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Abstract 

Background: Hepatocyte growth factor (HGF) binds to the c-mesenchymal-epithelial transition (C-MET) receptor 
and activates downstream signaling pathways, playing an essential role in the development of various cancers. Given 
the role of this signaling pathway, the primary therapeutic direction focuses on identifying and designing HGF inhibi-
tors, antagonists and other molecules to block the binding of HGF to C-MET, thereby limiting the abnormal state of 
other downstream genes.

Methods: This study focuses on the analysis of immune-related genes and corresponding immune functions that are 
significantly associated with the HGF/c-MET pathway using transcriptome data from 11 solid tumors.

Results: We systematically analyzed 11 different cancers, including expression correlation, immune infiltration, tumor 
diagnosis and survival prognosis from HGF/c-MET pathway and immune regulation, two biological mechanisms hav-
ing received extensive attention in cancer analysis.

Conclusion: We found that the HGF/c-MET pathway affected the tumor microenvironment mainly by interfering 
with expression levels of other genes. Immune infiltration is another critical factor involved in changes to the tumor 
microenvironment. The downstream immune-related genes activated by the HGF/c-MET pathway regulate immune-
related pathways, which in turn affect the degree of infiltration of immune cells. Immune infiltration is significantly 
associated with cancer development and prognosis.
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Background
The c-mesenchymal-epithelial transition (c-MET) is a 
kinase receptor for hepatocyte growth factor (HGF), and 
has been proved to be a crucial factor in driving tumo-
rigenesis [1–3]. The binding of HGF and c-MET triggers 

several downstream signaling pathways such as phospho-
inositide 3-kinase/threonine-protein kinase (PI3K/AKT) 
pathway, wingless-related integration site (Wnt) pathway, 
and other tumor-related functions [4–6]. Eventually, the 
tumor microenvironment (TME) is transformed into a 
more suitable condition for tumor aggressiveness.

The HGF/c-MET receptor tyrosine kinase (RTK) 
pathway is inactive in normal tissues but active in vari-
ous tumors [7]. An increasing number of studies have 
confirmed that inhibition of HGF/c-MET signaling is 
an effective therapeutic strategy for suppression of mul-
tiple human cancers, such as non-small cell lung cancer 
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(NSCLC), hepatocellular carcinoma (HCC), gastric can-
cer, colorectal cancer, ovarian cancer, bladder cancer, 
head and neck cancer and cervical cancer [2, 8–14]. In 
preclinical and clinical trials, it has been demonstrated 
that c-MET inhibitors exhibit antitumor activity in the 
treatment of multiple types of cancers, especially in 
NSCLC. Moreover, in epidermal growth factor recep-
tor tyrosine kinase inhibitor (EGFR-TKI)-resistant and 
EGFR-TKI-naive NSCLC patients, a combination of 
c-MET inhibitors and EGFR-TKIs (EGFR inhibitors) 
may be considered as a promising treatment option [15]. 
Based on its critical role in tumor progression, c-Met 
is emerging as a therapeutic target for cancer therapy. 
Treatment strategies in clinical trials include small mol-
ecule inhibitors specific to the tyrosine kinase domain of 
c-Met and monoclonal antibodies against HGF [16].

