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ABSTRACT The emergence of antimicrobial resistance warrants for the development of
improved treatment approaches. In this regard, peptide nucleic acids (PNAs) have shown
great promise, exhibiting antibiotic properties through the targeting of cellular nucleic
acids. We aimed to study the efficacy of PNA as an anti-tuberculosis agent. Since the effi-
cacy of PNA is limited by its low penetration into the cell, we also investigated combina-
torial treatments using permeabilizing drugs to improve PNA efficacy. Various concentra-
tions of anti-inhA PNA, permeabilizing drugs, and their combinations were screened
against extracellular and intracellular mycobacteria.0.625 to 5 mM anti-inhA PNA was
observed to merely inhibit the growth of extracellular M. smegmatis, while low intracellu-
lar bacterial load was reduced by 2 or 2.5 log-fold when treated with 2.5 or 5 mM PNA,
respectively. Anti-inhA PNA against M. tuberculosis H37Ra exhibited bactericidal properties
at 2.5 and 5 mM and enabled a slight reduction in intracellular M. tuberculosis at concen-
trations from 2.5 to 20 mM. Of the permeabilizing drugs tested, ethambutol showed the
most permeabilizing potential and ultimately potentiated anti-inhA PNA to the greatest
extent, reducing its efficacious concentration to 1.25 mM against both M. smegmatis and
M. tuberculosis. Furthermore, an enhanced clearance of 1.3 log-fold was observed for
ethambutol-anti-inhA PNA combinations against intracellular M. tuberculosis. Thus, permea-
bilizing drug-PNA combinations indeed exhibit improved efficacies. We therefore propose
that anti-inhA PNA could improve therapy even when applied in minute doses as an
addition to the current anti-tuberculosis drug regimen.

IMPORTANCE Peptide nucleic acids have great potential in therapeutics as anti-gene/anti-
sense agents. However, their limited uptake in cells has curtailed their widespread appli-
cation. Through this study, we explore a PNA-drug combinatorial strategy to improve the
efficacy of PNAs and reduce their effective concentrations. This work also focuses on
improving tuberculosis treatment, which is hindered by the emergence of antimicrobial-
resistant strains of Mycobacterium tuberculosis. It is observed that the antibacterial efficacy
of anti-inhA PNA is enhanced when it is combined with permeabilizing drugs, particularly
ethambutol. This indicates that the addition of even small concentrations of anti-inhA
PNA to the current TB regimen could potentiate their therapeutic efficiency. We hypothe-
size that this system would also overcome isoniazid resistance, since the resistance muta-
tions lie outside the designed anti-inhA PNA target site.

KEYWORDS ethambutol, peptide nucleic acids, permeability, tuberculosis,
intramacrophage

Through their anti-gene/anti-sense properties (1–4), peptide nucleic acids (PNAs)
display antibacterial activity against many pathogenic bacteria, such as Escherichia

coli (5–7), Klebsiella pneumonia (8), Pseudomonas aeruginosa (9), Salmonella enterica
(10, 11), Staphylococcus aureus (12), and Brucella suis (13) when targeting essential
genes like gyrA (8, 12), ftsZ (4, 9), acpP (9, 14), and rpoB (13). Their application in
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therapeutics, however, is mainly limited by the low penetration capacity of PNA across
cell membranes (3, 15), particularly bacterial membranes (16). PNA encapsulation in
nanoparticles (17), linkage to antimicrobial peptides (18), and conjugation to cell pene-
trating peptides (CPPs) (5) have been explored to improve its uptake. PNA-CPP conju-
gates demonstrate 15- to 20-fold greater efficacy than PNA alone (14). The efficacious
concentrations, however, remain high.

Treatment of in vitro and in vivo bacterial infections caused by permeable mutants
of E. coli demonstrates a lower dosage requirement of PNA/PNA-CPP compared to
treatment of infections with wild type (WT) strains (7, 14, 19). Combinations of PNA
with a nonapeptide or conjugated to CPP prove to enhance efficacy only partially in
WT strains, where permeable mutants continue to exhibit greater susceptibility (7, 19).
Thus, a combinatorial therapy of CPP-PNA with a permeabilizing drug could enhance
overall bactericidal efficacy.

