by combining elements of T1 
and T2 images had the best prediction effect, and the AUCs in 
the training and testing sets were 0.984 (95% CI, 0.983-0.984) 
and 0.930 (95% CI, 0.928-0.933), respectively. For patients 

with obvious tumor shrinkage, adaptive radiotherapy can be 
applied so that treatment plans can be optimized in a timely 
manner.41 Furthermore, the efficacy of ICT in patients with 
locally advanced NPC remains controversial, and there is 
uncertainty about whether a patient can benefit from ICT.42,43 
Therefore, whether ICT is needed for patients requires more 
precise evaluation criteria. Recent studies have shown that 
CT,44 MRI,45-47 and PET48 radiomics could be used to predict 
ICT or neoadjuvant chemotherapy response, and it is expected 
to be an effective biomarker to evaluate whether a patient could 
benefit from ICT (Table 4).

Moreover, the early identification of therapeutic complica-
tions using radiomics has also achieved excellent results. Liu 
et al conducted a study to analyze changes in CT-based radi-
omics in the parotid glands during radiotherapy to predict the 
incidence of acute xerostomia. They obtained a prediction 
model with a precision of 0.9220 and sensitivity of 100%.49 
Zhang et al obtained 3 prediction models based on MRI-based 
radiomic features extracted from the medial temporal lobe, gray 
matter, and white matter to predict radioactive brain injury. The 
mean AUCs were 0.830 (95% CI, 0.823-0.837), 0.773 (95% CI, 
0.763-0.782), and 0.716 (95% CI, 0.699-0.733), respectively.50 
Hou et al selected 14 T2WI-based features to establish a radi-
omic signature to identify radiotherapy-induced temporal lobe 
injury (RTLI) in patients with NPC. A radiomics nomogram 
combining the radiomic signature with clinical characteristics 
achieved better classification performance (AUC, 0.87; 95% CI, 
0.82-0.91) than the radiomic (AUC, 0.71; 95% CI, 0.65-0.78) 
and clinical (AUC, 0.73; 95% CI, 0.67-0.79) models.51

Table 4. NPC radiomics studies on prediction of treatment response and recognition of therapeutic complication.

STuDiES PuBLiSHED 
TimE

PATiENTS NumBER Of 
PATiENTS (TRAiNiNG, 
TEST) OR (TRAiNiNG, 
vALiDATiON, TEST)

NumBER Of 
EXTRACTED 
fEATuRES

ENDPOiNT imAGE TyPE

yu et al41 October 2019 Stage ii-ivB NPC  70 (51, 19) 479 Re-plan status of 
patients

CE-T1Wi, T2Wi

yang et al44 September 2021 NPC 297 (208, 89) 851 iC response CT

Wang et al45 November 2017 Stage ii-iv NPC 120 591 iC response (2D) T1Wi, T2Wi, 
T2Wi fS, and CE 
T1Wi

Zhao et al46 April 2019 Locally advanced 
NPC

123 (100, 23) 4503 iC response T1Wi, T2Wi, 
CE-T1Wi

Peng et al48 April 2019 Advanced NPC 
patients received iC

707 (470, 237)   136/133 DfS PET/CT

Hu et al47 November 2021 NPC 284 (200, 84) 680 sensitivity to NACT T1Wi, T2Wi

Liu et al49 July 2019 Stage i-ivB NPC  45 1703 acute xerostomia CT

Zhang et al50 June 2020 NPC 242 480 RTLi CE-T1Wi, T2Wi

Hou et al51 August 2021 NPC 203 396 RTLi T2Wi

Abbreviations: DfS, disease-free survival; iC, induction chemotherapy; NACT, neoadjuvant chemotherapy; NPC, nasopharyngeal carcinoma; RTLi, radiotherapy-induced 
temporal lobe injury.
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Workflow
Image segmentation

