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Accurate understanding of surgical tool-tip tracking error is important for decision making in image-guided surgery. In this Letter, the authors
present a novel method to estimate/model surgical tool-tip tracking error in which they take pivot calibration uncertainty into consideration.
First, a new type of error that is referred to as total target registration error (TTRE) is formally defined in a single-rigid registration. Target
localisation error (TLE) in two spaces to be registered is considered in proposed TTRE formulation. With first-order approximation in
fiducial localisation error (FLE) or TLE magnitude, TTRE statistics (mean, covariance matrix and root-mean-square (RMS)) are then
derived. Second, surgical tool-tip tracking error in optical tracking system (OTS) frame is formulated using TTRE when pivot calibration
uncertainty is considered. Finally, TTRE statistics of tool-tip in OTS frame are then propagated relative to a coordinate reference frame
(CRF) rigid-body. Monte Carlo simulations are conducted to validate the proposed error model. The percentage passing statistical tests
that there is no difference between simulated and theoretical mean and covariance matrix of tool-tip tracking error in CRF space is more
than 90% in all test cases. The RMS percentage difference between simulated and theoretical tool-tip tracking error in CRF space is
within 5% in all test cases.
1. Introduction: Surgical tool-tip tracking is an essential technique
in image-guided surgery (IGS) [1, 2]. On the one hand, it can be
used to provide the real-time surgical tool-tip position in tracking
system frame during surgery. On the other hand, it can also be
adopted to acquire fiducials’ positions in patient space for an
image-to-patient registration [3]. Statistics of surgical tool-tip
tracking error can provide real-time feedback to help surgeons
make correct decisions (e.g. avoiding potentially dangerous tool
movements) during surgery [4]. Among various tracking systems,
optical tracking system (OTS) is most commonly adopted
because of its robustness and high accuracy. OTS frame is
usually set as a frame whose x- and y-axis are in the image plane
while the z-axis is pointing outwards the stereo camera.
Before surgical tool-tip tracking, an important procedure called

pivot calibration usually has to be done to determine the tool-tip
position in tool reference frame (TRF), i.e. trf r [5]. TRF is the
local coordinate frame of a surgical tool determined by the relative
positions of markers attached to the surgical tool with the frame’s
origin being the centroid of markers’ locations. During pivot cali-
bration, the surgical tool is pivoted around a fixed point. During
surgical tool-tip tracking process, to acquire the pose of surgical
tool ots

trf R and ots
trf t, measured positions of tool-attached fiducials

(markers) in OTS frame have to be registered to corresponding
ones in TRF frame.
Assuming that the pivot calibration is perfect, surgical tool-tip

tracking error is actually target registration error (TRE) in the
above paired-point rigid registration (PPRR). Paired-point indicates
the correspondences between points in two spaces are known.
Extensive efforts have been made to estimate or model TRE statis-
tics when fiducial localisation error (FLE) distribution is known
[6–13]. FLE is produced when OTS locates the three-dimensional
(3d) coordinates of fiducials/markers. TRE statistical model was
first formally adopted in the scenario of surgical tool-tip tracking
by West and Maurer [14]. FLE distribution was assumed to be iso-
tropic (the same in all directions) and homogenous (the same for all
fiducials) in [14]. Anisotropic FLE was later considered in [8, 15].
All of above work shares one assumption that pivot calibration
is perfect.
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In surgical tool-tip tracking, two issues exist: (i) The surgical
tool-tip position is usually reported relative to a CRF. The CRF
rigid body also consisting of fiducials is usually attached to the
patient to compensate the patient’s motion during surgery [16].
Like TRF, CRF is determined by the relative positions of markers
attached to the CRF rigid-body. (ii) Pivot calibration is in fact not
perfect [17, 18]. As physical measurements in real world cannot
be perfect, there exists inevitable error in pivot calibration as
well. It is of great value to consider pivot calibration uncertainty
in order to estimate tool-tip tracking error more accurately. To sum-
marise, both FLEs in locating CRF-attached fiducials and pivot cali-
bration uncertainty have to be considered. FLEs of TRF-attached
and CRF-attached fiducials can be determined from fiducial regis-
tration error (FRE) during tracking [19] or through other methods
[20]. If the ‘true’ tool-tip position in TRF, trf r∗, is known, the cali-
bration error is easily calculated: Ecal =trf r −trf r∗. However,
without loss of generality, since ground truth of trf r∗ is not available
due to financial costs [17]. Fortunately, statistics (e.g. covariance
matrix) of pivot calibration uncertainty can be estimated during
the calibration process [4, 21].

