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Abstract Hypertension is associated with development of

white matter hyperintensities (WMH) in the brain, which

are risk factors for mild cognitive impairment. Hormonal

shifts at menopause alter vascular function putting women

at risk for both hypertension and WMH. Elevations in

aortic hemodynamics precede the appearance of clinically

defined hypertension but the relationship of aortic

hemodynamics to development of WMH in women is not

known. Therefore, this study aimed to characterize aortic

hemodynamics in relationship to WMH in post-

menopausal women. Aortic systolic and diastolic blood

pressure (BP), aortic augmentation index (Alx) and aortic

round trip travel time (Aortic TR) by tonometry were

examined in 53 postmenopausal women (age

60 ± 2 years). WMH was calculated from fluid-attenu-

ated inversion recovery MRI using a semi-automated

segmentation algorithm. WMH as a fraction of total white

matter volume positively associated with aortic systolic

BP (regression coefficient = 0.018; p = 0.04) after

adjusting for age. In addition, WMH fraction was posi-

tively associated with AIx (0.025; p = 0.04), and inver-

sely associated with Aortic TR (-0.015; p = 0.04) after

adjusting for age. Our results suggest that assessing aortic

hemodynamics may identify individuals at risk for
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treatment to reduce WMH burden and cognitive impair-

ment in the future.

Keywords MRI � Blood pressure � Cognitive aging �
Stroke prevention � Cerebrovascular disease

Introduction

White matter hyperintensities (WMH) in the brain are risk

factors for mild cognitive impairment [1, 2] and are asso-

ciated the rate of cognitive decline in older adults [3]. The

volume of WMH is associated with hypertension, espe-

cially at midlife [4]. Similarly, arterial stiffness at midlife,

which often develops prior to hypertension [5], predicts

future WMH volume [6]. Early changes in arterial structure

of the central elastic arteries affect aortic hemodynamics

prior to clinical changes in brachial BP [7]. Unlike diastolic

BP, which is similar when measured centrally (aortic) or

peripherally (brachial), systolic BP is dependent on the

location in the arterial tree where it is measured [7]. These

differences in systolic BP are due to pulse pressure

amplification and may have an impact on risk stratification

[8]. In fact, some evidence suggests that treatment strate-

gies to mitigate cardiovascular risk should be based on

aortic hemodynamics [8, 9]. Thus, it is possible that, even

though brachial systolic BP may be within the ‘‘normative’’

range, central or aortic hemodynamics may be associated

with vascular brain injury as early as midlife.

Women are at elevated risk for developing hypertension

after menopause [10]. However, in postmenopausal women

without clinically defined hypertension, the volume of

WMH as a fraction of total white matter volume associated

with blood-borne markers of endothelial disruption, such as

the thrombogenic microvesicles [11] suggesting that

changes in WMH volume or fraction precede overt eleva-

tions in brachial BP. As there is inadequate examination of

potential sex differences in the effects of hypertension and

hormonal status on brain structure, this study sought to

determine if aortic hemodynamics and arterial stiffness

were associated with WMH in a cohort of postmenopausal

women.

Methods

Participants

Women (n = 74) who had previously participated in the

Kronos Early Estrogen Prevention Study (KEEPS) at Mayo

Clinic were invited to participate in the present study. For

participation in KEEPS, women were between 6 months

and 3 years past their last menses and without prior

cardiovascular events. Menopausal status was confirmed

by 17b estradiol and follicular stimulating hormone levels.

Full inclusion criteria for KEEPS are reported elsewhere

[11, 12]. For the current study, women were recruited

3 years after their exit from the KEEPS study. The current

study was to evaluate hemodynamic factors in these post-

menopausal women in relationship to the fractional volume

of WMH. Inclusion criteria were: (1) body mass index

(BMI)\35 kg/m2; (2) no history of cardiovascular disease;

(3) no diagnosis of diabetes; (4) no prescribed use of

antihypertensive medication; (5) systolic brachial BP

\150 mmHg and diastolic BP \95 mmHg during both

study visits; (6) free of contraindications for MRI for safety

such as an MRI-incompatible implant or claustrophobia;

and (7) no neurologic diseases present that would have an

impact on MRI findings such as multiple sclerosis, brain

tumors, or epilepsy. All women underwent a neuropsy-

chological assessment and their scores were within age-

adjusted normative ranges [12]. All participants were non-

smokers.