Tumor tissues are often infiltrated by a variety of 
immune cells such as T and B lymphocytes, natural 
killer (NK) cells, NK-T cells, dendritic cells (DCs), mac-
rophages, neutrophils, eosinophils and mast cells. The 
TME contains numerous immune and inflammatory cells 
originating from lymphoid precursors, of which each 
type has a preferred location within the tumor site. Cyto-
toxic T-lymphocytes (CTLs) and Th1 cells are generally 
located at the boundary or core of tumor tissues. Naive 
DCs are commonly found in the core site of tumor tis-
sues, whereas mature DCs infiltrate T-cell zones enriched 
with CD4+ and CD8+ T-cells. B-cells are more com-
monly distributed in tertiary lymphoid structures (TLS). 
Tumor-associated macrophages (TAMs) and T follicular 
helper cells (TFH) are found within B-cell zones, while 
NK cells are scattered within the stroma and at the tumor 
margins [17]. Based on the specific distribution, it can be 
speculated that the infiltration of different immune cells 
varies across different types of tumors. Besides, even in 
the same kind of cancer, the infiltration level of immune 
cells also changes due to the tumor heterogeneity. As 
tumor cells proliferate and metastasize, the immune cells 
also exhibit different behaviors. Numerous studies have 
confirmed that immune cell infiltration is significantly 
associated with cancer prognosis. Recent research high-
lights the prominent function of memory T cells [18] and 
CD8 T cells [19] in predicting patients’ prognosis regard-
ing survival time. Therefore, the immune infiltration in 
different tumors is a critical factor in assessing tumor 
progression and predicting tumor prognosis.

To systematically study the complex regulation of the 
HGF/c-MET pathway and immune infiltration during the 
occurrence and development of tumors, we integrated 
the HGF/c-MET activation pathway and immune regu-
lation-related pathways. By investigating the expression 
profiles of HGF and c-MET in all tumors in the TCGA 
database, we selected 11 solid tumors with significant 

differences in HGF or c-MET expression between tumor 
and normal tissues. Our first challenge was to distinguish 
between HGF/c-MET-activated and -inactivated samples 
within the 11 different cancers. We were unable to verify 
the experimental level for each sample, but the expres-
sion levels of the two genes were considered relevant in 
HGF/c-MET-activated samples. Therefore, we selected 
HGF/c-MET expression-correlated samples as the acti-
vated group samples and the rest as the inactive group 
samples. Next, we extracted the immune-related genes 
differentially expressed between activated and inacti-
vated HGF/c-MET pathway through differential analy-
sis. By evaluating the immune scores of immune-related 
functions and the infiltration scores of immune cells, we 
compared the differences before and after HGF/c-MET 
activation at immune levels. Finally, we constructed a 
diagnostic model featuring immune cells and immune-
related pathways. We found it difficult to distinguish 
between tumor samples and normal samples when using 
HGF, c-MET, or immune infiltration scores alone. How-
ever, when we integrated immune-related functions as 
additional features, we were able to accurately distinguish 
tumor tissues from normal ones in all 11 cancers. In 
terms of performance, the lowest accuracy corresponded 
to breast cancer (BRCA), which reaches 88%, and the 
highest accuracy hitting up to 99% corresponded to glio-
blastoma multiforme (GBM).

Materials and methods
Data collection
We obtained transcriptomic data of level 3 for 11 solid 
tumors from the TCGA database, as is shown in Table 1. 
The 11 cancers were selected according to differences in 
expression of HGF or c-MET genes between tumor and 

Table 1 Dataset information

The 11 cancer datasets used in this study. The first column indicates the type of 
cancer. The second and third columns correspond to the number of tumor or 
normal samples, respectively

Cancer Tumor Normal

LIHC 371 50

LUAD 515 59

BRCA 1097 114

ESCA 184 11

PRAD 497 52

HNSC 520 44

PAAD 178 4

GBM 158 5

THCA 505 59

CESC 303 3

COAD 286 41
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normal samples. The ComBat R package normalized the 
read count and eliminated batch processing effects [20]. 
Compared with a range of cancers, the specificity of each 
cancer type and data noise were avoided to some extent, 
facilitating subsequent analysis of the HGF/C- MET 
pathway risk genes that are stably present in cancer. We 
collected a list of genes relevant to immune regulation 
from the ImmPort database [21], involving 1811 genes. 
These genes were derived from molecules such as costim-
ulatory molecules, chemokines and cytokines.

HGF/c‑MET pathway activation sample identification
In samples affected by HGF/c-MET pathway activation, 
HGF was expected to be co-expressed with c-MET. Con-
versely, samples with unrelated HGF and c-MET expres-
sion were supposed to be more likely to belong to the 
group with an inactivated HGF/c-MET pathway. Expres-
sion of HGF and c-MET in all samples was scaled from 
0 to 1 so that the ratio of the two genes in samples with 
activated HGF/c-MET pathway is close to 1. We took 
samples with a rate between 0.5 and 1.5 as the activated 
HGF/c-MET pathway group, and the others as the inac-
tivated group.