Our study focuses on the evaluation of a PNA-CPP targeting an essential gene for
treatment of tuberculosis (TB). Kulyté et al. (2005) demonstrated that anti-inhA PNA tar-
geting the gene start site in Mycobacterium smegmatis could partially inhibit its growth
at 5 mM over a 16-h period (20). We investigated the effect of permeabilizing drugs,
colistin, ceftazidime pentahydrate, or ethambutol, on the efficacy of this anti-inhA PNA.
Colistin, ceftazidime, and ethambutol target cations in the lipopolysaccharide layer
(21), penicillin-binding proteins (22), and arabinogalactan/lipoarabinogalactan synthe-
sis (23), respectively. Colistin and ethambutol have additionally been found to improve
the efficacy of other anti-TB drugs (24, 25) while combinations of ceftazidime and avi-
bactam are effective against the Mycobacterium avium complex (26). Thus, the permea-
bilizing activity of these drugs was hypothesized to improve the efficacy of anti-inhA
PNA by enhancing PNA uptake.

We also test the efficacy of anti-inhA PNA designed to target the start site of the
inhA in M. tuberculosis and examined its efficacy in combination with permeabilizing
drugs against both extracellular and intramacrophage mycobacteria.

RESULTS

Through the targeting of an essential gene, it has been proven that peptide nucleic
acids (PNAs) can have antibacterial effects (27–30). InhA, encoding an NADPH-depend-
ent enoyl-acyl carrier protein reductase, is an essential gene for the synthesis of the
fatty acids that constitute the mycolic acid in the mycobacterial cell wall (31). InhA inhi-
bition or downregulation is known to effectively inhibit survival of Mycobacterium (32,
33). Thus, inhA was selected for our study. Anti-inhA PNA designed against M. smegmatis
has a growth-inhibitory effect against this bacterium. However, efficacy was observed to be
achieved at concentrations of no less than 5 mM (20). We selected this predesigned anti-
inhA PNA for our study and also designed an anti-inhA PNA againstM. tuberculosis (Table 1).

Anti-mycobacterial effect of anti-inhA PNA and permeabilizing agents against
M. smegmatis. The treatment of 106 CFU/mL of M. smegmatis with 0.625 to 5 mM of
anti-inhA PNA over 48 h was observed to have growth-inhibitory effects, maintaining a
constant cell density throughout the treatment time (Fig. 1a). This was consistent with
the reports by Kulyté et al. (2005) which demonstrated that 2 and 5 mM anti-inhA PNA
displayed similar growth inhibitory profiles at 16 h (20).

To facilitate the entry, and therefore the efficacy, of the anti-inhA PNA, we propose
a combinatorial treatment with a permeabilizing drug. The MICs of colistin, ceftazidime
pentahydrate, and ethambutol were therefore determined. Colistin was found to have

TABLE 1 Anti-inhA PNA sequences used in this study to target eitherM. smegmatis orM.
tuberculosis

CPP-PNA sequence Bacterial target Size (bp) Reference
(KFF)3K-GTCATTTGGT-NH2 inhA M. smegmatis 10 (20)
(KFF)3K-CTGTCATGTGCG-NH2 inhA M. tuberculosis 12 This study
(KFF)3K-GTGTCATGTGCG-NH2 MismatchM. tuberculosis 12 This study
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an MIC of 16 mg/L, while ceftazidime pentahydrate and ethambutol exhibited MICs of
256 mg/L and 1.6 mg/L, respectively (Fig. 1b). It is expected that the bacteriostatic con-
centrations of these drugs would be optimal for altering cell membrane permeability
without causing cell death.

Effect of permeabilizing drugs on membrane permeability of M. smegmatis. To
confirm the permeabilization of M. smegmatis cells treated with inhibitory concentra-
tions of colistin, ceftazidime pentahydrate, and ethambutol, an NPN assay was per-
formed. The hydrophobic dye NPN (1-N-phenylnapthylamine) exhibits low fluorescence in
an aqueous environment. Entry into lipid-rich cell membrane causes an increase in fluores-
cence intensity. Any alteration of cell membrane integrity increases entry of the dye via the
cell membrane, resulting in increased fluorescence (34). Confocal imaging of NPN-stained
cells after 4 h of permeabilizing drug treatment showed that these cells had a higher fluo-
rescence compared to the untreated control (Fig. 2), confirming that the treatment
enhanced the permeability of M. smegmatis cells. Note that cell density prior to NPN stain-
ing was maintained constantly across all samples.

