Clustered telomeres in phase-separated
nuclear condensates engage mitotic DNA
synthesis through BLM and RAD52
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Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that
occurs in a subset of cancers. One of the hallmarks of ALT cancer is the excessively clustered telomeres in pro-
myelocytic leukemia (PML) bodies, represented as large bright telomere foci. Here, we present a model system that
generates telomere clustering in nuclear polySUMO (small ubiquitin-like modification)/polySIM (SUMO-inter-
acting motif) condensates, analogous to PML bodies, and thus artificially engineered ALT-associated PML body
(APB)-like condensates in vivo. We observed that the ALT-like phenotypes (i.e., a small fraction of heterogeneous
telomere lengths and formation of C circles) are rapidly induced by introducing the APB-like condensates together
with BLM through its helicase domain, accompanied by ssDNA generation and RPA accumulation at telomeres.
Moreover, these events lead to mitotic DNA synthesis (MiDAS) at telomeres mediated by RAD52 through its highly

conserved N-terminal domain. We propose that the clustering of large amounts of telomeres in human cancers
promotes ALT that is mediated by MiDAS, analogous to Saccharomyces cerevisiae type II ALT survivors.
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Telomeres are composed of TTAGGG repeats at the ends
of chromosomes. Cell divisions are accompanied by telo-
mere length shortening; therefore, cancer cells almost
universally acquire a telomere maintenance mechanism
(TMM) during neoplastic transformation. Most cancers
are of epithelial origin (carcinomas) and reactivate telome-
rase activity (Kim et al. 1994). However, cancers of mesen-
chymal origin, such as sarcomas and soft tissue tumors,
frequently acquire a telomerase-independent TMM,
which has been termed alternative lengthening of telo-
meres (ALT) (Bryan et al. 1997). ALT is a recombination-
mediated telomere elongation process, but the underlying
mechanism by which the ALT pathway is initially en-
gaged and the molecular mechanisms underlying ALT in
human cancer are still undetermined.

One of the hallmarks of ALT-positive cancer specimens
is large bright telomere signals revealed by telomere fluo-
rescence in situ hybridization (FISH) (Heaphy et al. 2011a).
These bright telomere signals are clustered in promyelo-
cytic leukemia (PML) bodies (Heaphy et al. 2011b), known
as ALT-associated PML bodies (APBs). APBs contain not
only telomeric DNA but also many proteins involved in
DNA replication and repair processes (Yeager et al.
1999). Also, the long noncoding RNA (IncRNA) telomeric
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repeat-containing RNA (TERRA) is also localized in APBs
(Arora et al. 2014). PML bodies are one of the nuclear
membrane-less organelles that are formed by liquid-
liquid phase separation (LLPS) and are organized by
multivalent interactions between small ubiquitin-like
modification (SUMO) sites and SUMO-interacting motifs
(SIMs) in PML and other associated proteins (Banani et al.
2016). The relative stoichiometry of the scaffold (SUMO
and SIM ratio) determines the recruitment of client pro-
teins containing SUMOylation sites and SIMs (Ditlev
et al. 2018). LLPS drives the formation of membrane-less
compartments (known as biomolecular condensates)
through liquid-liquid demixing from the surrounding nu-
cleoplasm or cytoplasm and is involved in the assembly of
nuclear bodies, such as PML bodies and Cajal bodies
(Banani et al. 2017; Wheeler and Hyman 2018). In addition
to the role of LLPS in normal cellular function, aberrant
LLPS is involved in the pathogenesis of diseases, such as
aggregation-related neurodegenerative disease and cancer
(Aguzzi and Altmeyer 2016; Bouchard et al. 2018).

PML bodies are disassembled when cells enter mitosis
(Bernardi and Pandolfi 2007; Chung et al. 2012). However,
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APBs are not disassembled until later in mitosis, possibly
due to their hyper-SUMOylated status. Thus, they appear
as APB-like foci in metaphase spreads in a subset of ALT
cancer cell lines (Cesare et al. 2009). Recently, it has
been shown that telomeres can be elongated during
mitosis in these APB-like foci, known as mitotic DNA
synthesis (MiDAS) at telomeres (Min et al. 2017b; Ozer
et al. 2018). However, the molecular mechanism for
how telomeres cluster in PML bodies and are processed
and participate in the ALT pathway are not known.

Two ALT mechanisms have been identified in the yeast
Saccharomyces cerevisiae and are termed type I and type
II ALT (Lundblad and Szostak 1989; Lundblad and Black-
burn 1993). Type I ALT in yeast is mediated by Rad51-
dependent recombination, whereas type II ALT in yeast
is mediated by the Rad51-independent break-induced rep-
lication process (Teng and Zakian 1999; Teng et al. 2000;
Chen et al. 2001; Lydeard et al. 2007). Based on recent
studies, it is now believed that these two distinct ALT
mechanisms in yeast are also conserved in human ALT
cancers (Verma and Greenberg 2016; Sobinoff and Pickett
2017). The type I ALT-like mechanism in human cancer is
initiated by RAD51-dependent recombination and elon-
gated by the BLM-TOP3A-RMI (BTR) dissolvase complex
during S/G2 phases (Cho et al. 2014; Ramamoorthy and
Smith 2015; Min et al. 2017a; Sobinoff et al. 2017). In con-
trast, the type I ALT-like mechanism in human cancer is
mediated by a RAD51-independent pathway during G2/M
phases (Henson et al. 2009; Muntoni et al. 2009; Nabetani
and Ishikawa 2009; Oganesian and Karlseder 2011; O’Sul-
livan et al. 2014; Dilley et al. 2016; Root et al. 2016; Verma
et al. 2019; Zhang et al. 2019), typically observed in APB-
like foci in metaphase spreads (Min et al. 2017D).

