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Abstract: Gastric cancer is considered one of the most common causes of cancer-related death world-
wide and, thus, a major health problem. A variety of environmental factors including physical
and chemical noxae, as well as pathogen infections could contribute to the development of gastric
cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major
impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors,
anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are
directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling
molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with
divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the bene-
fits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review,
we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in
gastric cancer development and therapy.
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1. Introduction

Gastric cancer (GC) is highly prevalent among the gastrointestinal cancers and ac-
counts for the third most leading cause of cancer-related mortality worldwide after lung
and liver cancers [1]. The incidence of GC shows geographical variations, with higher
rates in East Asian regions and lower rates in North America and North Africa [2,3].
Although the incidence rate of GC is considered to have decreased in past decades, its
frequently advanced-stage diagnosis restricts therapeutic options and therefore still leads
to high mortality.

GC is a multifactorial disease with heterogeneity in phenotypes, prognoses, and
responses to standard chemotherapeutic drugs. GC is characterized by anatomy into
two main entities: gastroesophageal junction adenocarcinomas (cardia GCs) and gastric
adenocarcinomas (non-cardia GCs). The majority of GC are non-cardia GCs which can be
histologically classified based on Lauren classification into intestinal (gland-like structures)
and diffuse types (lacks any glandular structures) [4]. Moreover, it can also be classified
clinically as early or advanced GC. The risk factors for GC include environmental factors,
ethnicity, dietary habits, alcohol consumption, smoking, and, importantly, host genetic
factors [5,6]. Although the pathogenesis and development of GC was correlated to multiple
factors, a major risk factor is the infection with Helicobacter pylori, which was classified as
class one carcinogen [7,8].

H. pylori is a Gram-negative human pathogen that colonizes the gastric epithelium.
Almost half of the world’s population is infected with H. pylori, mainly in developing
countries [9]. H. pylori infection is primarily acquired during childhood and significantly
influenced by geographical context, specific living conditions, and familial socioeconomic
status. Transmission of H. pylori is considered to occur through oral-oral or fecal-oral
routes [10].
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Despite advances in surgical techniques and the development of a combination of
chemotherapy, radiotherapy, and molecular-targeted treatment, the survival rate of patients
with GC remains unsatisfactory [11–15]. GC without metastasis can be potentially cured
with surgery; however, most patients have an advanced inoperable stage or have recurrent
disease after resection. Further research is therefore required to elucidate the molecular
mechanisms underlying the tumorigenesis of GC in order to identify novel therapeutic as
well as prognostic targets. Here, the NF-κB has a potential role in GC development.

The NF-κB family of transcription factors is ubiquitously expressed and plays an
essential role in the regulation of a wide variety of biological processes including cell
differentiation, proliferation, survival, and, most importantly, immune responses and
inflammation [16]. Five members of the NF-κB family have been identified: RelA, RelB,
c-Rel, NF-κB1 (p50), and NF-κB2 (p52), which are bound to each other to form homodimers
and heterodimers [17]. In contrast to the other family members, NF-κB1 and NF-κB2
are synthesized as precursors (p105 and p100) which can be processed to p50 and p52,
respectively. These five NF-κB family members share a highly conserved 300-amino acid
Rel Homology Domain (RHD), which is essential for the dimerization as well as the binding
to DNA and interaction with inhibitors of NF-κB (IκBs). In the absence of stimuli, NF-κB
dimers predominantly retain in the cytosol by their interaction with IκBs. The IκBs (IκBα,
IκBβ, IκBγ, IκBζ, IκBE, IκBNS, and Bcl-3) are characterized by ankyrin repeats, which
interact with the RDH domains of NF-κB proteins [17].

It has been reported that NF-κB is often upregulated or dysregulated in GC, where it
contributes to proliferation, tumor growth, metastasis, and chemoresistance [18–20]. As
such, components involved in the NF-κB regulation have turned out to be interesting
therapeutic targets for the treatment of GC. Here, we review NF-κB signaling in gastric
carcinogenesis and putative therapeutic strategies.

2. Dysregulation of NF-κB in Gastric Cancer

The dysregulation of NF-κB activation represents an underlying cause of GC devel-
opment [21]. Ooi et al. [22] developed a genomic taxonomy of GC by using patterns of
oncogenic pathways and identified NF-κB signaling as one of the dominant pathways
deregulated in GC. Results from other studies indicate that the activation of NF-κB affects
gastric carcinogenesis by promoting the activation of genes involved in cell proliferation,
suppression of the apoptosis, metastasis, genomic instability, and drug resistance [23,24].

2.1. NF-κB Signaling

NF-κB dimers are activated by two main signaling pathways, the classical and the
non-canonical pathways [25]. The classical NF-κB pathway becomes activated by diverse
stimuli such as interleukin 1β (IL-1β), tumor necrosis factor (TNF), as well as ligands of
bacterial origin [25]. Upon stimulation and upstream signaling, IκBα is phosphorylated
by a multi-subunit IκB kinase (IKK) complex, consisting of two catalytic subunits (IKKα

and IKKβ) and NF-κB essential modulator (NEMO). The phosphorylation of IκBα at two
N-terminal serines triggers ubiquitin-dependent IκBα degradation in the 26S proteasome.
Subsequently, NF-κB translocates into the nucleus, where it binds to the κB enhancer
sequences to induce the activation of specific genes [17].

Interestingly, it has been reported that NF-κB was activated in pathogen infection by
ADP-glycero-β-D-manno-heptose (ADP-hep), a key metabolic intermediate in lipopolysac-
charide (LPS) biosynthesis [26]. The protein alpha-kinase 1 (ALPK1) and tumor necrosis fac-
tor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain
(TIFA) are vital components in response to ADP-hep leading to the activation of classical
NF-κB in pathogen infection including H. pylori-infected gastric epithelial cells [26,27].
Further, H. pylori classical NF-κB activation involves TRAF6, transforming growth factor β
kinase 1 (TAK1), and the IKK complex [28].