HGF/c‑MET‑related gene recognition
After obtaining the activated HGF/c-MET group and the 
inactivated HGF/c-MET group, immune-related genes 
that were significantly differentially expressed between 
the two groups were screened utilizing the Limma algo-
rithm [22]. These genes were thought to be downstream 
genes differentially expressed after activation of the 
HGF/c-MET signaling pathway. Since we combined 11 
cancers, some genes may be differentially expressed only 
in some samples considering the heterogeneity of can-
cer, and thus missed by differential analysis. Hence, we 
did not use the  log2FC as a screening criterion. Instead, 
we selected genes with p-values < 0.05 as differentially 
expressed genes.

Functional enrichment analysis
We used the statistical method of the clusterProfiler R 
package [23] to conduct a functional annotation analy-
sis on HGF/c-MET-related immunoregulatory genes and 
identify their potential regulatory functions. Since the 
genes we selected were all immunoregulatory genes, the 
enriched biological functions were highly concentrated in 
the immune-related pathways, allowing us to identify and 
explain the molecular mechanisms of the HGF/c-MET 
pathway more precisely from the perspective of immune 
regulation.

Functional pathway immune score
Differences in gene expression are apparent at differ-
ent stages, and the genes that are functionally related 
to each other are concentrated in the same pathway. 
Therefore, based on the expression of the differentially 
expressed genes in each pathway, the overall deviation 
score for the pathway was calculated according to Eq. 1 
[24].

For the functional term P, A (P) is the function of 
the imbalance score, m is the number of differentially 
expressed genes needed for the pathway to increase, n is 
the number of differentially expressed genes required for 
the pathway to decrease, ω is the network weight in co-
expression of the gene, Xi is the uptake of gene i’s expres-
sion value, Xj is the expression value of gene j, and μ is 
the mean value of the expression of the gene in the stage 
I sample;  log2 transformation of the whole expression was 
taken. If A (P) = 0, the upregulated and downregulated 
gene achieves equilibrium. If A (P) is > 0, the upregulated 
gene is dominant and the function has an upward bias. 
If A (P) is < 0, the downregulated gene is dominant in 
the pathway and the function will have an occurrence of 
downward bias. Then we performed 1000 times of per-
mutation procedure and in each cycle the same num-
ber of genes were randomly selected from the gene pool 
computing the random deviation score. The degree score 
(DS) of path P from the normal state is calculated using 
Eq. 2. µ′

andsd
′

 represent the mean and standard devia-
tion of 1000 times permutation.

Immune infiltration analysis
To unravel the downstream functions of the HGF/c-MET 
signaling pathway and explain the underlying mecha-
nisms of cancers’ diverse prognosis, we used the expres-
sion of HGF/c-MET-related immune genes and the 
CIBERSORT algorithm [25] to assess immune cell infil-
tration. According to the immune score, the degree of 
activation of each immune-related pathway in any sample 
could be evaluated. The immune cell infiltration analysis 
facilitated the comparison of the differences in cellular 
components of different samples and immune cells in dif-
ferent pathways, thus analyzing how various immune cell 
components were changed after the HGF/c-MET path-
way was activated.
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Tumor diagnostic model
Using the immunological scoring of immune-related 
pathways and immune cell infiltration ratio, we com-
bined the machine learning algorithms for feature 
selection. We screened immune cells and pathways that 
are significantly associated with at least one cancer. We 
utilized the deep learning algorithm to build a neural 
network [26] and conducted cross-validation and accu-
racy assessment. All normal tissue samples from all the 
11 cancers data were collected as a control group, and 
models were employed to predict tumor samples and 
control groups for each type of cancer. Finally, an ROC 
curve was used to evaluate the prediction accuracy of 
the model for different cancers.