Here, we present a biophysical model system that
can reconstitute PML bodies from minimal components
and generate telomere-clustered nuclear condensates and
thus artificially engineered APB-like condensates in vivo.
We found that the ALT-like phenotypes (i.e., a small frac-
tion of heterogeneous telomere lengths and formation of C
circles) can be triggered rapidly by the reconstitution of
APB-like condensates in the presence of BLM overexpres-
sion. Persistent telomere clustering in nuclear conden-
sates leads to MiDAS at APB-like foci in metaphase
through RAD52. We provide evidence that the clustering
of telomeres promotes the ALT pathway mediated by mi-
totic telomere synthesis.

Results

Induction of telomere clustering in nuclear
polySUMO /polySIM condensates can mimic
the APBs in ALT cancer cells

To test whether the clustering of large amounts of telo-
meres in PML bodies per se is sufficient to engage the
ALT pathway, we decided to use the recently developed
multivalent scaffold proteins that consist of 10 or six re-
peats of human SUMOQO3 (polySUMO) and six or 10 repeats
of the SIM from PIASx (polySIM) (Banani et al. 2016). The
polySUMO/polySIM  scaffolds can form biomolecular
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condensates through LLPS and functionally mimic the
PML bodies in vivo (Fig. 1A). SUMO-abundant scaffold;
(SUMO]10-(SIM)6 selectively recruits SIM-containing cli-
ent proteins, whereas SIM-abundant scaffold;(SUMO)6-
(SIM)10 recruits SUMOylated client proteins (Ditlev
et al. 2018). We engineered the original scaffold protein
to make it (1) form the condensates in the nucleus by
adding nuclear localization signals (NLS) and (2) target
the telomeres to these scaffolds by adding the RAP1 C ter-
minus (RCT) domain, which directly binds to TRF2 pro-
teins with strong affinity (Fig. 1B; Li et al. 2000; Chen
etal. 2011). We transfected plasmid DNAs containing cy-
tomegalovirus (CMV) promoter-driven scaffold proteins
in 293FT simian virus (SV40) T-antigen transformed
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Figure 1. Engineering poly(SUMO)/poly(SIM) scaffolds to in-
duce telomere clustering in the nucleus. (A) Ilustration of poly
(SUMO)/poly(SIM) scaffolds [[SUMO)6-(SIM)10 or (SUMO)6-
(SIM)10] mimicking PML bodies in vivo. (B) Strategy for the gen-
eration of telomeres targeting nuclear condensates using NLS and
RCT that bind to the RAP1-binding domain in TRF2. (C) Repre-
sentative images showing the telomere localization of engineered
poly(SUMO)/poly(SIM) scaffolds. (D) Representative images
showing a telomere clustering event induced by telomere cluster-
ing scaffolds.
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human embryonic kidney cells that are telomerase-
positive. The original scaffold proteins only formed the
condensates in the cytoplasm due to its big size [Fig. 1C,
top panel, mCherry-(SUMO)10/6-(SIM)6/10]. Adding two
NLSs derived from c-Myc and SV40 to the original scaffold
proteins allowed them to form condensates in the nucleus
[Fig. 1C, middle panel, (NLS)2-mCherry-(SUMO)10/6-
(SIM)6/10]. However, adding the NLSs was not sufficient
to induce telomere clustering. We additionally tagged
the RCT domain to target telomeres to the condensates
[Fig. 1C, bottom panel, (NLS)2-RCT-mCherry-(SUMO)|
10/6-(SIM)6/10]. TRF2, a shelterin protein, colocalized
mostly with the condensates. By using the telomere-
FISH assay, we further confirmed that telomeres colocal-
ized mostly with the telomere clustering scaffolds (Fig.
1D). Thus, these scaffolds enabled the generation of telo-
mere clustering in nuclear condensates (referred to as telo-
mere clustering scaffolds), mimicking APBs and large
bright telomere foci that occur in ALT cancer cells.

Next, we checked whether the polySUMO/polySIM nu-
clear condensate-induced telomere clustering events were
sufficient to trigger other hallmarks of the ALT pathway.
We transfected the plasmids expressing various scaffold
proteins in 293FT cells and analyzed them 72 h after trans-
fection. Contrary to our expectation, introducing telo-
mere clustering scaffolds did not lead to any changes in
telomere phenotypes, such as telomere length alterations
or extrachromosomal telomere repeat (ECTR) generation
(Supplemental Fig. S1; Cesare and Reddel 2010). We con-
clude that telomere clustering events induced by poly-
SUMO/polySIM condensates are not sufficient to trigger
the ALT pathway.

Telomere clustering induces the ALT-like phenotypes
in the presence of BLM overexpression

We hypothesized that additional factors were required to
trigger the ALT pathway in addition to the telomere clus-
tering scaffold. First, we tested whether the overexpres-
sion of BLM can trigger the ALT pathway in the
presence of the telomere clustering scaffold (Fig. 2A).
BLM is known as a major component of the ALT pathway
as well as in PML bodies (Yankiwski et al. 2000; Stavro-
poulos et al. 2002). The telomere clustering scaffolds
were cotransfected with a BLM c¢DNA plasmid into
293FT cells and analyzed for ALT phenotypes, including
telomere length alterations and ECTRs. We harvested
the transfected cells 72 h after transfection and predicted
that if the ALT pathway was engaged, we would observe
heterogeneous telomere length using the terminal restric-
tion fragment (TRF) analysis, and the cells would become
positive using the ®29 polymerase reaction for determin-
ing the existence of ECTRs (as detected by the C-circle as-
say) (Fig. 2A; Henson et al. 2009).