At present, many open-source or commercial software pro-
grams can be used for 2-dimensional (2D) and 3-dimensional 
(3D) image segmentation. The commonly used open-source 
software includes LIFEx (https://www.lifexsoft.org), itk-snap 
(http://www.itk-snap.org), and 3Dslicer (https://www.slicer.
org). Due to the complex surrounding anatomical structures, 
irregular tumor shapes, and indistinct boundaries between the 
tumor and surrounding tissue, regions of interest (ROIs), 
which are often manually delineated by experienced radiolo-
gists or radiation oncologists, are usually affected by the subjec-
tive judgment of different observers. Therefore, interobserver 
and intra-observer intraclass correlation coefficients (ICCs) 
can be calculated to verify the repeatability of ROI delinea-
tion.27,30 Unenhanced and enhanced CT are commonly used in 
CT-based radiomic studies. Previous studies, which revealed 
that enhanced and unenhanced CT-based radiomic features 
can reflect different aspects of tumor heterogeneity, showed 
inconsistent results.52,53 For NPC, compared with unenhanced 
images, enhanced CT can better display tumor boundaries and 
enlarged lymph nodes, which is more helpful for image seg-
mentation. The most used MR images are T1WI, T2WI, and 
enhanced T1WI. Enhanced T1WI can better show tumor 
boundaries, but may cause an overestimation of tumor size due 
to surrounding edematous areas.26 In differential diagnosis, 
prediction of prognosis, and treatment response studies, the 
ROIs are usually based on the main tumor and the largest 
lymph node. Cluster analysis results showed that the main 
tumor characteristics correlated with T-stage and overall stage 
but not with N-stage, and lymph node characteristics corre-
lated with N-stage.27 In the prediction of treatment side effects, 
ROIs were selected according to different research objectives. 
To extract stable features, image preprocessing is essential to 
exclude the influence of different machines, scanning parame-
ters, reconstruction algorithms, and noise.54,55 The procedures 
of image preprocessing usually include resampling, standardi-
zation, normalization, smoothing, and filtering (Figure 1).

Feature extraction

Feature extraction is usually achieved using open-source soft-
ware such as Pyradiomics (https://pyradiomics.readthedocs.
io), LIFEx, and 3D slicer. The number of features extracted by 
the different tools vary slightly. Standard image features include 
the following categories:

•• Intensity histogram-based features
•• Shape-based features
•• First-order texture features
•• Second-order texture features
•• Higher-order texture features

Previous studies have shown that feature extraction is 
affected by different extraction tools and has poor repeatability 
and stability.56,57 Zwanenburg et al58 standardized the extrac-
tion of 169 standard features that can be used to verify and cali-
brate other software and provide a direction for subsequent 
research. In addition, the Image Biomarker Standardization 
Initiative (IBSI) Reference Manual provides guidelines for fea-
ture extraction.58,59

Feature selection

The purpose of feature selection is to reserve meaningful fea-
tures from the many extracted features, for further analysis. It 
is important to select the appropriate features for the models. 
Too many features will cause overfitting, while too few will 
result in unsatisfactory prediction performance of the models. 
Feature selection methods commonly used mainly consist of 
filtering, wrapping, and embedding methods.60 Filtering 
methods is used to filter the features according to a certain 
threshold, such as by the correlation coefficient method, t test, 
chi-square test, and variance selection method. Wrapping 
methods perform multiple iterations and retain several char-
acteristics according to the objective function, such as recur-
sive feature elimination (RFE), RF, support vector machine 
(SVM), and K-nearest neighbor (KNN). Embedding methods 
such as least shrinkage and selection operator (LASSO), ridge 
regression, and gradient boosting decision tree (GBTD) are 
combined with machine-learning algorithms to obtain the 
weight coefficients of each feature so that the features can be 
sorted and filtered.60 These 3 methods can be used in combi-
nation. Currently, LASSO is the most used feature selection 
algorithm in NPC radiomic research and has achieved high 
selection efficiency. However, LASSO often ignores the pair-
wise correlations of selected features. To address this problem, 
Pearson correlation coefficient (PCC) can be computed to 
exclude features with pairwise correlations.10,41 In addition, 
dimensionality reduction methods, such as principal compo-
nents analysis (PCA) and linear discriminant analysis (LDA), 
are also often used for variable selection. Dimensionality 
reduction methods mainly combine several variables to obtain 
new variables based on the relationship between variables. It 
changes the original features and is different from the feature 
selection methods.