Survival analysis
The HGF/c-MET pathway is significantly associated 
with tumor cell development, and its downstream path-
way can be used to distinguish tumors from normal 
samples accurately. We hope to further study the rela-
tionship between HGF/c-MET and cancer prognosis. 
Therefore, we used the survival R package [27] to eval-
uate the relationship between HGF, c-MET and other 
immune cell infiltration scores and survival prognosis 
for each cancer.

Cell culture
The human kidney cancer cell lines A549, H40, EC109, 
KYSE450 were purchased from the American Type Cul-
ture Collection (ATCC; Manassas, VA, USA) and cul-
tured in DMEM supplemented with 10% fetal bovine 
serum, 100 U/mL penicillin, and 100 μg/mL strepto-
mycin. All cells were maintained at 37°C in 5%  CO2 
atmosphere.

Silencing of IQGAP by small interfering RNA
The siRNA (purchase from Shanghai Gene Pharma) tar-
geting position 5′- GGC CAU GAA UUU GAC CUC UAU 
GAA A-3′, 5′- GGU GGG AUU CCU GCA UUC CUC UCA 
U-3′ of human HGF and c-MET mRNA were synthe-
sized. A nonspecific scramble siRNA was used as nega-
tive control (NC). The final concentration of siRNAs is 
100  nM. The siRNAs were transiently transfected into 
cells using Lipofectamine 3000 (Invitrogen) according 
to the manufacturer’s instruction. Assays were per-
formed 48 h after transfection.

Results
Data collection
We downloaded the RNAseq data for 11 solid tumors 
from the TCGA database, as is shown in Table  1. All 
data include tumor tissue samples and normal tissue 

samples as well as corresponding expression data for 
20,530 genes. After removing the batch effect using the 
ComBat R package, we combined 11 datasets of can-
cer data, including 4182 tumor samples and 442 nor-
mal tissue samples from 11 cancers. We compared the 
expression profiles of HGF and c-MET in different can-
cer samples and corresponding normal samples in the 
TCGA database, as is shown in Fig.  1. It can be intui-
tively observed from the boxplot that HGF and c-MET 
are significantly differentially expressed in almost all 
cancer samples. We selected 11 significant solid tumors 
as the analytical data for this study, as is shown in 
Table 1.

Identification of samples with activated HGF/c‑MET 
pathway
In the HGF/c-Met pathway group, the expression interval 
of HGF/ c-Met was modified to 0–1, and the expression 
ratio of the two genes was close to 1. By screening sam-
ples with ratios > 0.5 and < 1.5, we identified 2852 acti-
vated samples and 2241 inactivated samples. Based on 
the Pearson correlation coefficient, the correlation coeffi-
cient between the two genes was 0.63 and the p-value was 
2.32e−264 in the samples with activated HGF/c-MET 
pathway. The correlation profile is shown in Fig. 2A.

As is shown in Fig.  2A, the expression profiles of the 
HGF and MET genes in all samples show distinctly dif-
ferent patterns. Red dots represent inactivated samples 
and blue dots represent the activated samples. In the 
activated samples, as the expression level of the gene 
HGF increases, the expression level of the gene c-MET 
increases correspondingly.

HGF/c‑MET‑related gene recognition
We used the correlation between HGF and c-MET to 
split the sample into activated and inactivated groups. 
Combined with the differential analysis, the genes with 
p-values <  0.05 were selected as the HGF/c-MET sign-
aling related genes. In the end, we screened out 755 
upregulated genes and 395 downregulated genes. We 
also visualized the distribution of  log2FC and negative 
logarithmically transformed p-values of differentially 
expressed genes, as is shown in  Fig. 2B.