Combinatorial effect of permeabilizing drugs and various anti-inhA PNA
concentrations. MICs of each drug were combined with incrementally increasing con-
centrations of anti-inhA PNA. The combined efficacy was determined after 48 h of
treatment. Treatment with 16 mg/L of colistin improved the efficacy of 5 mM anti-inhA
PNA by 2.5 log-fold. At this concentration, however, colistin had no effect on the effi-
cacy of 0.625 to 2.5 mM anti-inhA PNA (Fig. 3a). Treatment with 256 mg/L of ceftazi-
dime pentahydrate in combination with 1.25, 2.5, and 5 mM anti-inhA PNA resulted in
2.6, 2.6, and 3.6 log-fold reductions in bacterial load, respectively (Fig. 3b). Ethambutol,
which demonstrated the highest effect on membrane permeability in the NPN assay,
enhanced the efficacy of 1.25 to 5 mM anti-inhA PNA, resulting in a 3 to 4 log-fold
greater reduction in bacterial load (Fig. 3c). Thus, permeabilizing drugs do improve the
efficacy of anti-inhA PNA, and the extent of this increase could depend on the drug’s
mode of action and/or its efficiency in disrupting the bacterial membrane.

Since the anti-inhA PNA targets the same cellular process as the anti-TB drug isonia-
zid (INH), we also investigated the combinatorial efficacy of permeabilizing drugs with
INH through a disk diffusion assay. We used a disk diffusion assay here since INH in liq-
uid culture (Middlebrook 7H9 broth) did not exhibit an MIC against M. smegmatis up to
concentrations as high as 1024 mg/L. In this study, colistin, ceftazidime pentahydrate,
and ethambutol were loaded, individually or in combination with INH, on sterile discs
placed on LB agar spread-plated with M. smegmatis culture. The clearance zone indi-
cated the efficacy of the loaded antibiotic(s). We observed increased efficacy only for
combinatorial treatments of INH (32 mg) with ceftazidime pentahydrate (512 and
1024 mg), where inhibition zone diameters increased from #10 mm to 13.5 to
14.5 mm.

FIG 1 Effects of increasing concentrations of (a) anti-inhA PNA and (b) permeabilizing drugs (colistin,
ceftazidime pentahydrate, and ethambutol) on the survival of M. smegmatis after 48 h at 37°C. The data are
plotted from 5 biological replicates and error bars indicate the standard deviation for each sample.
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Toxicity of permeabilizing drugs to macrophage cells. Translation of this combi-
natorial therapy for treatment of intracellular pathogens requires that the compounds
exert minimal toxicity toward the host. The toxicity of the permeabilizing drugs toward
the macrophage cells was therefore monitored over 48 h. At 48 h, colistin exhibited no
toxicity at concentrations up to 32 mg/L. Macrophage viability was reduced to 22% on
treatment with 128 mg/L of colistin (data not shown). Ceftazidime pentahydrate exhibits
a slight toxicity at 1024 mg/L over 48 h, where the relative viability dropped to 65% (data
not shown). Treatment of 4 to 16 mg/L of ethambutol was found to be nontoxic over 48 h
(data not shown). Thus, colistin is considered to be nontoxic at concentrations of#64 mg/
L, ceftazidime pentahydrate exerts a toxicity at concentrations of$1024 mg/L, and etham-
butol is nontoxic at concentrations of#16 mg/L.

Effect of anti-inhA PNA and cell wall-targeting drug-PNA combinations on the
survival of intracellular M. smegmatis. To evaluate the efficacy of anti-inhA against
intramacrophage M. smegmatis, we infected differentiated THP-1 cells with M. smeg-
matis. The intracellular bacterial load achieved was 105 CFU/mL. Treatment of intracel-
lular M. smegmatis cells with anti-inhA PNA resulted in a time- and concentration-de-
pendent reduction in intracellular bacterial load. The highest concentration tested,
5 mM anti-inhA PNA, resulted in 1.5 and 2.5 log-fold reductions in intramacrophage M.
smegmatis loads over 12 and 24 h, respectively (Fig. 4a). M. smegmatis-infected macro-
phage cells were treated with colistin, ceftazidime pentahydrate, ethambutol, or a
combination of each permeabilizing drug and anti-inhA PNA for 24 h. The concentra-
tion for each permeabilizing drug was selected such that it was nontoxic to macro-
phage cells and only minimally affected intracellular bacterial survival, i.e., intracellular
bacterial loads were not affected by more than 1 log-fold. Four mg/L of colistin in