Deep-learning-based radiomics

In recent years, deep learning based on neural networks has 
provided a new approach for radiomic research. Deep learning 
can achieve image feature selection in a fully automated and 
end-to-end manner without the need for accurate ROI seg-
mentation, so that the influence of image preprocessing, man-
ual segmentation, and feature extraction can be reduced.34,61 
However, a sufficient sample size is required for deep learning.

https://www.lifexsoft.org
http://www.itk-snap.org
https://www.slicer.org
https://www.slicer.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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Establishment of nomogram or machine-learning 
classif iers

In previous studies of NPC radiomics, in addition to the 
selected radiomic features, some meaningful clinical indicators 
could also be included, such as age, stage, grade, complete blood 
count, and biochemical analysis. Other tumor biomarkers, such 
as C-reactive protein and EBV-DNA, can also be combined 
with radiomic features. After obtaining meaningful features, 
nomograms or machine-learning classifiers were established 
for further analysis. Nomograms are often based on multivari-
ate Cox proportional hazards models. Risk scores for each 
patient and survival curves were obtained for prognosis predic-
tion and comparison between different survival subgroups. 

Machine-learning classifiers are often established using 
machine-learning algorithms. Many machine-learning meth-
ods, such as SVM, LDA, KNN, and decision tree, have achieved 
good prediction accuracy. These machine-learning algorithms 
can be used directly in Python (https://www.python.org), R 
software (https://www.r-project.org), and MATLAB (https://
www.mathworks.com).

Validation and evaluation

Research data are often divided into training and validation 
sets, which often included internal and external validation 
sets. Internal validation sets are used to obtain the optimal 
model parameters, while external validation sets are used to 

Figure 1. Workflow of radiomics.

https://www.python.org
https://www.r-project.org
https://www.mathworks.com
https://www.mathworks.com
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validate and evaluate the predictive performance of the mod-
els. The number of patients in the training and validation sets 
often needs to be divided according to the requirements and 
specific conditions. For studies with a small sample size, 
internal verification can be carried out by holdout and k-fold 
cross-validations. The holdout cross-validation method 
divides the training sets into 2 parts: (1) used for training and 
(2) used for parameter adjustment. The model parameters 
obtained using this method are easily affected by the division 
ratio. In k-fold cross-validation, the training sets are divided 
into k-folds without replacement, with k – 1 folds used for 
training and 1-fold for validation. This process is repeated k 
times to obtain k models and their performance evaluations. 
The results of k times were averaged to obtain the final pre-
dicted performance. When a model is obtained through the 
training sets, it is verified through the validation sets. An 
independent external validation set that is not involved in the 
training process is very important for the evaluation and veri-
fication of the model’s predictive performance. Some evalua-
tion parameters are calculated to evaluate the obtained 
models. For classification models, commonly used evaluation 
parameters include but are not limited to accuracy, sensitivity, 
specificity, AUC, and F1-scores. For Cox proportional haz-
ards models or nomograms, commonly used evaluation indi-
cators include but are not limited to the C-index and AUC.

Disadvantages in Radiomics Studies of NPC
Although excellent results have been achieved in the application 
of radiomics in NPC, there are still many problems. First, image 
feature extraction is affected by various factors, and its stability 
and repeatability are still insufficient. Further research is needed 
to standardize the feature extraction. Second, most of the studies 
were single centered and lacked external validation. Finally, 
although the models can achieve high accuracy, the significance 
of many features cannot be explained. The biological meaning 
behind radiomic features is worth exploring, such as the relation-
ship between radiomic features and computational pathology 
features or gene expression. Zhang et al explored the correlation 
between the main radiomic features and genetic alterations. The 
results showed that the 2 texture features were related to the 
genetic alterations of chromatin remodeling pathways.33 Gao 
et al62 also found a significant correlation between gene expres-
sion and Radscore, especially the mRNA expression of CDKL2, 
PLIN5, and SPAG1. Moreover, several studies have shown that 
radiomics features are correlated with human papilloma virus 
(HPV) expression status in head and neck squamous cell carci-
noma.63 In NPC, more research is needed to explore the inter-
pretability of radiomics before it can be broadly adopted.

Prospects of Radiomics Studies on NPC
For radiomics in NPC, many issues need to be studied further. 
First, more multicenter NPC radiomics studies should be con-
ducted to improve the applicability and stability of radiomic 
features and prediction models. Second, deep learning based on 

neural networks can be applied. This approach can solve the 
problems of poor repeatability and stability of manual segmen-
tation and feature extraction. Finally, radiogenomics, a combi-
nation of radiomics and genomics can be further studied in 
NPC. The relationship between image features and gene 
expression needs to be further explored, which is conducive to 
the interpretation of radiomics.