We found that the overexpression of the BLM helicase
induced ALT-like phenotypes in the presence of telomere
clustering associated with SUMO-abundant scaffolds
[[SUMO)10-(SIM)6]. Co-overexpression of BLM helicase
with SUMO-abundant scaffolds rapidly induced heteroge-
neous telomere length and complex telomere structures
as observed in TRF gels, with telomeres of various sizes
down to <0.8 kb (a small fraction), and unmigrated telo-
mere DNA stuck in the gel well (potentially indicating
branched DNA; e.g., DNA replication fork or recombina-
tion intermediates) (Fig. 2B, top) also became C-circle-

(NLS)2-RCT- Figure 2. Induction of ALT-like phenotypes by co-
— s overexpression of telomere clustering scaffolds with
@O\@\ BLM helicase. (A) Illustration of experimental
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+ -+ - the ALT pathway with the telomere clustering scaf-

Telomere clustering ALT phenotypes
scaffolds - Heterogeneous telomere length
CDNA -ECTRs
% ALT + -
= phi29
- BLM
72 hrs T
n Gel well =
co transfection C-circle
in 293FT cells (kb)
Cc GFP-BLM DAPI mCherry 18.8
(NLS)2-RCT-(SUMO)10-(SIM)6  (NLS)2-RCT-(SUMO)6-(SIM)10 9.4
6.1
5.4+
4.4
... ... )
(NLS)2-RCT-(SUMO)10-(SIM)6 0.6
(NLS)2-RCT- :
(SUMO)10 (SUMO)6
-(SIM)6 - SIM 10
BLM _+ -

«pa (NLS)2-RCT-(SUMO)10-(SIM)6 + GFP-BLM

fold. (B) The TRF analysis (top) and the C-circle assay
(bottom) of 293FT telomerase-positive cells after
overexpression of telomere clustering scaffolds and
BLM helicase (or empty vector). (C) Representative
images showing the localization of telomere cluster-
ing scaffolds and GFP-BLM in 293FT cells. (D) Immu-
noblot of 293FT cells overexpressing GFP-BLM and
telomere clustering scaffolds. The arrow indicates en-
dogenous BLM. (E) Live-cell images of 293FT cells af-
ter overexpression of telomere clustering scaffolds
and BLM.
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positive (Fig. 2B, bottom). BLM helicase localized at
SUMO-abundant scaffolds, not SIM-abundant scaffolds,
suggesting the possibility that the recruitment of BLM
helicase is controlled by the stoichiometry of scaffold pro-
teins (Fig. 2C). We checked that overexpression of the telo-
mere clustering scaffolds did not affect the stability of
BLM helicase protein (Fig. 2D). We also confirmed that
overexpression of BLM helicase alone or with RCT-lack-
ing SUMO-/SIM-abundant scaffolds did not induce the
ALT-like phenotypes (Supplemental Fig. S2.A,B).

To investigate the kinetics on the phenotypes observed,
we analyzed the ALT-like characteristics at multiple time
points (0, 24, 48, and 72 h after transfection). The complex
telomere structure (unmigrated telomere DNAs stuck in
the gel well) was very rapidly induced 24 h after transfec-
tion, whereas heterogeneous telomere lengths and C cir-
cles were gradually increased until 72 h (Supplemental
Fig. S3). Saos2, an authentic ALT cell line, has a greater
fraction of heterogeneous telomeres and more C circles
than our model system (Supplemental Figs. S2, S3). To
eliminate the possible effect of telomerase actions in the
generation of these ALT-like phenotypes, we also tested
TERC knockout 293FT cells, which have no telomerase
activity (Min et al. 2017a). However, these cells also un-
derwent G2/M arrest when we overexpressed telomere
clustering scaffolds and thus did not exhibit the continu-
ous proliferation in the absence of telomerase that is a
hallmark of ALT. We found that the ALT-like phenotypes
were also very rapidly induced in low population dou-
blings (PDs) of TERC knockout cells (40 PDs, telomere
length <15 kb), whereas ALT-like phenotypes were not in-
duced in high PDs of TERC knockout cells (150 PDs, telo-
mere length <9 kb) (Supplemental Fig. S4A,B). Consistent
with these observations, we were not able to detect telo-
mere clustering events induced by telomere clustering
scaffolds in high PD cells (Supplemental Fig. S4C),
suggesting that certain amounts of telomere lengths
(>10 kb) are required for the induction of telomere cluster-
ing events and ALT-like phenotypes induced by telomere
clustering scaffolds.

PML body formation is thought to proceed via nucle-
ation and growth of liquid-like droplets, especially APBs
that are nucleated at telomeres and undergo fusion events
(Brouwer et al. 2009; Chung et al. 2011; Erdel and Rippe
2018). We found that the telomere clustering scaffolds
also possessed the feature of a liquid-like droplet, as dis-
played by rapid fusion events among condensates (Fig.
2E). However, cells expressing telomere clustering scaf-
folds showed cell cycle arrest during mitosis (Supplemen-
tal Fig. S5), possibly due to the C-terminal diglycine motif
in SUMO proteins in polySUMO/polySIM constructs that
are mutated so that the condensates are retained persis-
tently and do not dissolve during mitosis (Banani et al.
2016).