Recently, the covariance propagation techniques are adopted to
incorporate uncertainties from tool pose estimation, pivot calibra-
tion, image-to-patient registration [4, 21]. While their method can
model the tool-tip tracking error distribution in computed tomog-
raphy (CT) frame quite well, the numerical computation of
Jacobians involved in their methods may be a potential drawback
for its easy implementation. The purpose of this Letter is to describe
and validate a closed-form solution to surgical tool-tip tracking
error model problem in CRF while pivot calibration uncertainty is
considered. To do this, we first define and develop a new type of
error metric called total target registration error (TTRE) in a
single rigid registration. Target localisation error (TLE) in two
spaces to be registered is considered in the formulation of TTRE.
Tool-tip tracking error in OTS frame is represented by TTRE
where TLE in TRF space is caused by pivot calibration. Then
TTRE model is extended to the case where an optically tracked
tool’s pose is measured relative to a CRF. A closed-form
formulation of statistics (i.e. mean, covariance matrix, RMS
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(root-mean-square)) of surgical tool-tip tracking error in CRF is
then derived. Simulation results show that the proposed model
can (i) predict the mean and covariance matrix of tool-tip tracking
error in CRF well (at least 90% of test cases accepting the null-
hypothesis of hypothesis tests); and (ii) predict RMS value of
tool-tip tracking error in CRF well (RMS percentage difference
between predicted and simulated data is within 5% for all test
cases). We summarise our contributions as follows: (i) A new
type of error related to target called TTRE is proposed in a paired-
point rigid registration; (ii) TTRE statistical model is derived when
first-order approximation in FLE or TLE magnitude is made;
(iii) TTRE model is applied to surgical tool-tip tracking scenario;
and (iv) simulations are conducted to validate the effectiveness of
proposed error model.
2. Method: The coordinate frames and transformation matrices
involved in this Letter are first defined for clarity:

† OTS – optical tracking system;
† TRF – tool reference frame;
† CRF – coordinate reference frame;
† B

AT – measured transformation matrix relating frames A and B;
† T∗ or R∗ – true transformation or rotation matrix;
† Ap∗ – true value of vector p in frame A;
† Ap – measured value of vector p in frame A.

2.1. PPRR problem: The PPRR problem is to determine the rigid
transformation T [ SE(3) composed of a rotation matrix
R [ SO(3) and a translation vector t [ R3 which minimise the
following term [10]:

FRE2 = ∑N
i=1

|W i(R(xi + Dxi)+ t − (yi + Dyi))|2 (1)

where FRE is the weighted fiducial registration error, N ≥ 3 is the
number of fiducials, X = {x1, . . . , xN} [ R3×N and
Y = {y1, . . . , yN} [ R3×N represent corresponding fiducials’
position sets in X (e.g. TRF) and Y (e.g. OTS frame) spaces to be
registered, {Dx1, . . . , DxN} [ R3×N and {Dy1, . . . , DyN} [ R3×N

represent FLE vector sets in X and Y spaces, W i [ R3×3 is a
non-singular weighting matrix of the ith fiducial. Without loss of
generality, Dxi and Dyi are modelled as independent zero-mean
random variables (only reasonable for passive OTS [5]) satisfying
Fig. 1 Illustrations of TTRE in a rigid registration
a X space: before registration, solid circles {xi}