In addition, radiomics could be used as a tumor biomarker 
to predict whether patients will benefit from cetuximab, nimo-
tuzumab, or immune checkpoint inhibitors, which can provide 
a new basis for the selection of individualized treatment plans 
for patients. To the best of our knowledge, most radiomic stud-
ies of NPC focus on the whole tumor, ignoring the heterogene-
ity of different regions within the tumor. A study conducted by 
Xu et al36 showed that a PET/CT-based subregional radiomic 
signature achieved better prediction performance than that of 
the whole tumor. Subregional radiomics analysis can be applied 
to NPC. Moreover, radiotherapy causes a series of radiation 
side effects, such as oral mucositis, xerostomia, taste failure, 
mouth opening difficulty, and hearing damage. Radiomic fea-
tures can be used to identify the side effects of radiotherapy. It 
is beneficial to take individual preventive measures in patients. 
For patients with NPC who undergo radiotherapy and chemo-
therapy, food intake may be affected, due to oral and laryngeal 
mucositis, taste failure, nausea, vomiting, and other adverse 
reactions, leading to weight loss.64,65 Studies have shown that 
nutritional status has a particular impact on the prognosis of 
patients with NPC. CT-based body composition information 
has been used as healthy and prognostic indicators in prostate 
cancer.66 This method can be extended to patients with NPC. 
It can be used to identify patients at risk of malnutrition. In 
addition, radiomics can be used as a reference for the design of 
radiotherapy plan in the future. Studies by Akram et al10 and Li 
et al11 have shown that radiomic features can be used to assess 
intratumor radioresistance. These results can be used as a refer-
ence to accurately define areas with a high risk of recurrence, 
which may require a higher dose. In addition, cone beam com-
puted tomography (CBCT) is one of the most commonly used 
imaging guidance methods in radiotherapy. It is used for 
patient positioning before radiotherapy and can detect the 
treatment target and external contour changes in a timely man-
ner. The response of the tumor to the radiation dose can be 
studied by analyzing the CBCT images. The prediction of 
prognosis and treatment response based on the features 
extracted from CBCT images has been applied in lung  
cancer67,68 and prostate cancer69 but rarely in head and neck 
squamous cell carcinoma.

Conclusions
The purpose of this review was to summarize the application 
of radiomics in NPC and to introduce the basic process of radi-
omics research. As mentioned in this article, radiomics has 
been widely used in grading and stratification of risk, differen-
tial diagnosis, prediction of prognosis, prediction of treatment 



Duan et al 9

response, and identification of therapeutic complications, and 
good results have been achieved. A mature process has been 
established for the research method, including image segmen-
tation, feature extraction, feature selection, model establish-
ment, and evaluation. However, there are still many problems, 
such as insufficient stability and repeatability of feature extrac-
tion, and lack of interpretation of features. Although radiomics 
has promising application prospects in patients with NPC, 
more research is needed to further promote the application of 
radiomics in clinical practice. Radiomics has good prospects for 
NPC as a rapidly developing field.

Author Contributions
WD summarized the articles and wrote the manuscript. BX, 
TT, XZ, and ZH helped for article selection and gave valuable 
advice to the manuscript. LZ presented the idea and revised 
the manuscript. All authors have read and approved the final 
manuscript.

ORCID iDs
Wenyue Duan  https://orcid.org/0000-0003-2858-6261
Ling Zhang  https://orcid.org/0000-0001-7297-8532

RefeReNCeS
 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi:10.3322/
caac.21492.

 2. Tang LL, Chen WQ , Xue WQ , et al. Global trends in incidence and mortality 
of nasopharyngeal carcinoma. Cancer Lett. 2016;374:22-30. doi:10.1016/j.
canlet.2016.01.040.

 3. Yin WB. Oncology Radiotherapy. 4th ed. Beijing, China: Peking Union Medical 
University Press; 2008.

 4. Weidong Wang JL. Reflection and prospect: precise radiation therapy based on 
bio-omics/radiomics and artificial intelligence technology. Chin J Clin Oncol. 
2018;45:604-608. doi:10.3969/j.Issn.1000-8179.2018.12.366.

 5. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-1930. 
doi:10.1161/CIRCULATIONAHA.115.001593.

 6. Tang LL, Chen YP, Mao YP, et al. Validation of the 8th edition of the UICC/
AJCC staging system for nasopharyngeal carcinoma from endemic areas in the 
intensity-modulated radiotherapy era. J Natl Compr Canc Netw. 2017;15:913-919. 
doi:10.6004/jnccn.2017.0121.