FIG 2 Analysis of the effects of permeabilizing drugs at their MICs on the membrane permeability of
M. smegmatis at 4 h. Confocal imaging of (a) nontreated control, (b) SDS-treated control, and (c)
colistin-, (d) ceftazidime pentahydrate-, and (e) ethambutol-treated M. smegmatis stained with NPN
dye. FU (fluorescence units) indicates corrected total cell fluorescence.
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combination with 2.5 or 5 mM anti-inhA PNA enabled identical intracellular bacterial
clearance to that of the corresponding free anti-inhA PNA treatment. This indicates
that colistin does not have any effect, either beneficial or adverse, on the intracellular
efficacy of PNA (Fig. 4b). Ceftazidime pentahydrate employed at a concentration of
128 mg/L improved the efficacy of 5 mM anti-inhA PNA, i.e., a 0.91 log-fold enhanced
reduction in bacterial load compared to treatment with PNA alone (Fig. 4c). Additionally,
0.4 mg/L of ethambutol exhibited similar effects, where a combination of 0.4 mg/L etham-
butol and 5mM anti-inhA PNA achieved higher intracellular bacterial clearance (0.8 log-fold
enhancement) than that achieved with PNA alone (Fig. 4d). Statistical significance deter-
mined through the Tukey-Kramer analysis of variance (ANOVA) post hoc test, however, indi-
cated that even the combinations of ceftazidime pentahydrate or ethambutol with 5 mM
anti-inhA PNA did not exhibit significance with 95% confidence. This is possibly due to the
reduced accuracy at the detection limit of the drop-plating assay (35).

To investigate the efficacy of anti-inhA PNA and permeabilizing drug combinatorial
treatments in tuberculosis therapy, similar experiments were carried out against M. tu-
berculosis H37Ra. For this purpose, we designed a PNA sequence complementary to
the start site of the inhA gene in M. tuberculosis. The PNA was purchased as a PNA-CPP
conjugate, where the CPP used was (KFF)3K.

Efficacy of anti-inhA PNA, permeabilizing drugs, and their combinations againstM.
tuberculosisH37Ra. The antibacterial efficacy of anti-inhA PNA was screened against M.
tuberculosis H37Ra over a range of concentrations. Low concentrations of 0.625 and
1.25 mM were found to be ineffective, while 2.5 and 5 mM anti-inhA PNA resulted in 1
and 2.4 log-fold reductions in bacterial load, respectively (Fig. 5a). A mismatch PNA
sequence, having no binding site in the M. tuberculosis genome, was also tested as a
control, and was found to have no effect on bacterial growth at a concentration of
5 mM (Fig. 5a). Prior to testing the combinatorial effects of permeabilizing drugs and
PNA against M. tuberculosis, the MIC of each permeabilizing drug was determined after

FIG 3 Combinatorial effects of permeabilizing drugs and anti-inhA PNA against M. smegmatis. The
efficacy of (a) colistin, (b) ceftazidime pentahydrate, or (c) ethambutol in combination with 0.625 to
5 mM anti-inhA PNA after 48 h treatment at 37°C. Data plotted are obtained from a sample size of
n = 3, where error bars indicate the standard deviation for each sample. Significance is indicated by
** for P-value # 0.01 as determined through Tukey-Kramer post hoc test for combinatorial treatments
with respect to corresponding drug-alone and PNA-alone treatments.
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a 7-day treatment time. M. tuberculosis H37Ra growth inhibition was observed at
64 mg/L of colistin, 32 to 64 mg/L of ceftazidime pentahydrate, and 1.6 mg/L of etham-
butol. These results were in correlation with previous reports showing the MICs of coli-
stin, ceftazidime, and ethambutol to be 64 mg/L (25), 32 mg/L (26), and 2.5 to 5 mg/L
(36), respectively, against M. tuberculosis. A combinatorial treatment of colistin or cefta-
zidime pentahydrate and anti-inhA PNA showed no overall benefit compared to the
individual treatment with drug or PNA alone (Fig. 5c and d). This is likely due to a
reduced ability of colistin and ceftazidime pentahydrate to permeabilize the cell mem-
brane of M. tuberculosis H37Ra. Ethambutol in combination with 1.25 or 2.5 mM anti-inhA
PNA, however, does improve the overall efficacy, causing a 2.8 or 1.3 log-fold enhanced
reduction in bacterial load, respectively (Fig. 5e). Being an anti-TB agent itself, ethambutol
effectively targets and permeates the cell wall ofM. tuberculosis, enabling an enhanced effi-
cacy in combinatorial treatment with anti-inhA PNA. Thus, similar to our observations for
M. smegmatis, permeabilizing drugs can improve the efficacy of anti-inhA PNA against M.
tuberculosis H37Ra. The efficacy of such a combinatorial therapy could be dependent on
the permeabilizing potential of the drug.