Standard protocol approvals, registrations

and patient consents

This study was approved by the Mayo Clinic Institutional

Review Board. All participants gave written informed

consent.

Hemodynamic measurements

Participants arrived to the Clinical Research Unit at Mayo

Clinic between 11:00 and 13:30 after a 4-h fast and 24 h

without caffeine, alcohol, and or exercise. Venous blood

was collected for analysis of cardiometabolic risk factors

(Table 1). Women rested in the supine position [13] and

brachial BP was measured by the cuff method 3 times, each

separated by 2 min. Because normotensive individuals

sometimes demonstrate higher than normal BP during

laboratory study visits, women were excluded if their

brachial BP was [150/95 mmHg or if they were using

antihypertensive medications. After supine brachial BP

measurements, aortic hemodynamics measurements were

measured in the supine position. The radial arterial wave-

forms were calibrated from the supine brachial BP mea-

surements taken immediately prior by an automated

oscillometric device (Cardiocap/5, Datex-Ohmeda, Louis-

ville, CO, USA). High-fidelity radial artery pressure

waveforms were recorded by applanation tonometry of the

radial pulse in the right wrist using a pencil type micro-

manometer (Millar Instruments, Houston, TX, USA).

Multiple trials of sequential radial pulse waveforms were

recorded over a 10-s period for each woman. Three to five

trials of the radial pulse obtained in rapid succession were
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averaged for each participant [14]. A generalized transfer

function (Sphygmocor, Atcor Medical, Sydney Australia)

to correct for upper limb pressure amplification was used to

generate the corresponding aortic pressure waveform and

central BP. The generalized transfer function has been

validated using both intra-arterially [15] and non-inva-

sively obtained radial pressure waves [16].

The central aortic pressure waveform is composed of a

forward traveling wave, generated by left ventricular

ejection and a reflected wave that is returning to the

ascending aorta from the periphery (Fig. 1). Pulse wave

analysis of the aortic pressure waveform provided the

following variables of interest: (1) central aortic BP; (2)

augmented pressure (AP), the amplitude of the reflected

wave which is defined as the difference between the first

(forward wave) and second systolic shoulder of the aortic

systolic BP; (3) AIx, augmentation index, the reflected

wave amplitude divided by pulse pressure expressed as a

percentage and adjusted for a heart rate of 75 bpm; (3)

round trip travel time (Aortic TR) of the forward traveling

wave from the ascending aorta to the major reflection site

and back is measured from the beginning of the upstroke of

the pressure wave to the foot of the reflected wave (in-

flection point); and (4) wasted left ventricular energy (LV

wasted energy), which is the component of extra myocar-

dial oxygen requirement due to early systolic wave

reflection. LV wasted energy can be estimated as 1.333*(p/
4)*(augmented pressure * Dtr), where 1.333 is the

conversion factor and Dtr is the time from the inflection

point to the dicrotic notch (systolic duration of the reflected

wave). Only high-quality recordings, defined as an in-de-

vice quality index of over 80% (derived from an algorithm

including average pulse height variation, diastolic varia-

tion, and the maximum rate of rise of the peripheral

waveform), were accepted for analysis. In general, 3–5

measurements were performed to obtain an accept-

able quality index.

Magnetic resonance imaging

MRI was performed on a single 1.5-tesla system with an

8-channel phased-array head coil (GE Healthcare, Mil-

waukee, WI, USA) within 6 weeks of the hemodynamic

measurements. Fluid-attenuated inversion recovery

(FLAIR) MRI of the whole head was performed to quantify

WMH volume. A 3-dimensional magnetization-prepared

rapid acquisition gradient echo (MPRAGE) sequence was

used for the segmentation of WM. All MRIs underwent

preprocessing corrections for gradient nonlinearity and

intensity nonuniformity.