 7. Kim MJ, Choi Y, Sung YE, et al. Early risk-assessment of patients with naso-
pharyngeal carcinoma: the added prognostic value of MR-based radiomics. 
Transl Oncol. 2021;14:101180. doi:10.1016/j.tranon.2021.101180.

 8. Zhuo EH, Zhang WJ, Li HJ, et al. Radiomics on multi-modalities MR 
sequences can subtype patients with non-metastatic nasopharyngeal carcinoma 
(NPC) into distinct survival subgroups. Eur Radiol. 2019;29:5590-5599. 
doi:10.1007/s00330-019-06075-1.

 9. Feng Q , Liang J, Wang L, et al. Radiomics analysis and correlation with meta-
bolic parameters in nasopharyngeal carcinoma based on PET/MR imaging. 
Front Oncol. 2020;10:1619. doi:10.3389/fonc.2020.01619.

 10. Akram F, Koh PE, Wang F, et al. Exploring MRI based radiomics analysis of 
intratumoral spatial heterogeneity in locally advanced nasopharyngeal carci-
noma treated with intensity modulated radiotherapy. PLoS ONE. 
2020;15:e0240043. doi:10.1371/journal.pone.0240043.

 11. Li S, Wang K, Hou Z, et al. Use of radiomics combined with machine learning 
method in the recurrence patterns after intensity-modulated radiotherapy for 
nasopharyngeal carcinoma: a preliminary study. Front Oncol. 2018;8:648. 
doi:10.3389/fonc.2018.00648.

 12. Fan Y, Chen C, Zhao F, et al. Radiomics-based machine learning technology 
enables better differentiation between glioblastoma and anaplastic oligodendro-
glioma. Front Oncol. 2019;9:1164. doi:10.3389/fonc.2019.01164.

 13. Kirienko M, Ninatti G, Cozzi L, et al. Computed tomography (CT)-derived 
radiomic features differentiate prevascular mediastinum masses as thymic 

neoplasms versus lymphomas. Radiol Med. 2020;125:951-960. doi:10.1007/
s11547-020-01188-w.

 14. Lv W, Yuan Q , Wang Q , et al. Robustness versus disease differentiation when 
varying parameter settings in radiomics features: application to nasopharyngeal 
PET/CT. Eur Radiol. 2018;28:3245-3254. doi:10.1007/s00330-018-5343-0.

 15. Du D, Feng H, Lv W, et al. Machine learning methods for optimal radiomics-
based differentiation between recurrence and inflammation: application to naso-
pharyngeal carcinoma post-therapy PET/CT images. Mol Imaging Biol. 2020; 
22:730-738. doi:10.1007/s11307-019-01411-9.

 16. Huang Y, Feng M, He Q , et al. Prognostic value of pretreatment 18F-FDG 
PET-CT for nasopharyngeal carcinoma patients. Medicine (Baltimore). 
2017;96:e6721. doi:10.1097/MD.0000000000006721.

 17. Zhong L, Li C, Ren Y, Wu D. Prognostic value of (18)F-fluorodeoxyglucose 
PET parameters and inflammation in patients with nasopharyngeal carcinoma. 
Oncol Lett. 2017;14:5004-5012. doi:10.3892/ol.2017.6816.

 18. Cui C, Wang S, Zhou J, et al. Machine learning analysis of image data based on 
detailed MR image reports for nasopharyngeal carcinoma prognosis. Biomed Res 
Int. 2020;2020:8068913. doi:10.1155/2020/8068913.

 19. Zhu C, Huang H, Liu X, et al. A clinical-radiomics nomogram based on com-
puted tomography for predicting risk of local recurrence after radiotherapy in 
nasopharyngeal carcinoma. Front Oncol. 2021;11:637687. doi:10.3389/fonc. 
2021.637687.

 20. Yan C, Shen DS, Chen XB, et al. CT-based radiomics nomogram for prediction 
of progression-free survival in locoregionally advanced nasopharyngeal carci-
noma. Cancer Manag Res. 2021;13:6911-6923. doi:10.1016/j.ebiom.2019.01.013.

 21. Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for 
prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 
2017;403:21-27. doi:10.1016/j.canlet.2017.06.004.