SUMOylations/SIMs in BLM protein determine its
recruitment to the telomere clustering scaffolds

The BLM helicase protein has three major SUMOylation
sites (K317, K331, and K344) and two SIMs (QIDL [amino

Telomere clustering promotes ALT-mediated by MiDAS

acids 216-219] and VICI [235-238]) that are required for
the localization of BLM in PML bodies (Supplemental
Fig. S6A; Eladad et al. 2005; Zhu et al. 2008; Hendriks
et al. 2017). However, it is unknown how these SUMO-
ylation sites and SIMs in BLM protein are collaborating
to control its localization to PML bodies. We tested
whether the status of SUMOylation and SIM in BLM pro-
tein can determine the recruitment of BLM to the scaf-
folds. We constructed SUMO-defective (triple lysine [K]
to arginine [R][TKR]: K317R, K331R, and K344R), SIM-de-
fective (sim: QIDL to QADA, VICI to AACI), and both
SUMO- and SIM-defective (double mutant [TKRsim]) mu-
tants. BLM sim or TKRsim mutants were not recruited to
the SUMO-abundant scaffold, whereas the BLM TKR mu-
tant was comparable with wild-type (WT) (Supplemental
Fig. S6B). Consequently, overexpression of BLM sim or
TKRsim mutants did not induce ALT-like phenotypes
(Supplemental Fig. S6C). Since BLM may not be SUMO-
ylated in 293FT cells, we constructed the three repeats
of SUMO1 and BLM helicase fusion protein (Supplemen-
tal Fig. S7A). (SUMO1)3-BLM proteins were recruited to
two different telomere clustering scaffolds, and the ALT-
like phenotype was induced in the presence of both
SUMO-abundant and SIM-abundant scaffolds (Supple-
mental Fig. S7B,C). We interpret these results to suggest
that the recruitment of BLM helicase is determined by
the ratio of SUMO and SIM in telomere clustering scaf-
folds, as the recruitment of the client protein is controlled
by the stoichiometry of scaffold proteins in cellular bodies
(Supplemental Fig. S7D).

The helicase activity of BLM involved in long-range
resection is required for the induction of the ALT-like
phenotypes

BLM has two distinct functions. First, BLM forms a com-
plex with the TOP3A and RMI (BTR) “dissolvasome” re-
quired for the dissolution processes during bubble
migration (Bizard and Hickson 2014). Second, BLM coop-
erates with DNA2 by forming a helicase/nuclease com-
plex involved in long-range resection processes (5'-to-3’
resection) at the end of double-stranded breaks (Nimon-
kar et al. 2011). This led us to investigate the domain of
BLM protein involved in the induction of the ALT-like
phenotypes. We constructed the BTR complex-defective
(btr [K3A]: K38A/K39A/K40A) mutant and the helicase-
dead (K695A) mutant (Supplemental Fig. S8A; Bugreev
et al. 2007; Wang et al. 2013; Blackford et al. 2015). The
BLM K695A mutant did not induce the ALT-like pheno-
type, whereas the BLM btr mutant was comparable with
WT and did induce the ALT-like phenotype (Supplemen-
tal Fig. S8B). The long-range resection processes mediated
by BLM-DNA2 may generate ssDNA accumulation and
ultimately lead to RPA protein accumulation at the re-
sected ssDNA (Nimonkar et al. 2011; Bhat and Cortez
2018). We thus checked whether RPA and phospho-RPA
proteins localize at the BLM-recruited clustered telo-
meres. BLM WT and btr mutant-expressing cells showed
more RPA and phospho-RPA accumulation compared
with BLM K695A and mock control (empty vector)
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(Supplemental Fig. S8C-E). Next, we directly measured
the amount of single-stranded telomere DNA using the
in-gel hybridization assay. To eliminate the amounts of
overhangs elongated by telomerase, we used 293FT
TERC knockout cells. Overexpression of BLM WT gener-
ated more G-rich single-stranded telomere DNA com-
pared with mock control and the K695A mutant (Fig.
3A-C). Moreover, the DNA was partially sensitive to
the exonuclease I reaction (Fig. 3A, 3’exo lanes in native
conditions), indicating that those ssDNAs contain a sub-
stantial portion of internal gaps (e.g., potentially generat-
ed by DNA replication fork resection; exonuclease I-
insensitive ssDNAs) as well as 3’ ssDNAs (e.g., generated
by end resection; exonuclease I-sensitive ssDNAs) (Fig.
3D). Indeed, overexpression of BLM WT in the absence
of telomere clustering scaffolds did not induce any chang-
es in G-rich single-stranded telomere DNA (Supplemen-
tal Fig S9A-C). We interpret these data to support the
idea that single-stranded telomere DNA generation pro-
cesses are involved in the induction of the ALT pheno-
types (Nabetani and Ishikawa 2009; Oganesian and
Karlseder 2011; O’Sullivan et al. 2014; Flynn et al. 2015;
Doksani and de Lange 2016; Mao et al. 2016; Min et al.
2017a).
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ALT-Iike phenotypes induced by telomere clustering
and BLM overexpression are associated with MiDAS
at telomeres

The helicase activity of BLM may be required for the asso-
ciation of ECTRs in APBs with chromosomal telomeres in
response to DNA replication stresses (Komosa et al. 2015;
Root et al. 2016). Moreover, overexpression of telomere
clustering scaffolds induces persistent telomere cluster-
ing, leading to G2 and M arrest (Supplemental Fig. S5).
This led us to propose that the single-stranded telomere
DNAs generated by BLM-DNA2-mediated long-range re-
section processes can be replicated and repaired during
mitosis through MiDAS.

We tested whether overexpression of telomere clust-
ering scaffold with BLM protein leads to MiDAS at
telomeres. The CDK inhibitor (treated at 24 h after trans-
fection) was used to synchronize cells (5-ethynyl-2-deoxy-
uridine) before cell cycle progression was perturbed by
overexpression of the telomere clustering scaffold and
BLM protein (Fig. 3E). EdU (5-ethynyl-2-deoxyuridine)
was pulsed for 1 h during late G2/M phase to identify
newly synthesized DNA during mitosis (as determined
by analyzing metaphase chromosomes) or G2 phase (as


http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.324905.119/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.324905.119/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.324905.119/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.324905.119/-/DC1

determined by analyzing interphase cells). We found that
co-overexpression of the telomere clustering scaffold with
BLM protein led to mitotic telomere synthesis (Fig. 3F).
Moreover, there was an excessive amount of EAU labeling
in large and bright telomere signals (Fig. 3F, cropped
squares), comparable with APB-like foci frequently ob-
served in a subset of ALT cancer cells that are associated
with chromosome ends or exist as extrachromosomal
telomeric DNA (Cesare et al. 2009; Min et al. 2017b).
BLM WT induces a significant number of telomeric Mi-
DAS, whereas BLM K695A mutant or mock control did
not (Fig. 3G). However, we were not able to detect any
EdU incorporation in telomere clustering scaffolds during
S or G2 phases (Fig. 3H), indicating that telomeric DNA
was potentially underreplicated during S phase and not
processed during G2 phase in telomere clustering scaf-
folds. We conclude that long-range resection processes
by BLM helicase is required for triggering telomeric Mi-
DAS in the presence of telomere clustering scaffolds.