By contrast, only a small number of stimuli induce the non-canonical NF-κB pathway
including ligands of a subset of TNF-receptor superfamily members such as lymphotoxin
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β (LTβ) receptor, B cell activation factor (BAF), CD40, and receptor activator of NF-κB
(RANK) [29,30]. Upon activation of this pathway, NF-κB inducing kinase (NIK) phospho-
rylates IKKα which phosphorylates carboxy-terminal serine residues of p100, triggering
the degradation of the C-term of p100. Further, non-canonical NF-κB signaling in H. pylori
infection also involves NIK accumulation [31]. The N-terminal part of p100 represents
NF-κB2 p52, which translocates with the bound RelB into the nucleus [29].

2.2. NF-κB Gene Polymorphisms

One major cause, which affects the NF-κB activity, is represented by polymorphisms
in NF-κB genes (Table 1). Here, NFKB1 (encodes p105 and p50 by alternative splicing)
polymorphisms appeared to be associated with GC progression. Single nucleotide poly-
morphisms of the rs28362491 (located in the promoter region of NFKB1), rs230521 (NFKB1
intron 4), and rs4648068 (NFKB1 intron 12) have been observed in GC patients [32]. It
has been reported that NFKB1 polymorphism −94 ins/del ATTG (rs28362491) is closely
associated with the development of the diffuse type of GC. Furthermore, gastric mucosal
inflammation was more severe in H. pylori-infected del/del ATTG homozygotes, suggesting
that NFKB1 −94 del/del homozygote may accelerate severe gastric inflammation [33,34].
Along with this observation, Lo et al. [35] provided evidence that polymorphisms of NFKB1
are associated with susceptibility of GC in aged patients. rs4648068 (A > G) polymorphism
in the intron region of NFKB1 was correlated with an increased risk of GC, especially for the
lymph node status in Han Chinese population. People with the homozygous GG alleles in
rs4648068 strengthened the transcriptional activity of NFKB1 [36,37]. In addition, NF-κB1
deficiency in mice resulted in invasive GC that reflected the histopathological progression
of human intestinal-type gastric adenocarcinoma [38].

Table 1. Polymorphisms in NF-κB genes and genes of NF-κB signaling molecules.

Gene Name Genetic Aberration Comments References

NFKB1

SNP_rs230521 observed in GC patients [32]

SNP_rs28362491
(−94 ins/del ATTG)

associated with diffuse GC, accelerate
severe gastric inflammation [33,34]

SNP_rs4648068 increased risk of GC [36,37]

homozygous deletion invasive GC, gastric atrophy in mice [38,39]

NFKB2 homozygous deletion
gastric hyperplasia, early postnatal death [40]

suppressed in gastric mucosal lesions [39]

NFKBIA

SNP_rs2233408 T/C homozygote GC susceptibility

[41]
SNP_rs2233408 T heterozygote reduced GC risk in intestinal-type

non-cardiac GC

SNP_rs17103265 risk factor for gastric carcinogenesis [42]

SNP_rs696 cardia GC susceptibility
[43]

SNP_rs2233406 non-cardia GC susceptibility

IKBKB SNP_rs2272736 A homozygote prolonged overall survival time [44]

TNIP1
SNP_rs7708392

associated with GC risk [45]
SNP_rs10036748

MYD88

deletion, mutation gastric mucosal damage, carcinogenesis [46]

L265P mutant observed in gastric mucosa-associated
lymphoid tissue (MALT) lymphomas [47]

RIPK2 SNP_rs16900627 increased risk of intestinal GC [48]

TLR9 SNP_rs5743836
(−1237 T/C) associated with H. pylori-induced GC [49]
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p100 encoded by NFKB2 plays an essential role in many chronic inflammatory diseases.
Mice with a homozygous deletion of NF-κB2 had gastric hyperplasia and early postnatal
death [40]. In addition, the relative expression level of NFKB2 mRNA is lower in patients
with GC when compared to the control tissue [50]. Mice lacking NFKB1 (Nfkb1−/−) de-
velop gastric atrophy of greater severity than wild-type mice. In contrast, mice lacking the
p100/p52 subunit (Nfkb2−/−) were protected from developing gastric mucosal lesions [39].
miR-9 has been reported to target NF-κB1 and regulates GC cell growth, suggesting the
role of NF-κB1 in human GC pathogenesis [51]. Accordingly, the detection of variations in
NF-κB genes could be promising for the prognosis and treatment of GC.

2.3. Gene Polymorphisms in NF-κB Signaling Molecules

In addition to genetic alterations of NF-κB genes themselves, aberrantly activated
NF-κB signaling molecules have also been associated with gastric carcinogenesis (Table 1).
Susceptibility of rs2233408 T/C genotype in the promoter region of NFKBIA (gene encoding
IκBα) was studied by Wang et al. [41]. They found that this genotype was associated
with an increased risk for GC. On the other hand, NFKBIA rs2233408 T heterozygote
markedly reduced GC risk compared with rs2233408 C homozygote in intestinal-type
non-cardiac GC. In line with these findings, NFKBIA rs17103265 deletion homozygote
was identified as a risk factor for gastric carcinogenesis, especially in southern Chinese
populations [42]. Li et al. [43] studied the correlation between three sites of polymorphisms
(NFKB1, NFKBIA rs696 in the 3′-UTR region, and rs2233406 in the promoter region) and the
GC risk in the Chinese population. They found that the NFKBIA rs696 site was linked with
the susceptibility of cardia cancer while NFKBIA rs2233406 mutation was associated with
the susceptibility of non-cardia cancer, with heterozygous mutations increasing the risk
of non-cardia cancer. IKBKB encodes IKKβ, one of the core catalytic subunits of the IKK
complex. Single nucleotide polymorphisms in IKBKB have been related to GC. In addition
to the evidence that patients with rs2272736 A allele in IKBKB had significantly prolonged
overall survival time compared to those with the G allele, AA genotype was shown to have
reduced risk of death for GC compared with that associated with the GG/GA genotypes,
which was more common in patients with cardiac GC [44].

TNF-induced protein 3-interacting protein 1 (TNIP1) encodes an A20-binding protein
which plays an important role in the inhibition of NF-κB activation. It has been reported
that single nucleotide polymorphisms in the TNIP1 gene (rs7708392 and rs10036748) were
significantly associated with GC risk in the Chinese Han population from Northwest
China [45].