 22. Zhang B, Ouyang FS, Gu DS, et al. Advanced nasopharyngeal carcinoma: pre-
treatment prediction of progression based on multi-parametric MRI radiomics. 
Oncotarget. 2017;8:72457-72465. doi:10.18632/oncotarget.19799.

 23. Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as 
novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 
2017;23:4259-4269. doi:10.1158/1078-0432.Ccr-16-2910.

 24. Zhang L, Dong D, Li H, et al. Development and validation of a magnetic reso-
nance imaging-based model for the prediction of distant metastasis before initial 
treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedi-
cine. 2019;40:327-335. doi:10.1016/j.ebiom.2019.01.013.

 25. Zhang L, Zhou H, Gu D, et al. Radiomic nomogram: pretreatment evaluation of 
local recurrence in nasopharyngeal carcinoma based on MR imaging. J Cancer. 
2019;10:4217-4225. doi:10.7150/jca.33345.

 26. Bologna M, Corino V, Calareso G, et al. Baseline MRI-radiomics can predict 
overall survival in non-endemic EBV-related nasopharyngeal carcinoma 
patients. Cancers. 2020;12:2958. doi:10.3390/cancers12102958.

 27. Ming X, Oei RW, Zhai R, et al. MRI-based radiomics signature is a quantitative 
prognostic biomarker for nasopharyngeal carcinoma. Sci Rep. 2019;9:10412. 
doi:10.1038/s41598-019-46985-0.

 28. Ouyang FS, Guo BL, Zhang B, et al. Exploration and validation of radiomics sig-
nature as an independent prognostic biomarker in stage III-IVb nasopharyngeal 
carcinoma. Oncotarget. 2017;8:74869-74879. doi:10.18632/oncotarget.20423.

 29. Yang K, Tian J, Zhang B, et al. A multidimensional nomogram combining over-
all stage, dose volume histogram parameters and radiomics to predict progres-
sion-free survival in patients with locoregionally advanced nasopharyngeal 
carcinoma. Oral Oncol. 2019;98:85-91. doi:10.1016/j.oraloncology.2019.09.022.

 30. Shen H, Wang Y, Liu D, et al. Predicting progression-free survival using MRI-
based radiomics for patients with nonmetastatic nasopharyngeal carcinoma. 
Front Oncol. 2020;10:618. doi:10.3389/fonc.2020.00618.

 31. Zhang LL, Huang MY, Li Y, et al. Pretreatment MRI radiomics analysis allows 
for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal 
carcinoma. EBioMedicine. 2019;42:270-280. doi:10.1016/j.ebiom.2019.03.050.

 32. Wu S, Li H, Dong A, et al. Differences in radiomics signatures between patients 
with early and advanced T-stage nasopharyngeal carcinoma facilitate prognosti-
cation. J Magn Reson Imaging. 2021;54:854-865. doi:10.1002/jmri.27633.

 33. Zhang F, Zhong LZ, Zhao X, et al. A deep-learning-based prognostic nomo-
gram integrating microscopic digital pathology and macroscopic magnetic reso-
nance images in nasopharyngeal carcinoma: a multi-cohort study. Ther Adv Med 
Oncol. 2020;12:1-12. doi:10.1177/1758835920971416.

 34. Zhong LZ, Fang XL, Dong D, et al. A deep learning MR-based radiomic nomo-
gram may predict survival for nasopharyngeal carcinoma patients with stage 
T3N1M0. Radiother Oncol. 2020;151:1-9. doi:10.1016/j.radonc.2020.06.050.

 35. Zhong L, Dong D, Fang X, et al. A deep learning-based radiomic nomogram 
for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a 
multicentre study. EBioMedicine. 2021;70:103522. doi:10.1016/j.ebiom.2021. 
103522.

 36. Xu H, Lv W, Feng H, et al. Subregional radiomics analysis of PET/CT imaging 
with intratumor partitioning: application to prognosis for nasopharyngeal carci-
noma. Mol Imaging Biol. 2020;22:1414-1426. doi:10.1007/s11307-019-01439-x.

https://orcid.org/0000-0003-2858-6261
https://orcid.org/0000-0001-7297-8532


10 Clinical Medicine Insights: Oncology 

 37. Peng L, Hong X, Yuan Q , Lu L, Wang Q , Chen W. Prediction of local recur-
rence and distant metastasis using radiomics analysis of pretreatment nasopha-
ryngeal [18F]FDG PET/CT images. Ann Nucl Med. 2021;35:458-468. 
doi:10.1007/s12149-021-01585-9.