In Fig. 2B, the horizontal axis is  log2FC, and the vertical 
axis is the negative logarithmically transformed p-value, 
and each dot represents a differentially expressed gene. 
As the distribution indicates, the fold change of some 
differentially expressed genes is close to 0, but the cor-
responding p-values are very significant. It demonstrates 
that although some genes have no significant difference 
in terms of the overall mean or median, they are signifi-
cantly differentially expressed in the subgroup of patients, 
thus obtaining significant p-values.
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Functional enrichment analysis
We screened immune-related genes that were signifi-
cantly differentially expressed between activated and 
inactivated HGF/c-MET pathway. To further clarify the 
functions regulated by these differential genes, we con-
ducted a functional enrichment analysis, which is shown 
in  Fig. 3.

The results of functional enrichment analysis revealed 
that downstream genes related to the activation of 
the HGF/c-MET pathway were mainly involved in the 

regulation of immune cell proliferation, migration and 
intercellular interactions (Fig.  3A). It is worth noting 
that these functions were highly linked to each other, 
suggesting that differentially expressed immune-related 
genes were involved in the regulation of multiple simi-
lar or related biological functions (Fig.  3B). Among 
these enriched functions, peptidyl−tyrosine phospho-
rylation, peptidyl−tyrosine modification and response to 
lipopolysaccharide shared most genes (Fig. 3D) with leu-
kocyte proliferation. At the same time, the differentially 

** *** * *** ** *** *** *** *** ** *** *** * *** *** *****
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(A)

(B)
Fig. 1 Distribution of HGF and c-MET genes in TCGA datasets. The red and blue bars indicate tumor and normal samples, respectively. Some tumors 
consist of multiple subtypes such as BRCA and HNSC and, thus, may have multiple bars. Stars on the top signify that the expression level between 
tumor and normal samples is diverse
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(A) (B)
Fig. 2 Activated samples and differentially expressed genes. A In activated samples HGF and c-MET are supposed to be correlated, as shown in 
blue. Samples marked in red are considered inactivated. B The X axis is log2FC and the Y axis is the log-transformed p-values. Even though most 
genes have a relatively small fold change, the p-values are extremely significant
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expressed genes showed a significant mutual exclusion 
pattern, that is, specific genes specifically regulated a par-
ticular function (Fig. 3C).

Functional pathway immune score
We used the expression of immune-related genes in each 
enriched function to assess the immune scores of each 
function across all samples. By comparing the immune 
scores of each pathway between the activated and inac-
tivated samples, we extracted the nine most significant 
pathways, as is shown in  Fig. 4.

The following analysis by the student’s t-test, the p-val-
ues of the nine pathways, shown in Fig. 4, were all below 

0.05, and all pathways were supposed to be upregulated 
in samples whose HGF/c-MET pathway was activated. 
These nine pathways were mainly involved in the positive 
response of the immune system.

Immune cell infiltration analysis
Through functional enrichment analysis and quantitative 
analysis of immune scores, we found that the immune 
response was significantly positively regulated when 
the HGF/c-MET pathway was activated. To clarify the 
proportion of different cellular components during the 
immune response, we used the CIBERSORT algorithm 
to quantify different immune cells. We calculated the 
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infiltration fraction of six immune cells, including B cells, 
T cells,  CD4+ T cells,  CD8+ T cells, neutrophils, mac-
rophages, and DCs in each sample. Using hierarchical 
clustering, we clustered the samples, as is shown in Fig. 5.

We found a significant difference between the acti-
vated and inactivated samples based on the immune cell 
infiltration score, with the immune cell infiltration frac-
tion significantly increased in the activated group. In the 
inactivated group, the immune cell infiltration fraction 
was relatively low. However, it is difficult to distinguish 
between normal samples and tumor samples only relying 
on the immune cell infiltration fraction.

On the other hand, since we combined the data of 11 
tumors, the infiltration of different immune cells in vari-
ous tumors was also highly heterogeneous. To further 
clarify the correlation between the infiltration of each 
immune cell and the HGF or c-MET gene, a correlation 
analysis was performed, as is shown in Figs.  6, 7, Addi-
tional file 1: Figure S1 and Additional file 2: Figure S2.