Adaptor molecule Myeloid differentiation primary response 88 (MyD88)-induced NF-
κB signaling has been related to gastric mucosal damage and carcinogenesis [46] by MYD88
gene deletions and mutations. Further, MyD88 has been reported to be overexpressed in
GC compared with the adjacent non-tumor tissues and its overexpression was correlated
with tumor, node, metastasis (TNM) stage and lymph node metastasis. Moreover, silencing
of high-mobility-group-protein B1 (HMGB1)/Toll-like receptor (TLR)4/MyD88 signaling
by HMGB1 siRNA markedly suppressed gastric cell proliferation, migration, and induced
apoptosis through the NF-κB pathway [52]. Interestingly, MYD88 L265P mutants are consti-
tutively active and capable of signaling to activate NF-κB, signal transducers and activators
of transcription 3 (STAT3), and activator protein 1 (AP1) transcription factors, which was
observed in gastric mucosa-associated lymphoid tissue (MALT) lymphomas [47].

Receptor interacting serine/threonine kinase 2 (RIPK2), an intracellular kinase that
contains a caspase recruitment domain at its carboxy terminus, is a potent activator of NF-
κB. RIPK2 was upregulated both at mRNA and protein levels in GC tissues and modulated
GC cell proliferation, migration, and apoptosis through the NF-κB signaling pathway [53].
In addition, RIPK2 single nucleotide polymorphism rs16900627 A > G minor allele was
associated with an increased risk for the development of GC, particularly the intestinal
type [48].
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In the H. pylori-infected gastric mucosa, the expression of TLRs was upregulated [54–56].
TLR9-1237T/C polymorphism is significantly associated with the development of H. pylori-
induced premalignant gastric changes by increasing TLR9 transcriptional activity through
the activation of NF-κB [49]. In line with these findings, both deficient and excessive
expression of TLR4 promotes ethanol-induced gastric mucosal injury by activating the
MyD88/NF-κB signaling pathway [57], demonstrating the association of TLR-mediated
NF-κB activation and GC development.

To better understand the effect of the mutations reported in NF-κB signaling, fur-
ther studies are necessary to provide a causal link between NF-κB deregulation and the
development of the disease.

2.4. Modulation of NF-κB Regulation in Gastric Cancer

Sasaki et al. [58] demonstrated that an increased NF-κB activation as measured by
nuclear translocation of RelA correlated with GC invasion and tumor size. Further, knock-
down of NF-κB1 and RelA inhibited gastric cell invasion and migration as well as sup-
pressing patient-derived tumors in xenografts [59], suggesting a role of NF-κB in gastric
carcinogenesis. NF-κB1 (p105/p50) deficiency, even loss of a single allele, resulted in
dysregulated expression of effectors of inflammation, antigen presentation, and immune
checkpoints leading to a spontaneous invasive GC in mice [38].

Oncoprotein metadherin (MTDH) was reported to be involved in the activation of the
NF-κB signaling pathway [60]. During the tumorigenesis and progression of GC, miR-3664-
5P suppressed the proliferation and metastasis of GC by attenuating the NF-κB signaling
pathway through targeting MTDH, which was validated in vitro and in vivo [61]. Caspase-
associated recruitment domains (CARDs) are involved in apoptosis and inflammation
through NF-κB signaling. Kim et al. [62] demonstrated increased CARD6 expression in
gastric carcinoma.

Phosphatase of regenerating liver-3 (PRL-3) plays a crucial role in proliferation,
metastasis, and angiogenesis. By interaction with repressor/activator protein 1 (RAP1),
PRL-3 activates NF-κB signaling through modulating phosphorylation of RelA. Zhang and
co-workers [63] proved that PRL-3 promotes GC migration and invasion by positively
regulating the NF-κB–hypoxia inducible factor 1 alpha (HIF-1α)–miR-210 axis.

Several other cellular factors, which contribute to the progression of gastric carcinoma
through modulating the NF-κB signaling have been described and include Cullin 4A [64],
TNF [65], stomach-specific protein gastrokine 1 (GKN1) [66], interleukin 17A [67], IL-1β
polymorphisms [68], cytoskeleton protein radixin [69], fibroblast growth factor-inducible
14 (Fn14) [70], inhibitor of growth 4 (ING4) [71], trefoil factor 1 (TFF1) [72], connective
tissue growth factor (CTGF) [73], carcinoembryonic antigen-related cell adhesion molecule
19 (CEACAM19) [74], DNA repair protein (Ku) [75], stress protein metallothionein 2A
(MT2A) [76], deacetylase sirtuin 1 (SIRT1) [77], oncogenes latent membrane protein 1
(LMP1) and LMP2A [78], microRNAs [79–82], or spermine oxidase [83].

Overall, several lines of evidence have identified NF-κB as one of the major mech-
anisms of gastric carcinoma, highlighting the potential of NF-κB of being a therapeutic
target as well as a useful prognostic factor in human GC.

3. NF-κB-Regulated Genes and Their Relevance for Gastric Cancer Development

The microenvironment of transformed tissue consists of different cell populations,
including tumor cells, fibroblasts, endothelial cells, cancer-associated stromal cells, neu-
trophils, macrophages, which secrete immune response mediators, and effectors in prolifer-
ation, cell cycle, apoptosis, and invasion [84–86] Certainly, NF-κB transcription factors are
widely involved in these processes (Table 2).
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Table 2. NF-κB-regulated genes and their relevance for gastric cancer development.