BLM helicase is involved in the induction of the ALT
pathway during G2 and M phases in ALT cancer cells

To investigate whether the BLM helicase is involved in
the induction of the ALT pathway mediated by MiDAS
in human ALT cancer cells, we used Saos2 cells, which
are an ALT cancer cell line derived from an osteosarcoma
patient. Saos2 cells display large telomere foci as deter-
mined by telomere-FISH (Cox et al. 2016), as was shown
in ALT cancer tissue sections (Heaphy et al. 2011a,b).
Moreover, Saos2 cells harbor severe DNA replication
stresses at telomeres and deficiency in a G2/M checkpoint
that leads to persistent DNA damage responses and
MiDAS at telomeres (Cesare et al. 2009; Lovejoy et al.
2012; Min et al. 2017b). Thus, Saos2 cells are suitable
for further examining a human ALT model. We intro-
duced lentiviral CMV promoter-driven BLM WT and var-
ious mutants, including sim, TKR, TKRsim, and K695A,
into Saos2 cells (Supplemental Fig. S10A). Consistent
with previous reports, BLM protein localized at PML bod-
ies and telomeres in ALT cells (Stavropoulos et al. 2002;
Déjardin and Kingston 2009; Pan et al. 2017; Sobinoff
et al. 2017). While BLM sim and TKRsim mutants formed
many big foci, none of them localized at telomeres and
PML bodies (Supplemental Fig. S10B,C). In contrast,
BLM TKR proteins localized at PML bodies and telo-
meres, although a portion of BLM TKR proteins formed
PML-independent foci (Supplemental Fig. S10B,C, TKR),
indicating that SIMs in BLM protein are the major factor
recruiting BLM to APBs. Intriguingly, BLM K695A mu-
tants were recruited to PML bodies and telomeres; howev-
er, most were not clustered (Supplemental Fig. S10B,C,
K695A). We next checked whether the telomere cluster-
ing, APB formation, and C-circle generation in Saos2 cells
are altered by BLM mutant overexpression. Overexpres-
sion of BLM WT increased telomere clustering, APB for-
mation, and C-circle levels, whereas BLM sim or
TKRsim overexpression decreased them, indicating that
the BLM sim and TKRsim are dominant-negative mutants
(Fig. 4A-D, WT, sim, and TKRsim). Interestingly, BLM

Telomere clustering promotes ALT-mediated by MiDAS

TKR overexpression increased telomere clustering events
and C-circle levels, whereas it did not lead to any signifi-
cant changes in APB formation (Fig. 4A-D, TKR), suggest-
ing the possibility that C-circle generation in BLM TKR is
independent of APB formation, since BLM TKR proteins
can form PML-independent foci (Supplemental Fig.
S10B,C, TKR; Eladad et al. 2005). BLM K695A overexpres-
sion decreased telomere clustering but caused no signifi-
cant changes in C-circle levels and APB formation.
However, the size of APB foci was smaller than controls,
indicating that the BLM K695A mutant exhibits a domi-
nant-negative effect on telomere clustering (Fig. 4A-D,
K695A). Finally, we measured G2 phase and mitotic telo-
mere synthesis in BLM WT or various mutants overex-
pressed in Saos2 cells (Fig. 4F,H). Overexpression of BLM
WT or the TKR mutant led to increases in G2 phase and
mitotic telomere synthesis, whereas overexpression of
BLM sim, TKRsim, or K695A mutants led to a decrease
in G2 phase and mitotic telomere synthesis (Fig. 4G,I).
We interpret these results to indicate that BLM proteins
are recruited to APBs through SIMs, and the helicase ac-
tivity of BLM is required for telomere clustering events,
ultimately leading to the induction of the ALT pathway.

It has been reported that BLM protein frequently local-
izes at telomeres in ALT cells, potentially by ALT cell-
specific interaction with TRF2 (Stavropoulos et al.
2002). Moreover, TRF2 protein is SUMOylated by the
SMC5/6 complex in ALT cells, and its SUMOylation is re-
quired for APB formation (Potts and Yu 2007). We next
tested whether the status of SUMOylation of TRF2 affects
telomere clustering and telomeric MiDAS. We construct-
ed the SUMO-defective (sextuple lysine [K] to arginine [R]
[SKR]: K245R, K293R, K331R, K327R, K333R, and K410R)
mutant (TRF2 SKR) and the three repeats of SUMO1 and
SUMO-defective mutant fusion protein [(SUMO)3-TRF2
SKR] (Fig. 5A). We introduced lentiviral CMV promoter-
driven TRF2 WT, SKR mutant, and (SUMO)3-TRF2 SKR
proteins into endogenous TRF2-depleted Saos2 cells (Fig.
5B,C). Saos2 cells expressing the TRF2 SKR mutant exhib-
ited defects in telomere clustering and APB formation,
whereas cells expressing the SUMO1-tagged TRF2 SKR
mutant displayed enhanced telomere clustering and APB
formation (Fig. 5D,E). Furthermore, telomere synthesis
during G2 and M phases decreased in the TRF2 SKR mu-
tant but increased in the (SUMO1)3-TRF2 SKR mutant
(Fig. 5F-I). These results support the idea that SUMOyla-
tion events at telomeres are required for the telomere clus-
tering and induction of the ALT pathway (Potts and Yu
2007; Chung et al. 2011; Min et al. 2017b).