N
i=1 and open dashed circles {xi +

square r and open dashed square r + Drx represent ‘true’ and localised target, res
b Y space: before registration, solid circles {yi}

N
i=1 and open circles {yi + Dyi}

N
i=1

in Y space
c Y space: after registration, open dashed circles {T(xi + Dxi)}

N
i=1 is set of the tran

rigid transformation matrix, FREi is the FRE vector between corresponding ith fi

localised target from X space, Dry is TLE vector in Y space, solid square R∗r + t∗ is
target denoted by open square
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Dxi�N (0, cov[xi]) and Dyi�N (0, cov[yi]), where cov[v] denotes
the covariance matrix of one random variable v with itself.

2.2. Total target registration error: A new type of error metric that
is referred to as total target registration error at a given ‘nominal’
target point r is proposed and defined as follows:

TTRE(r) = R(r + Drx)+ t + Dry − (R∗r + t∗)

= Rr + t − (R∗r + t∗)+ RDrx + Dry

= DRR∗r + t − t∗
︷�������︸︸�������︷TRE(r)

+RDrx + Dry

(2)

where R∗ [ SO(3) and t∗ [ R3 are the ‘true’ rotation matrix and
translation vector relating X and Y spaces, r [ R3 is the ‘true’
target location in X space, Drx [ R3�N (0, cov[Drx]) and
Dry [ R3�N (0, cov[Dry]) are independent TLE vectors in X and
Y spaces. TLE = (RDrx + Dry)�N (0, Rcov[Drx]R

T + cov[Dry])
is the ‘two-space’ TLE vector. The concept of TTRE is illustrated
in Fig. 1. Two assumptions are now made to simplify (2):
(a) both FLE and TLE magnitudes are small; (b) approximation
to first-order in FLE or TLE magnitude is utilised. It was proved
in [10] that DR = R(R(∗))T − I3×3 is of first-order in FLE or TLE
magnitude. With the two assumptions, we can see TTRE equals
the following:

TTRE(r) = TRE(r)+ DRR∗Drx + R∗Drx + Dry

≃ TRE(r)+ R∗Drx + Dry
(3)

where the term DRR∗Drx disappears in last line of (3) as it is of
second order in FLE.

2.2.1 Mean of TTRE: The mean of TTRE is calculated by taking
the expectation of TTRE vector in (3)

kTTRE(r)l = kTRE(r)l+ kR∗Drxl+ kDryl

= kTRE(r)l+ kR∗lkDrxl+ kDryl = 03×1

(4)

where we have adopted the property that R∗ is a constant matrix in
going from the first to second line of (4).

2.2.2 Covariance matrix of TTRE: The covariance matrix of TTRE
is calculated using the expected value of the outer product of TTRE
Dxi}
N
i=1 are ‘true’ and localised/measured fiducial sets, respectively. Solid

pectively. {Dxi}
N
i=1 are FLE vectors and Drx is the TLE vector in X space

are ‘true’ and localised fiducial sets, respectively. {Dyi}
N
i=1 are FLE vectors

sformed localised fiducials from X space where T is the estimated/calculated
ducials after registration, open dashed square T(r + Drx) is the transformed
‘true’ target in Y space, TTRE is the distance between ‘true’ and ‘localised’
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vector with itself

cov[TTRE(r)] = kTTRE(r) · (TTRE(r))T l (5)

Substitute (3) into (5), together with (4), the following holds:

cov[TTRE(r)] = cov[TRE(r)]+ cov[R∗Drx]+ cov[Dry]

= cov[TRE(r)]+ R∗ · cov[Drx] · (R∗)T + cov[Dry]

(6)

where we have utilised the property that terms TRE, Drx and Dry are
co-independent and thus uncorrelated with each other. The expres-
sion of cov[TRE(r)] was developed in [10].