Effect of anti-inhA PNA and its combinations on the survival of intramacrophage
M. tuberculosis H37Ra. The efficacies of anti-inhA PNA and its combinations with per-
meabilizing drugs against intracellular M. tuberculosis were tested. It was observed that
2.5 mM anti-inhA PNA achieves effects similar to those observed for the untreated con-
trol, with higher PNA concentrations of 5, 10, and 20 mM enabling log reductions of
0.51, 0.55, and 0.75, respectively (Fig. 6a). Treatment with 16 mg/L colistin in combina-
tion with 2.5 or 5 mM anti-inhA has no effect on the efficacy of PNA (Fig. 6b). Treatment
with 8 mg/L of ceftazidime pentahydrate improves the efficacy of 5 mM anti-inhA PNA,
reducing the intracellular bacterial load by 1.2 log-fold (Fig. 6c). Treatment with
0.8 mg/L of ethambutol combined with 2.5 or 5 mM anti-inhA PNA showed 1.3 and 1.1

FIG 4 Efficacy of anti-inhA PNA alone and in combination with permeabilizing drugs against
intramacrophage M. smegmatis. Intracellular bacterial load post treatment with (a) anti-inhA PNA
alone over 12 and 24 h and (b) colistin, (c) ceftazidime pentahydrate, and (d) ethambutol combined
with 0 to 5 mM anti-inhA PNA over 24 h. Data were obtained from 3 biological replicates and error
bars indicate the standard deviation of each sample. Significance is indicated by * for P-value # 0.05,
** for P-value # 0.01, and *** for P-value # 0.001.
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log-fold reductions in intracellular bacterial load, respectively (Fig. 6d). Thus, the com-
binatorial treatment achieves 7- to 20-times greater bacterial clearance than treatment
with 2.5 to 5mM anti-inhA PNA alone, respectively.

DISCUSSION

Tuberculosis is the leading cause of deaths resulting from a single infectious agent
after COVID-19, with the mortality rate having increased between 2019 and 2020 (37).
The emergence of antimicrobial-resistant strains of M. tuberculosis further hinders treat-
ment efforts and necessitates the development of improved therapies (37, 38). PNA, by
targeting inhA in M. smegmatis, has anti-mycobacterial properties (20). However, its ef-
ficacy against intracellular bacteria and M. tuberculosis (the causative agent of tubercu-
losis) remained unknown. Furthermore, its antimicrobial efficacy was observed at con-
centrations of 5 mM and greater. Our study therefore aimed to investigate the
therapeutic potential of anti-inhA PNA against M. smegmatis and M. tuberculosis, both
in culture and intramacrophage. We also investigated a combinatorial treatment
approach to potentiate PNA activity and reduce efficacious PNA concentrations.

This study confirmed that anti-inhA PNAs of 10 to 12 bp which target the start site of
inhA in M. smegmatis or M. tuberculosis exhibit anti-mycobacterial properties. Anti-inhA
PNA inhibited M. smegmatis growth at concentrations of 0.625 to 5 mM, while concentra-
tions of 2.5 mM and greater exhibited bactericidal effects against M. tuberculosis. This anti-
mycobacterial ability was attributed to its optimal length (6, 39, 40), CPP conjugation that
promoted its uptake into the cell (5, 14, 41), and target start site-binding which enabled an
efficient anti-sense effect (40). Low intracellular bacterial loads of M. smegmatis were par-
tially cleared upon treatment with anti-inhA PNA, in a concentration- and time-dependent