RADA52 participates in the induction of ALT-like
phenotypes

It has been reported that MiDAS is mediated by RAD52-
dependent, but RAD51-independent, break-induced repli-
cation processes (Minocherhomiji et al. 2015; Bhowmick
et al. 2016). RAD52 also facilitates telomeric MiDAS in
both APB-like foci and chromatid ends (Min et al. 2017b;
Ozer et al. 2018). RAD52 consists of two distinct domains:
the N-terminal domain (NTD) and the C-terminal domain
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(CTD). The NTD is also known as the highly conserved re-
gion (HCR), especially since it shares 42% amino acid se-
quence identity between S. cerevisiae and humans
(Hanamshet et al. 2016). The RAD52 NTD is involved in
ssDNA and dsDNA binding and RAD52 multimerization,
whereas the CTD consists of two parts involved in interac-
tions with RPA and RAD51 (Fig. 6A). The RAD52 NTD
protein without the CTD itself can form the multimeriza-
tion and participate in various recombination processes,
such as single-strand annealing and RNA-templated
DNA repair (Singleton et al. 2002; Mazina et al. 2017;
McDevitt et al. 2018). However, the exact domain of
RAD52 by which MiDAS and break-induced replication
are mediated is undetermined.

We decided to test whether RAD52 is responsible for the
ALT-like phenotypes that we observed. We generated
RAD52 knockout in 293FT TERC knockout cells (Fig
6B; Supplemental Fig. SI1A-C). Since the RAD51-inter-
acting region in the RAD52 CTD is involved in the regula-
tion of RADS51 during homologous recombination,
RADS52-deficient cells harbor mild defects in RAD51 focus
formation in response to DNA double-stranded breaks
(Lok et al. 2013; Teng et al. 2018). A RAD52 knockout
clone displayed partial defects in RAD51 focus formation
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metaphase spread. Means+ SEM. (H,I) G2-phase
telomere synthesis analysis of Saos2 cells in the
presence of BLM WT or BLM mutant over-
expression. (H) Representative images showing
telomere synthesis during S or G2 phase. (I) Quan-
tification of G2-phase telomere synthesis as the
number of EdU-positive telomeres per cell.
Means + SEM. (*) P<0.05; (**) P<0.01; (***) P<

mock WT sim TKR TKRsimkegsa  0.001; (****] P<0.0001; (n.s.) nonsignificant, un-

paired Student’s t-test.

in response to ionizing radiation (IR) (Fig. 6C). When telo-
mere clustering scaffolds and BLM proteins were overex-
pressed, ALT-like phenotypes, heterogeneous telomere
length, and telomeric MiDAS were not induced in the
RAD52 knockout clone, whereas they were induced in
the RAD52 WT clone (Fig. 6D-F, WT and knockout). We
also confirmed these observations by introducing
RADS52 shRNA into 293FT cells (Supplemental Fig.
S12A). Consistently, the ALT-like phenotype was not in-
duced in RADS52-depleted cells (Supplemental Fig. S12B).
Moreover, introducing the RAD52 HCR was sufficient to
rescue the RAD52 deficiency, suggesting that RAD52 is
involved in these processes, possibly through its NTD
(Supplemental Fig. S12C,D). However, C-circle levels
were not significantly changed in the RAD52-depleted
conditions (Fig. 6D; Supplemental Fig. S12B,D), suggesting
that the C-circle generation is not completely dependent
on RADS52 status.

Interestingly, we observed that the RAD52 WT clone
displayed a telomeric sequence insertion (TSI) on meta-
phase chromosomes when telomere clustering scaffolds
and BLM proteins were overexpressed (Fig. 6G-H). These
events are potentially derived from aberrant recombina-
tion between the telomeres and other genomic regions.
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We interpret these results to indicate that the RAD52 is
required for the induction of ALT-like phenotypes but
also leads to rearrangements between telomeres and geno-
mic regions, something observed previously in ALT cells
(Marzec et al. 2015).

RADA52 participates in the ALT pathway through its NTD
in ALT cancer cells

We next checked whether RAD52 is involved in the ALT
pathway though the RAD52 NTD. We introduced lentivi-
rus expressing mCherry-fused RAD52 WT or HCR-RPA
(HCR and RPA-interacting region) or HCR mutants (Fig.
7A) into Saos2 cells. Two NLSs were tagged to mCherry
because mCherry-fused RAD52 mutants did not localize
at the nucleus due to the increased size from mCherry fu-
sion and the NLS deletion in their C termini. We found
that RAD52 WT, HCR-RPA, and HCR proteins formed
foci at telomeres, although a portion of RAD52 HCR pro-
teins were spread throughout the nucleus and formed sev-
eral nontelomeric foci (Fig. 7B), suggesting that the
interaction with RPA may regulate the recruitment of
RADA52 to telomeres in ALT cells.

TRF2

(SUMO)3-TRF2

We tested whether overexpression of RAD52 WT or
mutants into Saos2 cells can lead to alteration of the
ALT pathway. Overexpression of RAD52 WT, HCR-
RPA, or HCR led to increases in G2 phase and mitotic
telomere synthesis (Fig. 7C-F, +RAD52 panels). As a com-
parison, we introduced RAD52 shRNA into Saos2 cells
(Supplemental Fig. S13A), which led to a significant
decrease in MiDAS at telomeres (Fig. 7C,D, shRAD52
panel), consistent with previous results done by siRNAs
targeting RAD52, (Min et al. 2017b; Ozer et al. 2018). How-
ever, RAD52 depletion led to only a partial decrease in
telomere synthesis during G2 phase (Fig. 7E,F, shRAD52
panel). Interestingly, we found that overexpression of
RAD52 WT and HCR-RPA and HCR mutants increased
telomere clustering and APB formation, whereas RAD52
depletion decreased them (Supplemental Fig. S13B-E).
We conclude that RAD52 is involved in the ALT pathway
through the RAD52 NTD.