2.2.3 RMS of TTRE: The TTRE RMS value is acquired by calcu-
lating the trace of TTRE covariance matrix

kTTRE(r)2l = trace(cov[TTRE(r)]). (7)

2.3. Surgical tool-tip tracking: Two paired-point rigid registrations
are involved in determining the tool-tip position in CRF space
(denoted by crf r): (i) TRF-attached fiducials’ measured positions
in OTS frame are registered to corresponding fiducials’ calibrated
positions in TRF and ots

trf T is acquired; (ii) CRF-attached fiducials’
measured positions in OTS frame are registered to corresponding
fiducials’ calibrated positions in CRF and ots

crfT is acquired.
After the two registrations, crf r can be calculated as:
crf r= crf

ots T(
ots
trf T(

trf r)), where we defined B
AT(

Ar)= B
A R · Ar+B

A t.
The above two registrations are denoted as ‘to’ and ‘oc’ hereafter,
respectively. It is worth mentioning that we still assume that
both TRF-attached and CRF-attached fiducials’ positions in their
own respective local coordinate frames (i.e. TRF and CRF) are
well calibrated. Mathematically, let {trfxi}

N
i=1 be the TRF-attached

N fiducials’s calibrated positions in TRF, we assume
{trfxi}

N
i=1 = {trfx∗i }

N
i=1. Likewise, we assume {crf ci}

N
i=1 = {crf c∗i }

N
i=1

if we let {trf ci}
N
i=1 denote the CRF-attached N fiducials’s

calibrated positions in CRF.

2.3.1 Surgical tool-tip tracking error in OTS frame: In surgical
tool-tip tracking, tool-tip tracking error in OTS frame is actually
an adapted version of TTRE in (2)

TTREto(
otsr) = ots

trf R · (trf r∗ + Drx)+ots
trf t − (otstrf R

∗ ·trf r∗ +ots
trf t

∗)

(8)

where TRF is X space and OTS frame is Y space in (8), target
(tool-tip) localisation error Drx in TRF space is caused by pivot cali-
bration. Notice Dry disappears in (8) as the tracking system does not
make any direct localisation of the tool-tip in OTS frame.

2.3.2 Surgical tool-tip tracking error in CRF space: We shift back to
use term TREcomb(

crf r) to represent surgical tool-tip tracking error
vector in CRF

TREcomb(
crf r) = crf r −crf r∗

= crf
ots T(

ots
trf T(

trf r))−crf
ots T

∗(otstrf T
∗(trf r∗))

= crf
ots T(

ots
trf T(

trf r))−crf
ots T

∗(otstrf T(
trf r)−ots TTREto(

otsr))

=crf TREoc(
crf r)+crf

ots T
∗(otsTTREto(

otsr))

=crf TREoc(
crf r)+crf

ots R
∗ · ots TTREto(

otsr)

(9)
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 193–198
doi: 10.1049/htl.2017.0065
where

crfTREoc(
crf r) = crf

ots T(
otsr)−crf

ots T
∗(otsr) (10)

otsTTREto(
otsr) = ots

trf T(trf r)−ots
trf T

∗(trf r∗) = ots r −ots r∗ (11)

Notice since otsTTREto(
otsr) represents a difference vector and is

not a spatial position, the transformation crf
otsT

∗ can be reduced to
the rotation matrix crf

otsR
∗ in the last line of (9) [15].

2.3.3 Mean, covariance matrix and RMS of tool-tip tracking error
in CRF space: The mean of TRE in CRF space is a zero vector

kTREcomb(
crf r)l = 03×1 (12)

The covariance matrix of TRE in CRF space is the following:

cov[TREcomb(
crf r)] = kTREcomb(

crf r) · (TREcomb(
crf r))T l (13)

Substitute the last expression of (9) into (13), with some expan-
sions, we can obtain

cov[crfTREcomb(
crf r)] = kcrfTREoc(

crf r) · (crfTREoc(
crf r))T l

+crf
ots R

∗kotsTTREto(
otsr) · (otsTTREto(

otsr))T l(crfotsR
∗)T

+ 2kcrfTREoc(
crf r) · (otsTTREto(

otsr))T l · (crfotsR
∗)T

(14)