WMH volumes were derived from a semi-automated

segmentation of FLAIR images as detailed in previously

published work [11]. Briefly, All MPRAGE and FLAIR

images obtained during the same examination period were

co-registered and segmented, and MPRAGE image was

resampled in the FLAIR space. WMH on FLAIR images

were segmented using an automated slice-based seed ini-

tialization and region-growing method, and the segmented

WMH voxels were multiplied with the WMH mask. A

trained image-analyst (S.Z.) inspected the segmented

WMH mask overlaid on the FLAIR image. Every seg-

mented slice was visually compared with the unprocessed

FLAIR images and all false-positive WMH labels that

resulted from artifacts were edited and excluded from the

WMH mask [11]. To adjust for potential differences in

WM volume among women, WMH fraction was calculated

as WMH volume/total WM volume to determine the

fraction of WM at risk.

Data analysis and statistics

A paired t test was performed to determine if aortic and

brachial systolic BP values were statistically different. In

all analyses, WMH fraction was log-transformed to

improve normality and reduce skewness. To assess the

relationship between WMH fraction and aortic hemody-

namic measures, we used linear regression models pre-

dicting log (WMH fraction) with each aortic hemodynamic

measure taken one at a time while adjusting for age. The

t test and regression analyses were performed using sta-

tistical analysis software R version 3.1.1.

Table 1 Demographic and clinical characteristics

Variables Median (IQR)

Number of participants 53

Age (years) 60 (59, 61)

Education, no. (%)

High school diploma 3 (6)

College graduate 32 (64)

Some graduate or professional 2 (4)

Graduate or professional degree 12 (24)

Time past menopause, months 102 (96, 111)

Body mass index (kg/m2) 27 (23, 31)

Waist circumference (cm) 87 (79, 96)

Total cholesterol (mg/dL) 204 (190, 226)

Low-density lipoprotein (mg/dL) 120 (104, 136)

High-density lipoprotein (mg/dL) 64 (57, 75)

Triglycerides (mg/dL) 88 (72, 109)

Fasting glucose (mg/dL) 93 (89, 98)

hsCRP (pg/mL) 1.2 (0.5, 2.6)

Estradiol (pg/mL) 5 (3, 10)

Testosterone (ng/dL) 15 (11, 21)

WMH fraction (%) 0.0032 (0.0020, 0.0047)

hsCRP C-reactive protein, WMH white matter hyperintensities
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Results

Participant characteristics

Of the 74 women who agreed to participate in this study,

twenty-one women were excluded from analysis due to a

BMI [35 kg/m2 (n = 8), presence of uncontrolled hyper-

tension (n = 4), use of anti-hypertensive medication

(n = 8), and feeling claustrophobic in the MRI scanner

(n = 1). The demographic and clinical characteristics of the

53 women meeting inclusion criteria are shown in Table 1.

Hemodynamic variables

Median brachial and aortic systolic and diastolic pressures,

IQR values for augmented pressure, AIx (adjusted for heart

rate), Aortic TR and LV wasted energy are listed in Table 2.

Associations between WMH and aortic

hemodynamic characteristics

WMH fraction was positively associated with aortic sys-

tolic BP and AIx, and inversely associated with Aortic TR
(Table 3; Fig. 2). There was no association between WMH

fraction and aortic diastolic BP, augmented pressure, or LV

wasted energy (p[ 0.05 for all; Table 3). Eliminating the

effect of potential outliers (highest and lowest WMH

fraction) did not change the results or statistical signifi-

cance (data not shown).

Associations between WMH and brachial BP

The median brachial systolic BP was significantly greater

than the median aortic systolic BP (p\ 0.0001; Table 2);

but median aortic diastolic BP did not differ from brachial

diastolic BP (p[ 0.05). There was a non-significant trend

for an association between WMH fraction and brachial

systolic BP (p = 0.08, Table 3). The age-adjusted associ-

ation between WMH and brachial diastolic BP and brachial

PP did not reach significance (p = 0.11, p = 0.27,

respectively; Table 3).

Association of WMH with other confounders

WMH fraction did not associate with BMI or with MAP.

Adjusting for height did not change the association between

WMH fraction and aortic variables (data not shown).