We found that different immune cells were differen-
tially activated by HGF and c-MET in the 11 tumors. 
For example, in BRCA, adenocarcinoma of colon 
(COAD) and most other tumors, all the six immune cells 
showed a positive correlation with HGF, indicating that 
immune cells were activated or recruited by the HGF/c-
MET pathway. However, no significant correlation was 
observed in GBM or cervical squamous cell carcinoma 

(CESC). Meanwhile, in the c-MET correlation analysis, 
we found that some immune cells showed a negative cor-
relation with c-MET. This series of results demonstrated 
that the HGF/c-MET pathway played an essential role 
in the development of multiple tumors and activated 
downstream immune cells as well as immune-related 
pathways. However, for some tumors, such as GBM and 
CESC, there may be other mechanisms that are more 
dominant than the HGF/c-MET pathway.

Tumor diagnostic model
Activation of the HGF/c-MET pathway plays a vital role 
in tumorigenesis. By intervening in the downstream 
immune cell pathway, it affects the TME and leads to 
tumorigenesis. Therefore, we hope to integrate the 
HGF/c-MET pathway and level of immune regulation to 
achieve tumor diagnosis and prediction. We collected six 
immune cells and the 20 significantly enriched immune 
pathways as features. Using the neural networks, we pre-
dicted each cancer separately, and the results are shown 
in Fig. 8.

Using the integrated immune cell infiltration fraction 
and the enrichment pathway immune scores can accu-
rately distinguish tumor samples from normal tissue 
samples. The highest precision was observed in GBM, 
with an accuracy of 0.99, while the worst emerged in 
BRCA, with a precision of 0.88.

DC
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Fig. 5 Cluster of immune infiltration. Each row represents one immune cell and each column represents one sample. The normal control, activated, 
and inactivated samples are marked in light blue, dark blue, and red, respectively
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Survival analysis
We used the survival R package for log-rank analysis and 
calculation of p-values. The results are shown in Fig.  9 

and Additional file  3: Figure S3. The survival analysis 
shows that the prognosis of some tumors was signifi-
cantly correlated with HGF/c-MET expression, including 

Fig. 6 Correlation between HGF and six immune cells in 11 tumors. Each row is one type of tumor and the first column represents the purity of the 
tumor. The second to seventh columns represent correlations between each immune cell and HGF
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HNSC, lung adenocarcinoma (LUAD) and pancreatic 
adenocarcinoma (PAAD). Some cancers were also asso-
ciated with the degree of immune cell infiltration, such 

as CESC, COAD and thyroid cancer (THCA). This result 
suggests that although the activation of the HGF/c-MET 
pathway upregulated the downstream immune signaling 

Fig. 7 Correlation between MET and six immune cells in 11 tumors. Each row is one type of tumor and the first column represents the purity of the 
tumor. he second to seventh columns represent correlations between each immune cell and MET.
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pathway, which recruited more immune cells, the degree 
of HGF/c-MET pathway or immune infiltration varies 
among different cancers in terms of prognosis. This is 
mainly caused by the various mechanisms, recurrence 
or metastasis of cancer. Therefore, to achieve a success-
ful tumor diagnosis or prognosis assessment more com-
prehensively, systematic integration of the HGF/c-MET 
pathway and immune-related pathways are needed for 
further analysis.

HGF / C‑MET silenced could suppress tumor proliferation 
and invasion
In order to further explore the impact of the HGF/c-
MET pathway on tumors, we conducted some experi-
ments in vitro in lung cancer and esophageal cancer cell 
lines. We silenced HGF and c-MET genes respectively as 
shown in Fig. 10A, and we have done a CCK8 prolifera-
tion assay, colony and Wound-Healing assay. We found 
that whether HGF or c-MET was silenced, the prolifera-
tion and invasion of tumor cells would be inhibited as is 
shown in Fig. 10B–D. Our results demonstrated that the 

HGF/c-MET pathway could affect tumor proliferation 
and invasion.