Due to the two registrations, respectively, denoted by ‘oc’ and ‘to’
are independent, the two random variables crfTREoc(

crf r) and
(otsTTREto(

otsr))T are uncorrelated. Thus, the last term in (14) disap-
pears and together with (4), we obtain a more concise expression of
cov[TREcomb(

crf r)]:

cov[crfTREoc(
crf r)]+crf

ots R
∗ · cov[otsTTREto(

otsr)] · (crfotsR
∗)T (15)

where crf cov[TREoc(
crf r)] can be computed using the expression

developed in [10], otscov[TTREto(
otsr)] is calculated using (9). The

RMS value of surgical tool-tip tracking error in CRF space is
further calculated as the following:

RMStre,comb(
crf r) =

�����������������������������������������
(RMStre,oc(

crf r))
2 + (RMSttre,to(

otsr))
2

√
(16)

where (RMStre,oc(
crf r))

2
and (RMSttre,to(

otsr))
2

can be computed
using (7).

3. Experiments: We conducted extensive simulations using
two different surgical tool configurations. The two surgical tool
configurations are shown clearly in Figs. 2a and b. In all
simulations, the number of TRF-attached or CRF-attached
fiducials N is 4. More specifically, for the first kind of surgical
tool, the coordinates of fiducials in TRF, {trfxi}

4
i=1, are:

[35.5, 27, 0]T , [− 35.5, 27, 0]T , [− 35.5, − 27, 0]T ,
[35.5, − 27, 0]T mm [19]. For the second kind of surgical tool,
the coordinates of fiducials in TRF, {trfxi}

4
i=1, are:

[0, − 50, 0]T , [− 50, 0, 0]T , [0, 50, 0]T , [50, 0, 0]T mm [21]. As
it is shown in Fig. 2c, the CRF rigid-body is a square centred at
Oc with side length l being 32 or 64 mm. The coordinates of
CRF-attached fiducials in CRF, {crf ci}

4
i=1, are [l/2, l/2, 0]T ,

[l/2, − l/2, 0]T , [− l/2, − l/2, 0]T , [− l/2, l/2, 0]T mm. The
distance d between CRF origin Oc and pivot point or tool-tip
position P was set to be 100, 200, 300 or 400 mm. For the first
kind of tool, the distance r between tool tip P and marker
centroid Ot was 85 mm; for the second kind of tool, r equals
200 mm. The FLE covariance matrix SFLE in OTS frame was set
to be identical for all TRF-attached and CRF-attached fiducials:
SFLE = diag([0.022, 0.022, 0.22]T ) [20]. The pivot calibration
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Fig. 2 Two surgical tool configurations
a Fiducials’ configuration and tool-tip position of the first surgical tool
b Fiducials’ configuration and tool-tip position of the second surgical tool. Notice that the two fiducial configurations are planar which means these fiducials lie
on one plane
c CRF and TRF are indicated by the x and y axes, l is the side length of CRF rigid body, d is the distance between CRF origin Oc and the pivot point P, r is the
distance from TRF origin Ot to the tip position P. z axis is perpendicular to both x and y axes. CRF-attached and TRF-attached fiducials are denoted as coloured
solid circles
uncertainty covariance matrix Spivot was set to be a matrix whose
eigenvalues’ square roots were [0.31, 0.40, 0.91]T [4]. For all
simulated cases, the rotation matrix between CRF and OTS stays
the same and is denoted as ots

crfR
∗.