NF-κB Regulated Genes Comments References

IL-8
correlates with diffuse-type GC [87]

correlates with depth of invasion, venous and lymphatic invasion,
low survival rate, enhances cell migration and invasion [88]

IL-17 positively associates with GC, enhances cell migration and invasion [67,89]

IL-1β promotes gastric dysplasia to GC [90]

COX2, MMP9, VEGF TAMs induce COX2, MMP9, VEGF expression, promote
invasion/migration in GC [91–93]

PD-L1
relates to a less advanced stage, intestinal type GC [94]

associates with poor prognosis for GC patients [95]

NO, PGE2

potentiates the infiltration of macrophages in stomach tissue,
promotes an inflammatory environment [96–98]

promotes tissue healing via eliminating infectious agents, increasing
tissue microcirculation and cell restitution [99]

accelerates turnover of epithelial cells, increasing the mutagenesis
rate in inflamed tissue [100–103]

iNOS, COX-2 contributes to a gradual progress of gastric carcinogenesis [104–107]

STAT3 contributes to GC development and progression [108]

c-myc, cyclinD1 high expression in intestinal-type GC [109]

HNF4α HNF4α overexpression correlates with sustained inflammation and GC [110]

miR-223-3p, miR-18a-3p, miR-4286 expression in gastric cancer cells and tissues, links to proliferation
and gastric carcinogenesis [80,111]

miR-425 promotes proliferation of GC [112]

Noxo1 associates with gastritis and GC [113]

Snail1 downregulation of E-cadherin in GC tissue [114]

hTERT promotes intestinal metaplasia [115,116]

3.1. Immune Response Mediators

Pro-inflammatory cytokines (IL-6, IL-8, and TNF), cell adhesion molecules CD44 and
ICAM-1, and MMPs, e.g., MMP-9, are induced in the epithelium in a NF-κB-dependent
manner [117,118]. Immunogenomic analysis has revealed that neutrophils, macrophages,
dendritic cells, and eosinophils are abundant in gastritis and further accumulate during
progression to atrophic gastritis and GC, where, among others, natural killer T cells,
immature B cells, and T follicular helper cells are additionally recruited [119].

In a mice model, an intensive infiltration of the mucosa with neutrophils and macrophages
occurs transiently within two days after H. pylori infection and remains increased by
2–3 weeks post infection. At that time, the number of T helper cells (CD4 + CD3 + lympho-
cytes), cytotoxic (CD8+) lymphocytes, and dendritic cells infiltrating the gastric mucosa
markedly increases [120]. The leucocytes and lymphocytes support and potentiate the local
inflammation and tissue remodeling by producing and responding to the inflammatory
mediators, including NF-κB-dependent IL-1β, IL-8, IL-17, C-C motif chemokine ligand 5
(CCL5), CCL28, CCL20, IFNs, C-X-C chemokine ligand 1 (CXCL1—growth-regulated onco-
gene (GRO-α)), CXCL2-GRO-β/γ, CXCL11, and CXCL10 (IP-10) [119,121]. The production
of cytokines is enhanced in people carrying polymorphisms at positions −511 (C > T,
rs16944) and −31 (T > C, rs1143627) in the IL-1β gene, and polymorphisms at position
−174 (G > C, rs1800795) in the IL-6 gene, which predisposes to GC development [122].

NF-κB drives the expression of anti-inflammatory mediators as well. IL-10 is known
to down-regulate the release of pro-inflammatory IL-1β, IL-6, IL-8, TNF, and granulocyte-
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macrophage colony-stimulating factor (GM-CSF) in monocytes and lymphocytes. De-
creased production of IL-10 due to an ATA haplotype of −1082/+819/+592 polymorphism
in the IL-10 gene can lead to a stronger inflammation in H. pylori-infected patients and
might be associated with a risk of ulcer disease or non-cardia GC development [123,124].

The immune response primed by antigen-presenting cells and potentiated by lym-
phocytes, especially by pro-inflammatory Th1 and Th17, is actually required for the tissue
protection against microbial agents by controlling their proliferation and dissemination. T
regulatory (Treg) cells and Th2 lymphocytes perform an anti-inflammatory function [125].
In manifest GC, where an infectious agent does not play a significant role anymore, interac-
tions between several cell subsets and cytokines amplify or suppress growth of the tumor
and shape immune responses against tumor cells. Despite a recent progress in research, the
link between inflammatory cytokines and the transition through gastritis–chronic atrophic
gastritis–metaplasia–dysplasia–GC remains not entirely clear.

Increased IL-8 mRNA levels in the gastric mucosa correlate with diffuse-type GC,
despite showing no relation with survival rate [87]. Kido et al. [88] found that the IL-8 level
in human gastric carcinomas correlated significantly with the depth of invasion, venous
invasion and lymphatic invasion, and low survival rate [88]. Proinflammatory cytokine
IL-17 has been shown to be positively associated with GC [121]. Interestingly, both IL-8 and
IL-17 stimulate an expression of the NF-κB target gene MMP-9 in human gastric cancer cell
lines MKN-1 and AGS, respectively, which enhances cell migration and invasion [67,89].

The overproduction of IL-1β in a transgenic mouse model causes a stepwise pro-
gression of gastric dysplasia to GC. This cytokine-stimulated recruitment of macrophages,
granulocytes, and dendritic cells to the mucosa supports an inflammatory environment by
the expression of NF-κB target genes IL-6, TNF, and chemokine CXCL12 (aka SDF1), and
promotes an oncogenic transformation by suppressing T- and B-cells [90].

Macrophages in tumors can exhibit M1 (immunostimulating) or M2 (immunosup-
pressing) functional characteristics. The M2 macrophages (tumor-associated macrophages,
TAMs) promote GC. An increase above the median M1/M2 ratio in gastric tumors has
been suggested as a positive independent predictor of survival [126]. The number of
TAMs correlates with gastric tumor stage, serosa invasion, and lymph node metastasis [91].
The mechanism of macrophage polarization towards M2 phenotype is not entirely clear.
However, it involves interaction with gastric cancer-derived mesenchymal stromal cells
(MSCs) and is mediated by IL-6 and IL-8, as shown in a mice xenograft model and cell
co-culture experiments [92]. TAMs can promote the invasion and migration of GC cells
in co-culture experiments by stimulating the expression of NF-κB-regulated genes (COX2,
MMP9, and VEGF) [91–93]. TAMs themselves express VEGF and VEGF-C in a NF-κB
dependent manner, thus impacting angiogenesis in the tissue [91].