FIG 5 Effect of anti-inhA PNA and permeabilizing drugs alone and in combination against M. tuberculosis H37Ra treated for 7 days at 37°C
and 5% CO2. (a) Bacterial load before and after treatment with 0 to 5 mM anti-inhA PNA and 5 mM mismatch (MM) PNA (significance
determined by Student's t test, where *** indicates P # 0.001). (b) Bacterial load before and after treatment with 64 to 256 mg/L colistin, 32
to 128 mg/L ceftazidime pentahydrate, and 1.6 to 6.4 mg/L ethambutol. Dashed line marks the initial bacterial load for all samples. (c)
Combinatorial effect of colisitn and anti-inhA PNA. (d) Combinatorial effect of ceftazidime pentahydrate and anti-inhA PNA. (e) Combinatorial
effect of ethambutol and anti-inhA PNA. Temperature was maintained at 37°C with 5% CO2. Significance between combinatorial treatment
and individual drug/PNA treatment, determined through the Tukey Kramer post hoc test, is indicated by * for P # 0.05 or ** for P # 0.01. All
data were obtained from 3 biological replicates and error bars indicate the standard deviation of each respective sample.
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manner. However, concentrations as high as 20 mM only minutely affected intracellular M.
tuberculosis survival. This reduced efficacy against intracellular bacteria could be attributed
to compartmentalization of the internalized PNA making it less accessible to the intracellu-
lar bacteria (42). The overall high PNA concentration requirements for treatment could be
due to the poor penetration capacity of PNA, since permeable mutants are more suscepti-
ble than wild-type (WT) strains to anti-sense PNA (7, 19). Hence, we hypothesized that com-
binatorial treatments with a permeabilizing drug and PNA could enable reductions in effi-
cacious PNA concentrations.

Combining anti-inhA PNA with permeabilizing drugs enhances its antibacterial effi-
cacy, with combinations with ethambutol showing the most promise. This corre-
sponded with the highest increase in permeability observed when M. smegmatis cells
were treated with ethambutol. Further, our study also confirmed an improved anti-
inhA PNA efficacy against intracellular M. smegmatis/M. tuberculosis when it was com-
bined with ethambutol. Studies by Dryselius et al. (2005) and Pantenge et al. (2013)
reported that combinations of PNA and antibiotics inhibiting the same target through
mRNA and protein inhibition result in synergistic responses in E. coli, S. aureus, and
Streptococcus pyogenes (43, 44). Thus, the addition of an anti-inhA PNA to the current
anti-TB regimen, where first-line drugs include rifampicin, isoniazid, pyrazinamide, and
ethambutol (45), could possibly improve therapeutic efficacies. The presence of etham-
butol in the existing treatment would also enable a low-concentration requirement of
PNA for achieving desirable efficacy.

FIG 6 The survival of intramacrophage M. tuberculosis H37Ra upon treatment with anti-inhA PNA, permeabilizing
drugs, and drug-PNA combinations. (a) Intracellular bacterial load at 0 h and 5 day after treatment with anti-inhA
PNA at 37°C, 5% CO2. Intracellular bacterial load at 5 day after treatment with (b) colistin, (c) ceftazidime
pentahydrate, or (d) ethambutol and their combination with anti-inhA PNA at 37°C, 5% CO2. The data were plotted
from a sample size of n = 3, where error bars indicate the standard deviation of each sample. Significance of the
combinatorial treatments with respect to individual drug and PNA treatments is denoted by *, P # 0.05.
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When testing permeabilizing drugs in combination with INH, an anti-TB drug tar-
geting the same mycolic acid synthesis step, INH exhibited enhanced efficacy only in
combination with ceftazidime pentahydrate against M. smegmatis. However, colistin
and ethambutol were shown to have synergistic responses with INH against M. tuber-
culosis (25, 46). This difference in combinatorial efficacy could be attributed to differen-
ces between the M. smegmatis and M. tuberculosis strains in the cell wall (47) and the
presence of regulatory protein (believed to be involved in synergy between ethambu-
tol and INH in M. tuberculosis) (46). These results also deviated from those of our per-
meabilizing drug-PNA combinatorial studies, which may be due to the inability of coli-
stin and ethambutol to sufficiently increase intracellular INH concentrations to the
levels required to achieve a visible change in INH efficacy. In contrast, PNAs are known
to be resistant to efflux mechanisms (7, 48) and hence their accumulation in the cell is
only affected by factors which affect its influx. We showed that these permeabilizing
drugs, at their inhibitory concentrations, facilitate the entry of substances into the cell.
Thus, we believe that colistin, ceftazidime pentahydrate, and ethambutol potentiated
the efficacy of anti-inhA PNA by promoting its entry into the mycobacterial cell.