For each simulated case with certain values of l and d, M = 100
random orientations of surgical tool {otstrf R

∗
j }

M
j=1 were generated

while the tool-tip was fixed at the pivot point P. For the jth tool
orientation ots

trf R
∗
j , Ns = 2000 samples of 2N FLE vectors and

pivot calibration uncertainty vectors Drx are generated independent-
ly according to SFLE and Spivot, respectively. Let k = 1, . . . , Ns
denotes the index of Ns error samples. For the kth sample, the gen-
erated 2N + 1 vectors were added to ‘true’ transformed fiducials’
positions in OTS frame ots

trf R
∗
j · {trfxi}4i=1 and ots

crfR
∗ · {crf ci}4i=1, and

the ‘real’ tip position in TRF trf r∗. In this way, the kth measured
TRF-attached and CRF-attached positions in OTS frame
{otsxki }

4
i=1 and {otscki }

4
i=1 and ‘disturbed’ tool-tip position in TRF

trf rk were acquired. Then {otsxki }
4
i=1 and {otscki }

4
i=1 were registered

to their corresponding calibrated ones in TRF and CRF spaces
{trfxi}

4
i=1 and {crf ci}

4
i=1, respectively. The registration algorithm

introduced in [22] was used in the above two registrations with
the weighting matrix W i being (SFLE)

−1/2 for all the fiducials.
After the two registrations, ots

trf R
k
j and ots

crfR
k were acquired. So for

jth tool orientation, {otstrf R
k
j }

Ns
k=1 and {otscrfR

k}Ns
k=1 were calculated in

all. For each tool orientation, TRE statistics of tool-tip in CRF
space were calculated using above simulated data and (8), (9). At
the same time, for each tool orientation, the predicted TRE statistics
in CRF were computed using (5)–(7), (12), (15) and (16).
Table 1 Monte Carlo simulation results for first kind of surgical tool with variou
Ssim = Spre and test 2 is H0:msim = mpre, Ssim = Spre

Case Ref. size Working distance Accepted

l, mm d, mm 1,% 2,%

1 32 100 93.00 97.00
2 32 200 95.00 99.00
3 32 300 95.00 95.00
4 32 400 97.00 94.00
5 64 100 97.00 100.0
6 64 200 97.00 99.00
7 64 300 95.00 96.00
8 64 400 98.00 100.0
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Two Wishart distribution hypothesis tests (a = 0.05) similar to
those in [6] were conducted for each simulation case (with the
null hypothesis stating that there was no difference between
simulated and theoretical TRE covariance matrix (or mean and
covariance matrix)). For each simulated case, the percentage
passing the M Wishart distribution hypothesis tests was
recorded. The percentage difference between simulated and
theoretical TRE RMS was also calculated for each tool orientation
[%diff = 100(RMSpre − RMSsim)/RMSsim.]. Statistics (mean,
standard deviation, maximum and minimum) of RMS percentage
difference were further calculated for each simulated case.
4. Results and discussion: Simulation results are summarised in
Tables 1 and 2. The worst cases in each column are emphasised
using black bold texts. For the first kind of tool, at least 93 and
94% accept the null hypothesis of first and second hypothesis
test, respectively. The RMS percentage difference is within
+2.78% (95% confidence interval (CI)) with maximum and
minimum values being 4.41 and −4.23%. For the second kind of
tool, at least 93 and 95% accept the null hypothesis of first and
second hypothesis tests, respectively. The RMS percentage
difference is within +2.60% (95% CI) with maximum and
minimum values being 4.33 and −3.71%. Thus, we can conclude
proposed error model can well predict the simulated/measured
tool-tip tracking error magnitudes. With FLE RMS and pivot
calibration uncertainty vector RMS being 0.20 and 1.27 mm,
s reference tool size l and working distance d. Null hypothesis for test 1 is

RMS percent difference summary statistics

Mean,% Std. dev,% Max,% Min,%

0.04 1.28 3.10 −2.94
−0.06 1.39 3.75 −4.23
−0.01 1.16 3.41 −3.36
0.07 1.23 3.09 −2.67

0 0.14 1.11 3.43 −2.05
0.02 1.01 2.13 −3.24
0.08 1.26 4.41 −3.02

0 0.06 1.22 3.38 −2.68
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Table 2 Monte Carlo simulation results for second kind of surgical tool with various reference tool size l and working distance d. Null hypothesis for
test 1 is: Ssim = Spre and test 2 is H0:msim = mpre, Ssim = Spre