It has been shown that TAMs-released TNF and IL-6 influence the expression of
programmed-death ligand 1 (PD-L1) in gastric tumor cells via NF-κB and STAT3 signaling,
thereby promoting the proliferation of GC cells [127]. PD-L1 on tumor cells is the ligand
for T-cells-expressed programmed death 1 (PD-1), and it is one of the so-called immune
checkpoint molecules, which can dump cytotoxic T-cell response towards tumors [95]. The
human PD-L1 promoter encompasses potential NF-κB binding sites, but in addition to
gene transcription, NF-κB signaling pathways can participate in the regulation of PD-L1
level via regulating other mediators [128]. In GC, the data regarding the role of PD-L1 are
contraposing. The expression of PD-L1 in resected tissue (43.6% of samples) was related
to a less advanced stage, intestinal type, and well/moderately differentiated adenocar-
cinoma, as well as to a better disease-free survival of patients with GC [94]. In contrast,
Junttila et al. [95] demonstrated that the recruitment of CD3+ and CD8+ immune cells in
tumors was associated with an improved overall survival, but PD-L1 expression in these
tumors was associated with poor prognosis for patients with GC. Whether the immune
checkpoint molecules are promising targets for the immunotherapy of gastrointestinal
cancers is still under investigation [129].
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3.2. iNOS and COX2

In epithelial cells and macrophages, the NF-κB transcription factors contribute to
the up-regulation of inducible nitric oxide synthase (iNOS, NOS2) and cyclooxygenase-2
(COX-2). iNOS and COX-2 catalyze the production of nitric oxide (NO) and prostaglandin
E2 (PGE2), respectively, in humans, in mice models, or in gerbil models of infection and
gastric cancer [93,96,130]. NO and PGE2, similar to cytokines, act as paracrine inflamma-
tory mediators. They potentiate the infiltration of macrophages in stomach tissue and
promote an inflammatory environment [96–98]. Further, PGE2 and NO promote tissue
healing via eliminating infectious agents, increasing tissue microcirculation and cell restitu-
tion [99]. However, their long-lasting effect contributes to oxidative stress, DNA damage,
increased expression of DNA methyltransferases, e.g., DNA methyltransferase 3 (DNMT3).
This leads to promoter methylation of tumor suppressors, e.g., O6-methylguanin-DNA-
methyltransferase (MGMT), cannabinoid receptor 1 (CNR1), protection of telomeres 1
(POT1), ataxia-telangiectasia mutated (ATM), and cadherin-1 (CDH1), and accelerates the
turnover of epithelial cells, increasing the mutagenesis rate in inflamed tissue [100–103].

It has been believed for more than 20 years that iNOS and COX-2 contribute to
a gradual progress of gastric carcinogenesis [104–107]. Thus, their chemical targeting
remains an object of investigation [131,132]. It has been shown that two weeks of treatment
with the selective COX-2 inhibitor Rofecoxib resulted in the increase of caspase-3 cleavage,
decline of B-cell lymphoma 2 (Bcl-2), and survivin expression in tumors, and in parallel,
decreased gastrin level in the plasma of GC patients [133]. Further, in patients with
intestinal metaplasia, two years of treatment with Rofecoxib down-regulated levels of
methylation in tissue. An inhibition of COX-2 in combination with DNMT using celecoxib
and decitabine synergistically inhibited gastric tumor growth in vitro and in vivo [102].
In COX-2-overexpessing GC patients, the combination of celecoxib and conventional
chemotherapy increased the progression-free overall survival [134].

3.3. Effectors in Proliferation, Cell Cycle, Apoptosis, and Invasion

Via transcription of the E3 ubiquitin ligase MDM2, NF-κB influences the p53 stability,
and thereby cell proliferation, and via induction of Hif1α, it contributes to the cell response
to hypoxia, which is relevant to tumorigenesis [135]. In GC cells, the inhibition of NF-κB
reduces the expression and activation of STAT3 [136]. Both transcription factors are known
to contribute to GC development and progression [108]. NF-κB1 (p105/p50) deficiency,
even loss of a single allele, resulted in aberrant JAK-STAT1 signaling and dysregulated
expression of effectors of inflammation, antigen presentation, and immune checkpoints
leading to a spontaneous invasive gastric cancer in mice [38].

A significantly higher expression level of NF-κB/RelA and its target genes, c-myc and
cyclinD1, was also detected in intestinal-type gastric carcinoma [109]. In addition, small
RNAs such as miR-223-3p, miR-18a-3p, and miR-4286 have been reported in gastric cancer
cells and tissues and linked to H. pylori-induced NF-κB signaling and cellular proliferation
as well as gastric carcinogenesis [80,111].

Infection with H. pylori affects paracrine loops between parietal cells, gastrin-secreting
G cells, histamine-secreting ECL cells, and somatostatin-secreting D cells [137,138]. In
H. pylori-infected human gastric tissue, the expression of ATP4A, a subunit of H, K-ATPase,
is suppressed in a T4SS-dependent and NF-κB-dependent manner [137]. By intervening in
proton pump expression and decreasing acidity, H. pylori might facilitate its own survival
in the stomach. This will increase bacterial load and promote immune responses and tissue
damage. The suppression of H, K-ATPase intensifies gastrin production, which stimulates
the oxyntic mucosa, and contributes to its atrophy, promoting further hypergastrinemia
and ECL cell hyperplasia [104,138]. There is an indication that gastrin and released factors
by ECL cells promote the proliferation of gastric cells, including cell precursors, which is
also relevant for gastric cancer pathogenesis [138]. Further, cytokines contribute to these
functional disorders [139].
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In tumor cells exposed to infection and/or cytokines, NF-κB has been shown to reg-
ulate transcription of genes with pro-survival functions. Immunohistochemistry (IHC)
analysis demonstrated a significant positive correlation between NF-κB and antiapoptotic
phosphoprotein dopamine and cAMP-regulated phosphoprotein 32,000 Da (DARPP-32)
expression levels in GC tissues as well as in H. pylori- and TNF-treated cells [140]. IL-1β-
induced NF-κB regulates expression of retinoid x receptor α, a member of the nuclear recep-
tor superfamily involved in proliferation, differentiation, apoptosis, and metabolism [141].
IL-1β-induced NF-κB activate expression of HNF4α, a member of the nuclear receptor
superfamily [110]. HNF4α is involved in many human malignancies via regulating Wnt/β-
catenin, NF-κB, STAT3, and TGFβ signaling pathways to increase cell migration and
invasion and decrease apoptosis [142]. In gastric cells, HNF4α stimulates the expression
of IL-1 receptor 1, which further amplifies IL-1β/NF-κB signaling and directs sustained
inflammation and GC. In clinical samples, HNF4α and IL-1 receptor 1 levels are increased
in H. pylori-induced gastritis and reach their highest levels in GC [110]. NF-κB induces
miR-425, which negatively regulates phosphatase and tensin homolog (PTEN) expression,
thereby promoting the proliferation of GC cells [112]. NF-κB directly regulates the expres-
sion of NADPH oxidase organizer 1 (Noxo1), a component of NADPH oxidase 1 (NOX1),
in TNF-stimulated GC cells. This effect is associated with increased ROS levels in mouse
models for gastritis and GC. NOX1/ROS signaling is suggested to promote proliferation of
sex determining region Y (SRY)-box 2 (SOX2)-positive gastric stem cells, which leads to
gastritis-associated metaplastic hyperplasia [113].