Discussion
With the development of bioinformatics, increasing 
attention has been focused on finding recurrent mecha-
nisms in various cancers. A recurrent mechanism might 
be a driver gene, a core pathway or even a complex reg-
ulatory network. In this study, we integrated data from 
11 different solid tumors, intending to find molecular 
mechanisms commonly applicable to tumors. Abnor-
mal activation of the HGF/c-MET pathway and immune 
cell infiltration have been widely demonstrated to play 
an essential role in a variety of tumors, so we integrated 
HGF/c-MET pathway and immunoregulatory ele-
ments to analyze the underlying driving mechanisms 
of cancer. MET is a tyrosine kinase receptor involved 
in embryonic development, organogenesis, and wound 
healing. Hepatocyte growth factor/scatter factor (HGF/
SF) and its alternative splicing isoforms (NK1 and NK2) 
are the only known ligands of the MET receptor. MET 
has high-level tissue specificity and is mainly expressed 

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K)

Fig. 8 ROC performance of model for each type of cancer. Each ROC graph corresponds to one type of cancer. The red curve is the random curve. 
The X and Y axes are the false-positive rate and true-positive rate, respectively
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in epithelial-derived cells, whereas HGF is primarily 
expressed in mesenchymal-derived cells. When HGF 
binds to its cognate receptor MET, it induces MET 
dimerization. The specific biological mechanism behind 
this process is still unclear. Abnormal MET activation in 
cancer is associated with poor prognosis. Possible rea-
sons include that MET activation triggers tumor growth, 
angiogenesis or metastasis. Generally, only stem and 
progenitor cells express MET, which enables these cells 
to grow invasively. The activation of MET also helps pro-
duce new tissues in the embryo or regenerate damaged 
tissue in adulthood.

HGF/c-Met signaling dysfunction has been reported 
to be related to cell proliferation, progression and met-
astatic characteristics of several tumor types, includ-
ing COAP, which suggests that it has potential value as 
a novel therapeutic target. Although c-MET activation 
is transient during physiological events, c-MET signal-
ing may be constitutively active during tumor onset and 
progression. Activating c-MET pathways in tumor cells 
during tumor progression enhances the ability to disag-
gregate from surrounding tumor cells, which further 
destroys the basement membrane and improves cell 
mobility and metastatic risk.
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It has been suggested that changes in tumor cells can 
benefit from the changes of TME in terms of enhanc-
ing proliferation and increasing chemoresistance. The 
immune cell infiltration is one of the main factors to 
interfere with the TME.

The immune system has been validated to play a dual 
role in the internal environment, which is known as the 
executor of cancer immunoediting [28]. Generally, the 
immune system eliminates cancer cells or inhibits the 
growth of cancer cells, but in certain conditions, the 
immune system promotes tumor progression by inter-
fering with the TME or recruiting more resistant cancer 
cells. Cellular components in the TME include fibro-
blasts, adipocytes, neural and neuroendocrine cells, 
endothelial cells, pericytes and mesenchymal stem cells, 
the most prominent of which are lymphocytes and 
myeloid populations, including T cells, B cells, NK cells, 
macrophages, and DCs. The immune cells infiltration 
varies across different cancers. For example, in GBM, the 

degree of infiltration of all immune cells is significantly 
higher than in esophageal carcinoma (ESCA). The degree 
of infiltration of  CD4+ T cells in THCA is considerably 
higher than that of other cell types. This also indicates 
that, to some extent, there are significant differences in 
the levels of immune regulation among different cancers. 
To quantify this difference in functional levels, we used 
a functional pathway immune scoring algorithm to score 
the enriched immune pathways.