The anti-inhA PNA designed against M. tuberculosis is also hypothesized to overcome
isoniazid resistance, since isoniazid resistance has been demonstrated to be primarily
through mutations in the katG gene (33). Furthermore, the anti-inhA PNA is designed to
bind to the25 bp to17 bp region in inhA. This region of the inhA promoter inM. tubercu-
losis reports no mutation frequency among resistant species (49). This anti-inhA PNA could,
therefore, also have the potential to overcome drug resistance.

In conclusion, combinatorial therapies involving the use of essential gene-targeting
PNA and permeabilizing drugs like ethambutol present a new avenue of therapy for
diseases such as tuberculosis which urgently need more effective antibacterial treat-
ment approaches. The permeabilizing drugs increase cell wall permeability and, in
turn, possibly enable the uptake of the anti-inhA PNA. This allows enhanced efficacy of
the anti-inhA PNA such that its effective concentrations can also be reduced.
Furthermore, such a system is effective against both extracellular and intramacrophage
M. smegmatis and M. tuberculosis H37Ra. It is also our belief that the anti-inhA PNA
designed against M. tuberculosis will continue to show promise against drug-resistant
strains of M. tuberculosis.

MATERIALS ANDMETHODS
Bacterial strains and culturing. The bacterial strains used in this study, Mycobacterium smegmatis

mc2 155 and Mycobacterium tuberculosis H37Ra, were obtained from Jaya Tyagi at the All India Institute
of Medical Sciences, Delhi, and from Vinay Nandicoori at National Institute of Immunology, Delhi, respec-
tively. M. smegmatis was cultured to an OD600 (optical density at 600 nm) of 0.5 in Middlebrook 7H9
(HiMedia) broth, supplemented with 0.44% glycerol (Rankem) and 0.15% Tween 80 (HiMedia), at 37°C
and 200 rpm. M. tuberculosis H37Ra, cultured in a biosafety level 21 facility, was grown in Middlebrook
7H9 medium, supplemented with 0.44% glycerol, 0.15% Tween 80, and 10% albumin-dextrose-NaCl so-
lution (ADN), at 37°C and 180 rpm. The 0.5-OD600 cultures were used for testing the efficacy of com-
pounds, membrane permeability assays, and infection.

Human cell line and culturing. THP-1 cells were received from Vinay Nandicoori at the National
Institute of Immunology (Delhi). THP-1 cells were passaged in complete RPMI medium [RPMI medium
supplemented with 10% fetal bovine serum (FBS), HiMedia], penicillin (100 IU, Sigma-Aldrich), and strep-
tomycin (100 mg/L, Sigma-Aldrich) and cultured at 37°C and 5% CO2. The THP-1 monocytes were differ-
entiated to macrophages by treatment with 0.025 mg/L phorbol 12-myristate acetate (PMA, Sigma-
Aldrich) for 24 h at 37°C and 5% CO2. Differentiated THP-1 cells were then cultured in fresh complete
RPMI medium for 24 h prior to further treatment or infection.

Peptide nucleic acid design. The 10-bp anti-inhA PNA sequence was selected from the study by
Kulyte et al. (20) and its target site was confirmed bioinformatically using the blastn (https://blast.ncbi
.nlm.nih.gov/Blast.cgi) and SnapGene (v5.2, http://www.snapgene.com) tools. An anti-inhA PNA
sequence was also designed to target the gene start site of M. tuberculosis H37Ra, M. tuberculosis H37Rv,
and M. bovis. For experimentation, the PNAs were obtained from PANAGENE (Daejeon, Republic of
Korea) as PNA-CPP (KFFKFFKFFK) conjugates.

Efficacy testing using a broth microdilution assay. Here, 100-mL aliquots of a 10-fold diluted, 0.5-
OD600 M. smegmatis culture were treated with 0.625 to 5mM anti-inhA PNA or permeabilizing drugs (4 to
16 mg/L colistin, 128 to 512 mg/L ceftazidime pentahydrate, or 0.8 to 3.2 mg/L ethambutol) for 48 h at
37°C. All three permeabilizing drugs were purchased from HiMedia. Post-treatment, the cultures were
drop-plated to determine the drop count in CFU/mL (equation below). Briefly, 10-mL drops of serially
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diluted samples were distinctly loaded on a Luria Bertani (LB) agar (HiMedia) plate and incubated for
48 h at 37°C. The colony count and corresponding dilution factor were noted. The lowest concentration
of antibacterial agent that resulted in no change in bacterial count compared to the initial cell count
was determined as the MIC.