NF-κB contributes to the regulation of the invasive properties of human gastric carci-
noma cells by stimulating the production of, e.g., MMP-9 in response to IL-1β or MMP-2
and MMP-12 in response to TNF-CXCL1/CXCL2-S100A8/9 activation [143–145]. In at-
rophic gastritis and GC tissue, RelA has been suggested to potentiate the expression of the
long-noncoding RNA HOX transcript antisense RNA (HOTAIR), which promotes cell motil-
ity and invasion through targeting Wingless int 1 (Wnt)/β-catenin and poly-r(C)-binding
protein (PCBP) [146]. In addition, NF-κB is involved in the up-regulation of Snail1, which
leads to E-cadherin reduction in GC tissue [114]. A ubiquitously expressed CXC chemokine
CXCL12, which usually stimulates the migration of monocytes and T-lymphocytes, induces
NF-κB pathway-dependent expression of its receptor CXC chemokine receptor 4 (CXCR4)
and epidermal growth factor receptor (EGFR) in GC cell lines, which further activate
IKKα/ß and RelA and increase cell migration ability [147].

Human telomerase reverse transcriptase (hTERT) which upregulates Cdx2 through
NF-κB signaling showed the promotion of intestinal metaplasia. Previous studies found
an increased expression of NF-κB and hTERT in dysplasia, intestinal metaplasia, and
GC [115,116]. The activation of NF-κB may lead to hTERT expression, and thus, enhance
telomerase activity, which represents an important step in carcinogenesis.

4. Therapeutic Targeting of NF-κB in Gastric Cancer

NF-κB dysregulation contributes to the development of chronic inflammation and
cancer progression in heterogeneous tumor cell populations (epithelial and immune cells).
A high total and nuclear abundance of RelA in gastric tumors has been shown to correlate
with advanced stage and poor patient survival [114,148]. However, in human stage IV
gastric carcinoma, RelA expression was found to decrease, which was predictive of a better
efficacy of treatment with paclitaxel/LV5Fu2 or FOLFOX [149]. In contrast, Lee et al. [150]
reported that high NF-κB activity in early-stage gastric carcinoma correlated with better
prognosis. Further, it has been shown that NF-κB can be induced following treatment of
GC cells with cytotoxic agents, e.g., docetaxel, cisplatin, or 5-fluoruracil (5-FU) [151–153].
Here, NF-κB collaborates with other signaling pathways triggered by genotoxic stress [154],
and up-regulates transcription of pro-survival genes, including cyclin D1, Bcl-2, and
survivin, which contribute to chemoresistance [155]. Thus, consequences/benefits of
NF-κB therapeutic targeting have to be carefully evaluated (Figure 1).



Biomedicines 2021, 9, 870 10 of 21

Biomedicines 2021, 9, x FOR PEER REVIEW 10 of 22 
 

 

stress [154], and up-regulates transcription of pro-survival genes, including cyclin D1, Bcl-
2, and survivin, which contribute to chemoresistance [155]. Thus, consequences/benefits 
of NF-κB therapeutic targeting have to be carefully evaluated (Figure 1). 

 
Figure 1. NF-κB dysregulation in the pathogenesis of gastric cancer. Prerequisites for the progression to gastric carcinoma 
development could include superficial and chronic gastritis, metaplasia, and dysplasia. The impact of NF-κB on gastric 
carcinoma development could be affected by the aberration of NF-κB signaling molecules or the NF-κB transcription fac-
tors themselves and the dysregulation of NF-κB target genes. The various NF-κB target genes are involved in a variety of 
cellular processes including inflammation, cell survival, proliferation, cell cycle, or angiogenesis. Therapeutic approaches 
for gastric carcinoma need the development of inhibitors which interfere with the dysregulated NF-κB system in combi-
nation with conventional chemo- or radiotherapy. 

Investigations of the tumor microenvironment have shown that different tumor cell 
populations respond differently to anti-cancer therapy. For example, 3,3’-diindolylme-
thane (DIM), a bioactive compound derived from indole-3-carbinol of Brassica food plants, 
inhibited growth of cancer cells but induced expression of tumor-related factors CCL-2, 
IL-6, and IL-8 in mesenchymal stem cells (MSCs). The conditioned medium of DIM-
treated MSCs promoted the proliferation, invasion, and migration of GC cells in vitro and 
tumor growth in vivo. This effect was mediated by DIM-induced expression of an E3 ubiq-
uitin ligase component beta-transducin repeat containing E3 ubiquitin protein ligase (β-
TrCP) in MSCs, which caused degradation of IκBα and activation of NF-κB. Thus, MSCs 
support anti-cancer effects of the drug on cancer cells [156]. These data suggest the usage 
of a combination of NF-κB inhibitors with conventional chemotherapeutics or radiother-
apy. Indeed, in a mice GC model, intraperitoneal administration of RelA siRNA or nafa-
mostat mesilate (FUT-175), an inhibitor of serine proteases and NF-κB, potentiated 
Paclitaxel effects leading to a reduction of peritoneal metastasis and increasing survival 
[157,158]. 