 38. Lv W, Yuan Q , Wang Q , et al. Radiomics analysis of PET and CT components 
of PET/CT imaging integrated with clinical parameters: application to progno-
sis for nasopharyngeal carcinoma. Mol Imaging Biol. 2019;21:954-964. 
doi:10.1007/s11307-018-01304-3.

 39. Jethanandani A, Lin TA, Volpe S, et al. Exploring applications of radiomics in 
magnetic resonance imaging of head and neck cancer: a systematic review. Front 
Oncol. 2018;8:131. doi:10.3389/fonc.2018.00131.

 40. Yongfeng P, Chuner J, Lei W, et al. The usefulness of pretreatment MR-based 
radiomics on early response of neoadjuvant chemotherapy in patients with locally 
advanced nasopharyngeal carcinoma. Oncol Res. 2021;28:605-613. doi:10.3727/
096504020x16022401878096.

 41. Yu T-t, Lam S-k, To L-h, et al. Pretreatment prediction of adaptive radiation 
therapy eligibility using MRI-based radiomics for advanced nasopharyngeal car-
cinoma patients. Front Oncol. 2019;9:1050. doi:10.3389/fonc.2019.01050.

 42. Lan XW, Xiao Y, Zou XB, Zhang XM, OuYang PY, Xie FY. Outcomes of add-
ing induction chemotherapy to concurrent chemoradiotherapy for stage T3N0-1 
nasopharyngeal carcinoma: a propensity-matched study. Onco Targets Ther. 
2017;10:3853-3860. doi:10.2147/OTT.S133917.

 43. Wu LR, Yu HL, Jiang N, et al. Prognostic value of chemotherapy in addition to 
concurrent chemoradiotherapy in T3-4N0-1 nasopharyngeal carcinoma: a pro-
pensity score matching study. Oncotarget. 2017;8:76807-76815. doi:10.18632/
oncotarget.20014.

 44. Yang Y, Wang M, Qiu K, Wang Y, Ma X. Computed tomography-based deep-
learning prediction of induction chemotherapy treatment response in locally 
advanced nasopharyngeal carcinoma. Strahlenther Onkol. 2022;198:183-193. 
doi:10.1007/s00066-021-01874-2.

 45. Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging 
radiomics signatures for response prediction to induction chemotherapy in 
patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100-106. 
doi:10.1016/j.ejrad.2017.11.007.

 46. Zhao L, Gong J, Xi Y, et al. MRI-based radiomics nomogram may predict the 
response to induction chemotherapy and survival in locally advanced nasopha-
ryngeal carcinoma. Eur Radiol. 2019;30:537-546. doi:10.1007/s00330-019- 
06211-x.

 47. Hu C, Zheng D, Cao X, et al. Application value of magnetic resonance radiomics 
and clinical nomograms in evaluating the sensitivity of neoadjuvant chemother-
apy for nasopharyngeal carcinoma. Front Oncol. 2021;11:740776. doi:10.3389/
fonc.2021.740776.

 48. Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-
based radiomics: potential role for future individual induction chemotherapy in 
advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019;25:4271-4279. 
doi:10.1158/1078-0432.Ccr-18-3065.

 49. Liu Y, Shi H, Huang S, et al. Early prediction of acute xerostomia during radia-
tion therapy for nasopharyngeal cancer based on delta radiomics from CT 
images. Quant Imaging Med Surg. 2019;9:1288-1302. doi:10.21037/qims.2019. 
07.08.

 50. Zhang B, Lian Z, Zhong L, et al. Machine-learning based MRI radiomics mod-
els for early detection of radiation-induced brain injury in nasopharyngeal carci-
noma. BMC Cancer. 2020;20:502. doi:10.1186/s12885-020-06957-4.

 51. Hou J, Li H, Zeng B, et al. MRI-based radiomics nomogram for predicting tem-
poral lobe injury after radiotherapy in nasopharyngeal carcinoma. Eur Radiol. 
2022;32:1106-1114. doi:10.1007/s00330-021-08254-5.

 52. Hu J, Zhao Y, Li M, et al. Machine-learning-based computed tomography 
radiomic analysis for histologic subtype classification of thymic epithelial 
tumours. Eur J Radiol. 2020;126:108929. doi:10.1016/j.ejrad.2020.108929.