Discussion

This study demonstrated that WMH fraction associated

with aortic hemodynamic characteristics in post-

menopausal women who were not using antihypertensive

Fig. 1 Typical applanation

tonometry-derived ascending

aortic pressure waveform with

pulse wave analysis components

including aortic systolic

pressure; aortic diastolic

pressure; inflection point where

incident and reflected waves

merge; or round trip travel time

of reflected pressure wave to

peripheral reflecting sites and

back to heart; and AIx or

augmentation index, the ratio of

augmented pressure to pulse

pressure

Table 2 Brachial and aortic hemodynamics

Variables Median (IQR)

Brachial SBP (mmHg) 123 (115, 127)

Brachial DBP (mmHg) 73 (69, 79)

Brachial PP (mmHg) 38 (34, 42)

Aortic SBP (mmHg) 112 (104, 119)

Aortic DBP (mmHg) 74 (69, 78)

Augmented pressure (mmHg) 13 (10, 16)

AIx (%) 27 (23, 31)

Aortic TR (ms) 141 (133, 146)

LV wasted energy (dynes cm2 s) 2.8 (2.2, 3.4)

LV wasted energy is in thousands

AIx aortic augmentation index at a heart rate of 75 bpm, Aortic TR
round trip travel time, an indirect measure of aortic pulse wave

velocity, DBP diastolic blood pressure, LV left ventricle, PP pulse

pressure, SBP systolic blood pressure
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medications and who did not meet the clinical criteria for

hypertension. Non-invasive pulse wave analysis has been

used to detect changes in aortic characteristics for decades.

The pressure waveform at the central aorta is important for

assessing cardiovascular risk because it represents the work

imposed on the left ventricle and central elastic arteries

[17]. A physiological increase in AIx reflects arterial

stiffening, a change in downstream reflection sites, or

elevated peripheral resistance. Similarly, a decrease in the

time of reflection (Aortic TR) characterizes an increase in

arterial stiffness. Unfavorable increases in aortic BP and

AIx are associated with cardiovascular diseases such as

Table 3 Regression model estimates (SE) between log (WMH fraction) and hemodynamic variables adjusted for age

Variable Regression coefficient (SE) % change in WMH fraction

for 1-unit increase in variable

p value

Brachial systolic BP (mmHg) 0.018 (0.01) 1.8 0.08

Brachial diastolic BP (mmHg) 0.024 (0.015) 2.4 0.11

Pulse pressure (mmHg) 0.013 (0.012) 1.3 0.27

Aortic systolic BP (mmHg) 0.018 (0.009) 1.8 0.046

Aortic diastolic BP (mmHg) 0.028 (0.015) 2.8 0.07

Augmented pressure (mmHg) 0.032 (0.019) 3.2 0.10

AIx (%) @ 75 bpm 0.025 (0.011) 2.5 0.04

Aortic TR (ms) -0.015 (0.0073) -1.5 0.04

LV EW in thousands 0.1 (0.072) 10 0.17

Regression model beta estimates (standard error) between log (WMH fraction) and hemodynamic variables. All estimates were age-adjusted.

Intercept estimates are not shown

AIx aortic augmentation index at a heart rate of 75 bpm, Aortic TR round trip travel time, an indirect measure of aortic pulse wave velocity, BP

blood pressure, LV EW left ventricular wasted energy

Fig. 2 Scatterplot and

regression line for aortic

hemodynamic variables and

white matter hyperintensity

(WMH) fraction. The regression

models include an additive age-

effect and the regression line is

shown for the mean 60 years of

age. AIx aortic augmentation

index at a heart rate of 75 bpm,

Aortic TR round trip travel time,

an indirect measure of aortic

pulse wave velocity, DBP

diastolic blood pressure, SBP

systolic blood pressure
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hypertension, stroke, and coronary heart disease [18]. The

present results expand these observations to show that the

aortic parameters are also related to WMH burden in

women who do not meet the current clinical definition for

hypertension based on brachial arterial blood pressure.

Therefore, assessing aortic hemodynamics and arterial

stiffness in postmenopausal women with systemic brachial

BP within what is considered pre-hypertensive ranges may

be important in identifying risk for WMH, and thus enable

targeted prevention strategies.