The cholesterol-lowering drug simvastatin enhanced the apoptotic effects of capecit-
abine through suppression of NF-κB-regulated genes in mice xenografts [155]. The com-
bined therapy of paclitaxel with the sesquiterpene lactone parthenolide, which inhibited 
phosphorylation of NF-κB, efficiently suppressed the peritoneal dissemination, and pro-
longed survival time in a mice model of GC [159]. 

A range of inhibitors has been developed for targeting NF-κB signaling including 
TNF receptors, IKKs, IκBα, or RelA/p50. Several molecules have reached stage 3 clinical 
trials and have been approved for the treatment of many tumors, but very few for gastric 
cancer therapy [160,161]. For example, among several promising 26S proteasome inhibi-
tors, bortezomib has been approved for anti-tumor therapy of multiple myeloma, diffuse 
large B-cell lymphoma, colorectal cancer, and thyroid carcinoma. NF-κB inhibition by 
bortezomib is achieved via suppression of proteasomal degradation of IκBα and sup-
presses survival of GC cancer cell lines in cell culture and in subcutaneous transplants in 

Figure 1. NF-κB dysregulation in the pathogenesis of gastric cancer. Prerequisites for the progression to gastric carcinoma
development could include superficial and chronic gastritis, metaplasia, and dysplasia. The impact of NF-κB on gastric
carcinoma development could be affected by the aberration of NF-κB signaling molecules or the NF-κB transcription factors
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processes including inflammation, cell survival, proliferation, cell cycle, or angiogenesis. Therapeutic approaches for gastric
carcinoma need the development of inhibitors which interfere with the dysregulated NF-κB system in combination with
conventional chemo- or radiotherapy.

Investigations of the tumor microenvironment have shown that different tumor cell
populations respond differently to anti-cancer therapy. For example, 3,3’-diindolylmethane
(DIM), a bioactive compound derived from indole-3-carbinol of Brassica food plants, inhib-
ited growth of cancer cells but induced expression of tumor-related factors CCL-2, IL-6,
and IL-8 in mesenchymal stem cells (MSCs). The conditioned medium of DIM-treated
MSCs promoted the proliferation, invasion, and migration of GC cells in vitro and tumor
growth in vivo. This effect was mediated by DIM-induced expression of an E3 ubiquitin
ligase component beta-transducin repeat containing E3 ubiquitin protein ligase (β-TrCP) in
MSCs, which caused degradation of IκBα and activation of NF-κB. Thus, MSCs support
anti-cancer effects of the drug on cancer cells [156]. These data suggest the usage of a
combination of NF-κB inhibitors with conventional chemotherapeutics or radiotherapy.
Indeed, in a mice GC model, intraperitoneal administration of RelA siRNA or nafamostat
mesilate (FUT-175), an inhibitor of serine proteases and NF-κB, potentiated Paclitaxel
effects leading to a reduction of peritoneal metastasis and increasing survival [157,158].

The cholesterol-lowering drug simvastatin enhanced the apoptotic effects of capecitabine
through suppression of NF-κB-regulated genes in mice xenografts [155]. The combined
therapy of paclitaxel with the sesquiterpene lactone parthenolide, which inhibited phos-
phorylation of NF-κB, efficiently suppressed the peritoneal dissemination, and prolonged
survival time in a mice model of GC [159].

A range of inhibitors has been developed for targeting NF-κB signaling including
TNF receptors, IKKs, IκBα, or RelA/p50. Several molecules have reached stage 3 clinical
trials and have been approved for the treatment of many tumors, but very few for gastric
cancer therapy [160,161]. For example, among several promising 26S proteasome inhibitors,
bortezomib has been approved for anti-tumor therapy of multiple myeloma, diffuse large B-
cell lymphoma, colorectal cancer, and thyroid carcinoma. NF-κB inhibition by bortezomib
is achieved via suppression of proteasomal degradation of IκBα and suppresses survival of
GC cancer cell lines in cell culture and in subcutaneous transplants in mice [162]. Despite
showing promising results in experimental models, bortezomib has not been used for
therapy of human GC. Interestingly, disulfiram, a well-known drug for treatment of chronic
alcoholism, can inhibit the 26S proteasome and NF-κB activity and demonstrate anti-tumor
activities [163].
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High expression of IKKβ and NEMO has been reported to correlate with shorter
overall survival in GC [164]. Accordingly, IKKβ-knockout mice exhibit increased apoptotic
cell death in gastric mucosal epithelium and decreased IL-1a secretion, and tumor formation
in response to N-methyl-N-nitrosourea [165]. Inhibitors of NF-κB signaling, including
IKKα/β inhibitors BAY11-7082 and BAY11-7085 demonstrated anti-proliferative (e.g., via
suppressing cyclin A and cyclin-dependent kinase 2 (CDK-2) expression), pro-apoptotic
(e.g., via down-regulation of Bcl-2, up-regulation of Bcl-2-associated X protein (Bax)), and
anti-invasive abilities in GC cell lines and in xenograft models [166,167].

A number of natural compounds demonstrated NF-κB inhibiting and anti-tumor
activity in cell and animal models [168]. For example, the carotenoid lycopene, in addition
to its antioxidant properties, inhibits transcriptional activity of NF-κB, down-regulates
expression of IL-1β, IL-6, TNF, and COX2, and activates caspase-3 and caspase-9 in AGS
cells [169]. Phyto-compound curcumin and its chemical analogs exert anti-GC effects by
downregulating NF-κB activity [170,171]. Polyphenols capsaicin, quercetin, resveratrol,
epigallocatechin-3-gallate, etc. also exhibit anti-tumor and anti-inflammatory properties
via affecting COX and NF-κB [161]. Several hormones and vitamins, e.g., melatonin and
vitamin E, reduce the production of ROS in GC cells in part via diminishing NF-κB activity
and MMPs expression in tumor-associated cell populations [172,173].

Some reports have suggested that nonsteroidal anti-inflammatory drugs (NSAIDs)
and COX2 inhibitors reduce risk of GC [174,175]. Sulindac, NO-aspirin and NO-naproxen
as well as COX-2 inhibitor SC236 suppressed the IKKs and NF-κB [172,176]. On the other
hand, some NSAIDs (e.g., indomethacin) can cause mucosa damage and even activate
NF-κB [177,178]. Thus, the pro and contra of their usage for cancer prevention or therapy
are still a matter of debate [176].