Discussion

We developed a model system that is similar to an ALT
cancer-specific phenotype: large bright telomere foci
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(observed in ALT cancer tissue telomere-FISH) represent-
ing the clustering of large amounts of telomeres in PML
bodies. By using polySUMO/polySIM condensates target-
ing telomere regions, analogous to APBs, we demonstrat-
ed that telomere clustering events are required for the
engagement of the ALT pathway mediated by MiDAS.
When the polySUMO/polySIM nuclear condensates are
introduced into telomerase-positive cells together with
BLM in the presence of endogenous RAD52, the ALT phe-
notype is recapitulated very rapidly, including C circles,
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heterogeneous telomere lengths, and complex telomere
structures (Supplemental Fig. S3). Moreover, we identified
two additional components of ALT—BLM, and RAD52—
that participate in these processes stepwise through their
different functions. We dissected the underlying mecha-
nisms and observed that the helicase activity of BLM pro-
tein (involved in 5'-to-3' resection processes) and the
multimerization and DNA-binding activity of RAD52
(which has annealing activity) are participating in these
processes. The key biological role of ALT is the mainte-
nance of telomeres in the absence of telomerase. Refining
our artificially engineered system to more closely reflect
in vivo events, thus allowing continuous cell prolifera-
tion, will provide further insight into APB formation and
the ALT pathway.

BLM protein has been implicated in the ALT pathway as
well as telomere replication processes (Sfeir et al. 2009;
Barefield and Karlseder 2012; Zimmermann et al. 2014;
Li et al. 2018). In the present studies, we demonstrated
that BLM helicase is required for the initiation of telomere
clustering and telomeric MiDAS through its helicase ac-
tivity by cooperating with DNA2, which is responsible
for the generation of single-stranded telomeric DNAs via
long-range resection processes. Consistent with our obser-
vation, it has been proposed that BLM helicase activity is
required for the association of ECTRs with chromatid
ends in APBs (Stavropoulos et al. 2002; Root et al. 2016).
Moreover, human BLM protein can rescue the type II
ALT pathway through its helicase activity in telomerase-
negative sgs1 yeast, the telomerase, and the BLM homolog
double mutant (Lillard-Wetherell et al. 2005). We thus
conclude that BLM helicase activity is required for the ini-
tiation of the ALT pathway through the generation of sin-
gle-stranded telomeric DNAs, which may be involved in
annealing processes with other potential templates, such
as chromosomal telomeres, ECTRs, or TERRA.

RADS52 protein has been implicated recently for its
NTD novel functions through its annealing activity be-
tween ssDNA-ssDNA, ssDNA-dsDNA, or ssDNA-
RNA. In addition, the RAD52 NTD is involved in various
DNA repair processes, such as break-induced replication
and RNA-templated DNA repair, that are distinct from
homologous recombination mediated by the RAD51-in-
teracting region in its CTD. We demonstrated that
RADA52 participates in the ALT pathway mediated by Mi-
DAS through its NTD. We propose that the RAD52 NTD
is involved in annealing the resected single-stranded telo-
meres to potential templates (chromosomal telomeres,
ECTRs, and TERRA), ultimately leading to elongation
processes through break-induced replication, rolling circle
amplification, and RNA-templated DNA repair.

A recent study from the telomerase mutant in S. cere-
visiae indicated that telomere erosion leads to SUMO-
ylation at telomeres followed by SUMO targeted
ubiquitination through E3 ligase slx5/8, and this is crucial
for the yeast type Il ALT pathway (Churikov et al. 2016). In
parallel, human ALT cancer cells exhibit severe DNA rep-
lication stresses at telomeres, which leads to telomere
clustering events mediated by the SMC5/6 SUMO-ligase
complex (Potts and Yu 2007; O’Sullivan et al. 2014;
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Osterwald et al. 2015; Cox et al. 2016; Min et al. 2017b).
Since most ALT cells do not have an intact G2/M check-
point (Lovejoy et al. 2012), a subset of ALT cells shows
persistent DNA damage responses at telomeres and telo-
mere clustering during mitosis, represented as APB-like
foci in metaphase spreads (Cesare et al. 2009), and these
ultimately lead to MiDAS at telomeres (Min et al.
2017b). Since APBs are the major sites for telomeric syn-
thesisin ALT cancers, the control of APB disassembly pro-
cesses before/during/after mitosis could be critical for the
ALT pathway as well as cell cycle progression. The APB
disassembly processes may be mediated by SUMO target-
ed ubiquitination, as shown in PML bodies (Geoffroy et al.
2010; Rojas-Fernandez et al. 2014). Testing whether
RNF4, the human homolog of slx5/8, is involved in con-
trolling these processes through its SUMO targeted ubig-
uitin ligase activity may provide additional insights into
the human ALT pathway and lead to potential therapeutic
approaches in treating ALT tumors.

Materials and methods
Cell culture and transfection

Cells were cultured at 37°C in 5% CO, in medium-X (4:1 ratio of
DMEM and M199) with 10% cosmic calf serum (Hyclone). When

293FT cells reached 90% confluency in six-well plates, 10 pg of
plasmid DNAs and 10 pL of Lipofectamine 2000 (Invitrogen)
were used for transfection. Cells were analyzed 72 h after trans-
fection. Cells transfected with telomere clustering scaffolds
were harvested by shakeoff, since the transfected cells mostly
formed round shapes from G2/M arrest.