A higher volume of WMH is associated with cardiovas-

cular disease and risk factors such as age, myocardial

infarction, hypertension, and atherosclerosis [19, 20]. During

the transition to and after menopause, the risk of developing

hypertension, ischemic heart disease, and stroke increases in

women [21]. The decreases in ovarian hormones, in partic-

ular the loss of estrogen, during the transition to menopause

may accelerate large artery stiffness, which can be detected

in individuals with normal brachial BP values [5, 7, 22].

Indeed, sex differences in blood pressure parameters

observed between young women and men [23], are not

observed when postmenopausal women are compared to

age-matched men [23, 24]. Therefore, aortic arterial hemo-

dynamics may be a more sensitive measure of evaluating

elevated risk for both cardiovascular and cerebrovascular

disease than brachial BP.

The central elastic arteries are capable of transmitting

pulsatile flow and cushion this pulsatility to smooth lami-

nar flow in the peripheral arteries and microvessels.

However, due to the short distance between the central

elastic arteries and cerebral vasculature, the brain may be

exposed to high pulsatile flow if this cushioning function is

lost. A slight increase in arterial stiffness disrupts the

ability of the elastic arteries to dampen the high pulsatility,

so this can be transmitted to the cerebral vasculature.

Whereas peripheral arteries are often protected from

damage due to pulsatility because of downstream vaso-

constriction, the brain is a high flow system with overall

low impedance. The combination of the short distance

between the central elastic arteries and the brain, as well as

the high blood flow needs of the tissue, makes the brain

particularly susceptible to damage from arterial stiffness

[25]. Therefore, a small change in aortic hemodynamics or

arterial stiffness can have a substantial impact on the

microvasculature in the brain [25–27]. Indeed, in the pre-

sent study, AIx and Aortic TR measurements correlated

with WMH fraction an observation that is consistent with

the idea that pulse wave analysis provides a comprehensive

assessment of the vascular stress placed on the cerebral

circulation. The North American Artery Society recom-

mends that pulse wave analysis be incorporated in guiding

BP treatments in pre-hypertensive adults [27]. In addition,

a recent study concluded that arterial stiffness predicted

cognitive decline in healthy adults better than brachial BP

[28]. Our results suggest that managing arterial stiffness

and aortic BP, may be useful to reduce cardiovascular risk,

and to reducing WMH burden that is associated with

cognitive decline.

Previous studies in men and women have shown a posi-

tive correlation between aortic pulse wave velocity, a mea-

sure of arterial stiffness, and WMH volume. For example,

pulse wave velocity associated with WMH in hypertensive

adults [29], patients with recent minor stroke or transient

ischemic attack [30], and patients without stroke or dementia

in the Framingham Offspring Study [31]. A recent study

demonstrated that even in young adults (age 30–45 years),

aortic pulse wave velocity was associated with WMH vol-

ume [32]. Furthermore, aortic pulse wave velocity is asso-

ciated with the WMH load measured after 10 years,

suggesting that early increases in pulse wave velocity may

precede WMH development 10 years later [6]. Additional

follow-up of the women in our study is needed to better

establish the clinical relevance between these hemodynamic

measures, brain structure and cognition.

The main limitation of the present study is that the age

range of the participants was narrow and the women had

low risk cardiometabolic profiles. In addition, because this

cohort consisted of white postmenopausal women, these

findings cannot be generalized to postmenopausal women

of different ethnic backgrounds, premenopausal women or

men. Another limitation is that with this small sample,

there was insufficient statistical power to adjust for all

potential confounding variables. Despite these limitations,

these findings suggest that even in postmenopausal women

without clinically defined hypertension, higher aortic sys-

tolic BP, greater wave augmentation, and faster Aortic TR
are associated with greater WMH fraction. Because

increases in aortic hemodynamics and arterial stiffness

often precede changes in brachial BP measurements [5, 7],

these results suggest that assessing aortic hemodynamics

may identify normotensive women at increased risk for

WMH and guide interventions to reduce development of

WMH. Longitudinal evaluation of the participants is crit-

ical for determining the influence of WMH on cognitive

outcomes.
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