Members of the NF-κB signaling pathways have not been explored so far for molecular
targeted therapy in GC. At present, molecular therapy of GC is restricted to targeting the
human epidermal growth factor receptor 2 (HER2) by trastuzumab [179,180].

In the last decade, it became clear that NF-κB as a driver of a number of cellular
processes plays an important role in GC development. Despite intensive investigations
towards targeting immune cells, their molecular mediators, and effectors, there is still no
established immunotherapeutic strategy for treatment of GC. However, the inhibitors of
PD-L1 reached stage 3 clinical trials and demonstrated promising anti-tumor activity in
patients with PD-L1-positive GC [181–183].

5. Conclusions

NF-κB controls a variety of cellular processes comprising inflammation, prolifera-
tion, and anti-apoptosis. Therefore, it is not surprising that the studies reviewed here
demonstrate an important role of NF-κB in the carcinogenesis of gastric tumors. There
are manifold alterations in NF-κB expression and NF-κB signaling molecules by gene
polymorphisms resulting in dysregulated NF-κB target genes. Further, regulation of NF-κB
within the different cell populations is diverse which contributes to a complex molecular
interplay in the tumor micromilieu. Thus, analyzing the pleiotropic functions of NF-κB in
detail would be of significant interest to anticipate the outcome for the control of cellular
functions in different cell populations. Although the NF-κB system provides promising
biomarkers for diagnostics and therapeutic targeting in cancer patients, therapeutic target-
ing of NF-κB could also elicit opposing effects. Deciphering the diverse outcomes of NF-κB
activity depending on the cellular context and relative to specific stimuli will enable the
design of therapeutic targeting strategies to treat gastric cancer without overall cytotoxicity.
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Activator protein 1 AP1
3,3’-diindolylmethane DIM
ADP-glycero-β-D-manno-heptose ADP-hep
Ataxia-telangiectasia mutated ATM
B cell activation factor BAF
B-cell lymphoma 2 Bcl-2
Bcl-2-associated X protein Bax
Beta-transducin repeat containing E3 ubiquitin protein ligase β-TrCP
Cadherin-1 CDH1
Cag pathogenicity island CagPAI
Cannabinoid receptor 1 CNR1
Carcinoembryonic antigen-related cell adhesion molecule 19 CEACAM19
Caspase-associated recruitment domains CARDs
Chemokine (C-X-C motif) ligand 1 CXCL1
Chemokine (C-X-C motif) ligand 2 CXCL2
Connective tissue growth factor CTGF
CXC chemokine receptor 4 CXCR4
CXC chemokine receptor 4 CXCR4
CXC motif chemokine ligand 11 CXCL11
Cyclin-dependent kinase 2 CDK-2
Cyclooxygenase-2 COX-2
Deacetylase sirtuin 1 SIRT1
DNA methyltransferase 3 DNMT3
DNA repair protein Ku
Dopamine and cAMP-regulated phosphoprotein 32,000 Da DARPP-32
Epidermal growth factor receptor EGRF
Epstein–Barr virus (EBV) latent membrane protein 2 LMP2A
Fibroblast growth factor-inducible 14 FN14
Gastric adenocarcinomas non-cardia GCs
Gastric cancer GC
Gastric mucosa-associated lymphoid tissue MALT
Gastroesophageal junction adenocarcinomas cardia GC
Gastrokine 1 GKN1
Granulocyte-macrophage colony-stimulating factor GM-CSF
Growth-regulated oncogene GRO-α
Growth-regulated protein beta GRO-β
Growth-regulated protein gamma GRO-γ
HOX transcript antisense RNA HOTAIR
Human epidermal growth factor receptor 2 HER2
Human telomerase reverse transcriptase hTERT
Hypoxia inducible factor 1 alpha HIF-1α
Immunohistochemistry IHC
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Immunohistochemistry analysis ICH
Inducible nitric oxide synthase iNOS, NOS2
Inhibitor of growth 4 ING4
Interleukin 1b IL-1b
IκB kinase IKK
Lipopolysaccharide LPS
Lymphotoxin β LTβ
Lymphotoxin β LTβ
Matrix metallopeptidase 9 MMP9
Mesenchymal stromal cells MSCs
Mucosa-associated lymphoid tissue MALT
Myeloid differentiation primary response 88 MyD88
NADPH oxidase 1 NOX1
NADPH oxidase organizer 1 Noxo1
NF-κB essential modulator NEMO
NF-κB inducing kinase NIK
NF-κB1 p50
NF-κB2 p52
Nitric oxide NO
Non-cardia gastric adenocarcinoma NCGC
Nonsteroidal anti-inflammatory drugs NSAIDs
O6-methylguanin-DNA-methyltransferase MGMT
Oncogenes latent membrane protein 1 LMP1
Oncoprotein metadherin MTDH
Open reading frames ORFs
p21-activated kinases PAKs
Phosphatase and tensin homolog PTEN
Phosphatase of regenerating liver-3 PRL-3
Poly r(C)-binding protein PCBP
Programmed death 1 PD-1
Programmed-death ligand 1 PD-L1
Prostaglandin E2 PGE2
Protection of telomeres 1 POT1
Protein alpha-kinase 1 ALPK1
Reactive oxygen species ROS
Receptor activator of NF-κB RANK
Receptor interacting serine/threonine kinase 2 RIPK2
Rel homology domain RHD
Repressor/activator protein 1 RAP1
Sex determining region Y (SRY)-box 2 SOX2
Signal transducers and activators of transcription 3 STAT3
Stress protein metallothionein 2A MT2A
T regulatory Treg
TNF-induced protein 3-interacting protein 1 TNIP1
Toll-like receptors TLRs
TRAF-interacting protein with forkhead-associated domain TIFA
Transcription factor nuclear factor kappa B NF-κB
Transforming growth factor b kinase 1 TAK1
Trefoil factor 1 TFF1
Tumor necrosis factor receptor-associated factor TRAF
Tumor necrosis factor TNF
Tumor-associated macrophages TAMs
Type IV secretion system T4SS
Vascular endothelial growth factor VEGF
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