Drop count
CFU
mL

� �
¼ Colony count � dilution factor

0:01

The efficacies of anti-inhA PNA (0.625 to 5 mM) and the permeabilizing drugs [colistin (64 to 256 mg/
L), ceftazidime pentahydrate (32 to 128 mg/L), and ethambutol (1.6 to 6.4 mg/L)] were tested against M.
tuberculosis H37Ra over 5 days at 37°C and 5% CO2. Viable cell densities after treatment were deter-
mined through a drop plating assay carried out on Middlebrook 7H11 agar and incubated for 30 days.

Permeabilizing drug-PNA combination studies were carried out in an identical manner, combining
the MIC of the permeabilizing drug with varied concentrations of PNA.

Efficacy testing using the disc diffusion assay. Briefly, 105 cells of a 0.5 OD600 M. smegmatis culture
was spread plated on to an LB agar plate. Sterile cellulose discs were distinctly placed on the agar plate
and colistin, ceftazidime pentahydrate, ethambutol, or isoniazid (INH) were loaded on the discs as
desired. The agar plates were incubated at 37°C for 48 h and the diameters of the clearance zones,
observed after incubation, were measured.

Membrane permeability. The membrane permeability was monitored through an NPN (1-N-phenyl-
napthylamine, HiMedia) assay (50). Briefly, M. smegmatis cells were treated with 16 mg/L of colistin,
256 mg/L of ceftazidime pentahydrate, and 1.6 mg/L of ethambutol for 4 h at 37°C and 200 rpm. The
0.5-OD600 treated cells were pelleted out from each sample and resuspended in 1 mL sterile ice-cold
5 mM HEPES (HiMedia) buffer. A 100-mL volume of these cells was aliquoted in a sterile microcentrifuge
tube and mixed with 100 mL of ice-cold 50 mM NPN prepared in HEPES buffer, These NPN-stained cells
were immediately imaged in a laser scanning confocal microscope (LSM 780, Carl Zeiss) using a 63�
apochromatic oil objective. The excitation wavelength used was 405 nm and the emission was detected
using a photon multiplier tube detector in a range of 410 to 500 nm. Approximately 70 single cell
images were further analyzed using ZenBlue and ImageJ softwares to determine the corrected total cell
fluorescence.

Toxicity. Differentiated THP-1 cells were washed and acclimatized in fresh complete RPMI medium
for 24 h. These cells were then treated with 32 to 128 mg/L of colistin,128 to 1024 mg/L of ceftazidime
pentahydrate, and 4 to 16 mg/L of ethambutol for 24 and 48 h. Post-treatment, the cells were trypsi-
nized and cell counts were quantified using a Trypan Blue (0.4%) solution for manual cell counting in a
hemocytometer.

Macrophage infection. Differentiated THP-1 cells were infected with M. smegmatis/M. tuberculosis
H37Ra at an MOI of 10:1, where the bacterial culture was prepared to 0.5 OD600 in complete RPMI me-
dium after syringe treatment to break up bacterial clumps. The macrophages and mycobacteria were
cocultured for 3 h at 37°C and 5% CO2, after which the extracellular bacteria were removed and washed
off thrice with phosphate-buffered saline supplemented with Ca-Mg. Complete RPMI medium contain-
ing 200 mg/mL amikacin was added to each well after the final wash, and the cells were incubated for
4 h at 37°C and 5% CO2. This ensured the complete elimination of extracellular bacteria. The amikacin
was then washed off. This is considered the 0-h time point of infection. Fresh complete RPMI medium
was added to the treatment wells, while the macrophages in the representative wells were lysed using
0.05% SDS to determine the 0-h bacterial load. The infected cells were then treated with PNA (0.625 to
5 mM), colistin, ceftazidime pentahydrate, ethambutol, or selected combinations of a permeabilizing
drug and PNA for 12 or 24 h (M. smegmatis infection) or for 5 days (M. tuberculosis H37Ra infection).

Statistical Analysis. Individual treatments with anti-inhA PNA or permeabilizing drugs were ana-
lyzed using the Student’s t test. Statistical significance for combinatorial treatment studies was deter-
mined through ANOVA followed by the Tukey-Kramer post hoc test.
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