Antibodies

The following antibodies were purchased from the indicated com-
mercial sources: anti-BLM (Santa Cruz Biotechnology, B-4), anti-
mCherry (Novus, [1C51] NBP1-966752), anti-PML (Santa Cruz
Biotechnology, PG-M3), anti-RAD52 (Santa Cruz Biotechnology,
F-7), anti-RADS51 (Santa Cruz Biotechnology, H-92), anti-RPA
(Bethyl, A300-244A), anti-phopho-RPA (S4/S8) (Bethyl, A300-
245A), and anti-TRF2 (Novus, NB110-57130)

Lentivirus production and infection

c¢DNAs (BLM, TRF2, and RAD52 WT and mutants) were inserted
into pLenti6/V5_GW/lacZ vector (Invitrogen). The shRNAs tar-
geting RAD52 (shRAD52: V3_LHS_376617) (Wang et al. 2018)
and TRF2 (shTRF2_G: TRCN0000018358) (Cesare et al. 2013)
were purchased (Open Biosystems). Those lentiviral vectors
were cotransfected with packaging vectors pMD2.G (Addgene,
12259) and psPAX2 (Addgene, 12260) in 293FT cells for viral pro-
duction. Supernatant medium containing produced lentivirus
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were concentrated with homemade 4x lentivirus concentrator
solution (phosphate-buffered saline [PBS] at pH 7.2 containing
1.2 M sodium chloride, 40% [v/w] PEG-8000).

Generation of RAD52 knockout cells using CRISPR/Cas9 gene targeting

Generation of human RAD52 knockout cells was performed as
reported previously (Sotiriou et al. 2016). Briefly, the guide
RNA sequence (insert: CACCGTACATAAGTAGCCGCATG
GC) targeting exon 3 of the human RAD52 gene was inserted
into the px458 vector. For the screening and Sanger sequencing,
the CCCTGAGGCAGAGGCTGGGCCCAG and CTCCTACC
TTCTGGCCTCCGCC primers were used.

TRF analysis

The TRF (also known as telomere restriction fragment) was per-
formed as described previously (Lai et al. 2017). Briefly, genomic
DNA was purified using Puregene core kit A (Qiagen) following
the manufacturer’s protocol. DNA samples were digested with
HinfI/Rsal (10 U each for 1 ng of DNA; New England Biolab). Di-
gested genomic DNAs were run into 0.8 % agarose gel in 1x tris-
acetate-ethylenediaminetetraacetic acid (TAE) buffer for 20 h
with 1 V/cm followed by depurination with 0.2 M hydrochloride
for 15 min, denaturation with 0.5 M sodium hydroxide and 1.5 M
sodium chloride for 30 min, and neutralization with 0.5 M Tris-
HCI buffer (pH 8.0) and 2 M sodium chloride for 30 min. Gels
were transferred using VacuGene (GE Healthcare) and then hy-
bridized with a 3*P-labeled C probe to detect the telomere signal.
Phospho-images were acquired using a Typhoon FLA 9500 (GE
Healthcare) and analyzed using Multi-Gauge version 3.0 software
(Fujifilm Life Science).

In-gel hybridization analysis

Digested genomic DNAs were briefly run into a 0.8 % agarose gel
in 1x TAE buffer for 1 h with 2 V/cm. The gels were dried at room
temperature and hybridized with a 32P-labeled C probe to detect
G-rich single-stranded telomere DNA (native gel). Gels were de-
natured, neutralized, and hybridized with C probe for total telo-
mere DNA input (denatured gel). The relative ratio of native gel
signal to denatured gel signal was calculated.

Immunofluorescence and immuno-FISH

Cells were fixed in PBS containing 4% formaldehyde for 5 min.
Fixed cells were permeabilized with PBS containing 0.5% Triton
X-100 for 30 min. Cells were incubated with primary antibody in
PBS containing 3% bovine serum albumin (BSA) and 0.1% Triton
X-100 overnight at 4°C followed by secondary antibody incuba-
tion for 1 h at room temperature. For immune-FISH, immune-
stained slides were fixed in PBS containing 4% formaldehyde
for 20 min. Fixed slides were sequentially dehydrated with
70%, 90%, and 100% ethanol for 5 min each followed by
hybridization of a Cy3-TelG probe in hybridization buffer (70%
formamide, 30% 2x saline-sodium citrate [SSC], 5% [v/w] magne-
sium chloride [MgCl,|, 0.0025% [v/w] nucleic acid-blocking
reagent [Roche]) overnight. Slides were washed with buffer A
(70% formamide, 30% 2x SSC) for 2 h and 2x SSC for 1 h followed
by mounting with VectaShield with DAPI.

Analysis of telomere synthesis during G2 and M phases

Metaphase spreads and G2-phase cells on slides were hydrated
with PBS for 30 min followed by EdU labeling with 6-carboxy-
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tetramethlyrhodamine fluorescent azide (Invitrogen) in fresh
homemade EdU-staining solution (PBS containing 1 mM CuSQOy,
2 mM ascorbic acid) for 30 min. Slides were washed vigorously
with PBS for 1 h, and then telomere-FISH steps using a FAM-
TelC probe were followed as described in “Immunofluorescence
and Immuno-FISH” above.

Microscope and image acquisition

Sample images were acquired and analyzed with a DeltaVision
deconvolution fluorescence microscope (GE Healthcare). Images
were acquired with 100x/1.40 0il UPLSAPO100X0 1-U2B836 WD
120 pm (Olympus). Images were captured with the same intensity
and exposure times, and multiple (five) z-stack images were taken
at 0.2-um intervals. Deconvolution processes were performed us-
ing the algorithm with the “conservative” setting, and then the
images were projected with the “maximum intensity” method.

Statistical analysis

Student’s two-tailed unpaired t-test was used for statistical anal-
ysis. The graphs and statistics were generated using Graphpad
Prism 7.01 software.
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