Case Ref size Working distance Accepted RMS percent difference summary statistics

l, mm d, mm 1,% 2,% Mean,% Std. dev,% Max,% Min,%

1 32 100 94.00 96.00 −0.12 1.30 2.74 −3.71
2 32 200 95.00 99.00 −0.01 1.16 3.28 −3.13
3 32 300 93.00 98.00 0.04 1.06 3.36 −2.28
4 32 400 95.00 95.00 −0.03 1.21 3.18 −2.98
5 64 100 96.00 100.00 0.10 1.15 3.06 −2.46
6 64 200 97.00 100.00 0.09 1.12 3.23 −2.48
7 64 300 95.00 99.00 0.01 1.16 3.04 −2.97
8 64 400 96.00 100.00 0.07 1.21 4.33 −3.58

Fig. 3 (Left) Predicted (red) and simulated (green) tool-tip tracking error covariance matrix (95% CI boundary) in CRF for one simulation case using first kind
of surgical tool; (Right) similar statistics are visualised for one simulation case using the second kind of surgical tool
respectively, the model’s performance varies little with respect to
different side lengths l of CRF and working distances d.
The 95% CI boundary of predicted (red) and simulated (green)

covariance matrices are visualised in Fig. 3. The three ellipses in
each plot represent the three principal directions of tool-tip tracking
error covariance matrices in CRF. As it is shown in the plots of
Fig. 3, predicted covariance matrices agree very well with the simu-
lated ones. It is worth mentioning the tool-tip tracking error distri-
bution is anisotropic in CRF. More specifically, we are more
uncertain of tool-tip position in the direction with larger ellipse.
One issue in applying the error model to real surgical tool track-

ing scenario is that the ‘true’ rotation matrix crf
otsR

∗ in (6), (15) is not
known. In real implementations, crf

otsR
∗ can be approximated using

measured rotation matrixcrfotsR. Another one is the choice of visual-
isation methods in order to better convey the information of
tool-tip tracking uncertainty to surgeon [4]. One potential advan-
tage of our method over those in [4, 21] is that more realistic or
vivid geometry rendering technique can be used for uncertainty
visualisation. This is due to that there needs no expensive calcula-
tions like Jacobian computation and Cholesky decompositions
involved in [4, 21], which cost much time.
As indicated in [2], TRE vectors of optically tracked tool-tip

may be used as FLEs for an image-to-patient registration of an
IGS procedure. The acquired FLE can be utilised to estimate the
TRE of a surgical target after the image-to-patient registration
[23] or be adopted as weightings to improve the accuracy of an
image-to-patient registration. Moreover, the TRE vectors of optical-
ly tracked tool-tip can also be used to update the pre-operative
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 193–198
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surgical plan to decrease the probability of the surgical tool touch-
ing critical structures [24, 25].

5. Conclusions: In this Letter, we have presented a closed-form
formulation of surgical tool-tip tracking error distribution in CRF.
Pivot calibration uncertainty is included in the proposed error
model. Results show that the proposed model can predict tool-tip
tracking error statistics in a precise way for all test cases. More
specifically, the magnitude (RMS), position (mean) and shape
(covariance matrix) of surgical tool-tip tracking error are very
well modelled for two kinds of surgical tools.

Future extensions include incorporating the proposed error model
into a commercial surgical navigation system to provide useful
feedback for surgeon during surgery. The proposed model will
also be extended to the case where a multi-camera tracking
system is adopted to eliminate the occlusion problem of existing
stereo-camera tracking system. In a multi-camera tracking system,
FLEs of TRF-attached and CRF-attached fiducials should be con-
sidered to be inhomogeneous and anisotropic. The inhomogeneity
of FLE is partly caused by different number of cameras seeing
each fiducial.
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