 53. Yasaka K, Akai H, Abe O, Ohtomo K, Kiryu S. Quantitative computed tomogra-
phy texture analyses for anterior mediastinal masses: differentiation between solid 
masses and cysts. Eur J Radiol. 2018;100:85-91. doi:10.1148/radiol.2019190928.

 54. Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT radiomic features 
within the same patient: influence of radiation dose and CT reconstruction set-
tings. Radiology. 2019;293:583-591. doi:10.1148/radiol.2019190928.

 55. Mi H, Yuan M, Suo S, et al. Impact of different scanners and acquisition param-
eters on robustness of MR radiomics features based on women’s cervix. Sci Rep. 
2020;10:20407. doi:10.1038/s41598-020-76989-0.

 56. Liang ZG, Tan HQ , Zhang F, et al. Comparison of radiomics tools for image 
analyses and clinical prediction in nasopharyngeal carcinoma. Br J Radiol. 
2019;92:20190271. doi:10.1259/bjr.20190271.

 57. Fiset S, Welch ML, Weiss J, et al. Repeatability and reproducibility of MRI-
based radiomic features in cervical cancer. Radiother Oncol. 2019;135:107-114. 
doi:10.1016/j.radonc.2019.03.001.

 58. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Stan-
dardization Initiative: standardized quantitative radiomics for high-throughput 
image-based phenotyping. Radiology. 2020;295:328-338. doi:10.1148/radiol. 
2020191145.

 59. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation 
initiative. arXiv preprint arXiv: 1612.07003.

 60. Lohmann P, Galldiks N, Kocher M, et al. Radiomics in neuro-oncology: basics, 
workflow, and applications. Methods. 2021;188:112-121. doi:10.1016/j.ctrv.2021. 
102263.

 61. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep con-
volutional neural networks. Commun ACM. 2017;60:84-90. doi:10.1145/3065386.

 62. Gao Y, Mao Y, Lu S, et al. Magnetic resonance imaging-based radiogenomics 
analysis for predicting prognosis and gene expression profile in advanced naso-
pharyngeal carcinoma. Head Neck. 2021;43:3730-3742. doi:10.1002/hed.26867.

 63. Bruixola G, Remacha E, Jiménez-Pastor A, et al. Radiomics and radiogenomics 
in head and neck squamous cell carcinoma: potential contribution to patient 
management and challenges. Cancer Treat Rev. 2021;99:102263. doi:10.1016/j.
ctrv.2021.102263.

 64. Shen LJ, Chen C, Li BF, Gao J, Xia YF. High weight loss during radiation treat-
ment changes the prognosis in under-/normal weight nasopharyngeal carcinoma 
patients for the worse: a retrospective analysis of 2433 cases. PLoS ONE. 
2013;8:e68660. doi:10.1371/journal.pone.0068660.

 65. Zeng Q , Shen L-J, Guo X, Guo X-M, Qian C-N, Wu P-H. Critical weight loss 
predicts poor prognosis in nasopharyngeal carcinoma. BMC Cancer. 2016;16:169. 
doi:10.1186/s12885-016-2214-4.

 66. Sheikhbahaei S, Reyes DK, Rowe SP, Pienta KJ. CT-based assessment of body 
composition following neoadjuvant chemohormonal therapy in patients with 
castration-naïve oligometastatic prostate cancer. Prostate. 2020;81:127-134. 
doi:10.1002/pros.24088.

 67. van Timmeren JE, Leijenaar RTH, van Elmpt W, et al. Survival prediction of 
non-small cell lung cancer patients using radiomics analyses of cone-beam CT 
images. Radiother Oncol. 2017;123:363-369. doi:10.1016/j.radonc.2017.04.016.

 68. Shi L, Rong Y, Daly M, et al. Cone-beam computed tomography-based delta-
radiomics for early response assessment in radiotherapy for locally advanced lung 
cancer. Phys Med Biol. 2020;65:015009. doi:10.1088/1361-6560/ab3247.

 69. Delgadillo R, Ford JC, Abramowitz MC, Dal Pra A, Pollack A, Stoyanova R. 
The role of radiomics in prostate cancer radiotherapy. Strahlenther Onkol. 
2020;196:900-912. doi:10.1007/s00066-020-01679-9.