In the present study, we divided the samples into an 
activated group and an inactivated group based on the 
expression correlation of HGF/c-MET and then extracted 
immune-related genes differentially expressed between 
the groups. Through functional enrichment analysis, we 
found that these genes were mainly involved in mediat-
ing immune cell proliferation, migration and intercellular 
interaction. Through the pathway immune scoring algo-
rithm, we quantified the enriched functional pathways. 
Using immune gene expression profiles, we evaluated the 

Fig. 10 The expression of HGF and c-MET can affect the proliferation and invasion of lung cancer and esophageal cancer. A qRT-PCR analysis of 
HGF and c-MET expression after silencing the gene. B 500 cells were seeded in 6-well plates, and after 2 weeks of culture, representative images 
of foci formation in monolayer culture between NC, HGF-SI and c-MET-SI cells, and the number of colonies detected. C The cell proliferation rate 
between NC, HGFSI and c-MET-SI cells were measured by CCK8 assay. D Scratch test detects cell invasion ability between NC, HGF-SI and c-MET-SI 
cells. * represents p < 0.05, ** represents p < 0.01
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infiltration fraction of 6 immune cells. Finally, we inte-
grated HGF/c-MET, immune cell infiltration fraction, 
and immune pathway score as features and predicted 11 
tumors by constructing a neural network model. Among 
the 11 tumors, the model had the best predictive perfor-
mance on GBM with an accuracy of 99%. The prediction 
of BRCA was the worst, still reached 88%. The probable 
cause is that BRCA contains multiple different subtypes. 
There are significant differences in the levels of immune 
regulation between the different subtypes; hence, the 
model fails to achieve optimal performance when pre-
dicting the overall BRCA. However, if BRCA patients 
are to be diagnosed based on subtypes, a better accuracy 
should be obtained.

In addition to distinguishing between tumors and 
normal samples, we also attempted to compare the rela-
tionship between HGF/c-MET, immune infiltration and 
survival outcomes in patients with cancer. We found a 
significant correlation between immune infiltration and 
survival prognosis in CESC, ESCA, LUAD, and PAAD. In 
long-lived patients in COAD and THCA, immune infil-
tration and survival prognosis were significantly associ-
ated. Besides, in HNSC, LUAD and PAAD, the expression 
of HGF/c-MET also determines the survival prognosis. 
These results further confirm that although HGF/c-MET 
abnormal activation and immune regulation abnormali-
ties play an important role in the development of cancer, 
their effects vary in different cancers. This indicates the 
specificity of immunoregulatory abnormalities during the 
progression of different types of cancer. Therefore, it is 
critical to achieve a cancer-specific treatment and diag-
nosis for various tumors.

In this study, we systematically analyzed 11 different 
cancers, including expression correlation, immune infil-
tration, tumor diagnosis and survival prognosis from 
HGF/c-MET pathway and immune regulation, two bio-
logical mechanisms that have received extensive atten-
tion in cancer analysis. In contrast, we have found that 
it can be widely used in a variety of cancers to achieve 
tumor diagnosis. We found that HGF/c-MET and 
immune regulation levels are highly specific in different 
cancers. Therefore, although the HGF/c-MET pathway, 
immune cell infiltration and immune pathway scores 
integrated in this study can satisfy the prediction of 11 
cancers, it is difficult to find a feature that could be widely 
used in all cancers. In contrast, a large number of studies 
have shown that HGF/c-MET activation affects cancer 
prognosis, but we found a significant relationship only 
in a small number of cancers by comparing HGF/c-MET 
expression and survival prognosis in 11 cancer patients.

Nevertheless, a correlation can be observed in some 
long-lived patients. Frankly, our study still has some limi-
tations, including the fact that the entire research focuses 

on transcriptomic data. Other omics data for genes can 
play a more dominant role in certain cancers, including 
mutation, copy number variant, gene fusion and meth-
ylation. In subsequent studies, integrating the abovemen-
tioned omics data to augment the feature set may lead to 
a more specific and sensitive diagnostic model.

Conclusion
We found that the HGF/c-MET pathway affected the 
TME mainly by interfering with the expression levels 
of other genes. Immune infiltration was another crucial 
factor involved in changes to the TME. The downstream 
immune-related genes activated by the HGF/c-MET 
pathway regulated immune-related pathways, which in 
turn affected the degree of infiltration of immune cells. 
Immune infiltration was significantly associated with 
cancer development and prognosis.
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