

Correspondence to

Professor Paul N Goldwater. University of Adelaide School of Paediatrics and Reproductive Health, King William Road, North Adelaide, SA 5000, Australia:

pgoldwater@gmail.com

Received 8 November 2016 Revised 26 December 2016 Accepted 28 December 2016 Published Online First 23 January 2017

Infection: the neglected paradigm in SIDS research

Paul Nathan Goldwater

ABSTRACT

Despite decades of investigation and millions of dollars spent, the cause of sudden infant death syndrome (SIDS) eludes researchers. It is timely therefore to reconsider the reasons for this failure and to explore how research might go forward with better prospects. This review assesses SIDS research in the context of clinicopathological and epidemiological features and determines that only infection attains congruence.

INTRODUCTION

Despite decades of investigation and millions of dollars spent, the cause(s) of sudden infant death syndrome (SIDS) eludes researchers. It is timely therefore to reconsider the reasons for this failure and to explore how research might go forward with better prospects.

SIDS is defined as the unexpected death of an infant <1 year of age, with onset of the fatal episode apparently occurring during sleep, that remains unexplained after a thorough investigation, including performance of a complete autopsy and review of the circumstances of death and the clinical history.1 The 'triple risk' hypothesis accommodates multiple aetiologies (it proposed that SIDS occurs in infants with latent biological vulnerabilities, exposed to external threats during a critical period in development).² It has served as a basis to tackle the problem. Mainstream research has been undertaken on grounds that generally fail to accommodate all aspects of the epidemiology (encompassing the SIDS risk factors) (box 1) and clinicopathology of SIDS (box 2). Mainstream researchers have tended to settle on hypotheses that lack broad-based considerations.

What are the established facts in SIDS? These have been established through numerous epidemiological investigations and reports of the gross and microscopic pathological findings. To successfully investigate a disease of unknown causation, it is essential that all of these 'facts' are taken into consideration.

The list of epidemiological associations shows that infection is a key potential contender in the causation stakes. Male gender predominance, winter seasonality, a vulnerable host (prematurity, genetic predisposition through important inflammatory, innate and adaptive immune response polymorphisms), pre-natal and post-natal exposure to smoke, low socioeconomic status and so forth, all fit an infection model. Congruence between the increased risk of prone sleep position and infection is supported by the increased risk of putting down the infants to sleep on contaminated surfaces. SIDS cases are unusual in showing colonisation by coliforms in the respiratory tract 17-19 and by toxigenic organisms such as Staphylococcus aureus in the

gut. 13 Respiratory tract colonisation by coliforms in SIDS carries an OR of 29 compared with healthy age-matched infants. Reasons for these colonisation features would seem to relate to prone sleep position enhancing ingestion/inhalation of bacteria on the sleeping surface especially because bacterially contaminated surfaces (sofas, previously used mattresses, parental bed,) are all risk factors for SIDS.⁵ 14 20 21 Notably the risk of SIDS is increased by exposure to smoke while sleeping in the parental bed. 15 Also of note, smoking mothers increase the risk of bacterial and/or viral colonisation in their infants. 17 22

AUTOPSY FINDINGS

At autopsy, there may be frothy white or bloodstained secretions at the nares suggestive of pulmonary oedema.²³ There is some evidence to indicate a febrile episode prior to death given that the core temperature is frequently elevated²² and clothing may be sweat-soaked.24

The bladder is usually empty.²³ Agonal processes or anuria secondary to hypotensive shock as part of septic shock have been proposed.

Characteristic internal findings are exemplified by the triad of intrathoracic petechial haemorrhages involving the thymus, visceral pleura and epicardium. In most studies, ≥90% have the petechial triad. Notably the type and distribution of the petechiae differ significantly from those found in cases of asphyxia. 25 26 Mainstream researchers attribute intrathoracic petechiae to changes in pulmonary pressure; however, this hypothesis does not stand up to scrutiny as argued in previous publications. ^{27–29} Studies by Krous *et al* ^{30 31} disproved an association between intrathoracic petechiae and prone position, indicating that hypothetical upper airway obstruction attributable to face-down position is not causally related to development of intrathoracic petechiae.

The lungs are congested and heavy²³ indicating pulmonary oedema/early shock lung as may occur in septic shock. Cardiogenic causes of lung changes (eg, left ventricular failure, non-shock) would also

Brain weight (and head circumference) is greater in SIDS cases than comparisons^{32–37} and is acknowledged by the National Institute of Child Health and Human Development (NICHD).³⁸

Thymomegaly in SIDS has been the subject of considerable debate and has not yet been resolved satisfactorily.

The kidneys³⁹ and heart⁴⁰ are lighter than normal. These could also reflect intrauterine growth abnormalities incorporating biological vulnerability (as above).

The blood within the chambers of the heart is liquid/unclotted in almost every case.²³

To cite: Goldwater PN. Arch Dis Child 2017;**102**:767-772.

Box 1 Epidemiological associations/risk factors for sudden infant death syndrome (SIDS)

- ► Genetic predisposition (intrinsic) factors^{3 4}
 - Gender (and possible X-linked genetic mutations/copy number variations, etc)
 - Genetic control innate and adaptive immunity, inflammatory response
 - Genetic control of nitric oxide synthetase 1 (NOS1)
 - Genetic control of brainstem function
 - Genetic control of metabolic pathways, for example, flavin-monooxygenase 3, an enzyme metabolising nicotine
 - Genetic control of cardiac function
 - Ethnicity⁵ 6
- Extrinsic factors
 - Demographic factors⁶
 - Low socioeconomic status⁷

 - High birth order/previous live births⁸
- ▶ Prenatal risks⁹ 10
 - Poor prenatal care
 - Maternal smoking/nicotine use
 - Inadequate prenatal care
 - Inadequate prenatal nutrition
 - Maternal misuse of heroin, cocaine and other drugs
 - Subsequent births less than 1 year apart
 - Alcohol use
 - Infant being overweight
 - Mother being overweight
 - Teen pregnancy (if the baby has a teen mother, it has a greater risk)
 - Mother single, divorced or separated
 - Maternal anaemia¹
- Post-natal risks⁶
 - Seasonality¹²
 - Viral respiratory or gastrointestinal symptoms in the days before death
 - Prematurity¹⁰
 - Low birth weight
 - Exposure to tobacco smoke
 - Prone sleep position (lying on the abdomen)
 - Sleeping prone while intestinally colonised with Staphylococcus aureus. 13
 - Not breastfeeding
 - Elevated or reduced room temperature
 - Excess bedding, clothing, soft sleep surface and stuffed
 - Co-sleeping with parents or other siblings
 - Sofa-sleeping
 - Sleeping on a used mattress¹⁴
 - Sleeping in parental bed¹⁵
 - Infant's age (incidence rises from zero at birth, is highest from 2 to 4 months and declines towards zero at 1 year)
 - Prematurity (increases risk of SIDS death by about four
 - Probable anaemia¹¹ (haemoglobin cannot be measured postmortem)
 - Early cord clamping? (possibly causing anaemia)
 - Recent visit to general practitioner/outpatient clinic
 - No or late immunisation 16
 - Day care attendance
 - Night-time death

Box 2 Pathological findings

Raised core (rectal) temperature

Frothy exudate at nares

Intrathoracic petechiae involving thymus, visceral pleural and epicardium

Organ weight changes:

Heavy brain, thymus

Light heart and kidneys

Heavy congested lungs

Mild acute inflammatory changes in airways, lungs and myocardium

Liquid/unclotted blood in chambers of heart

Empty bladder

Normally sterile site yielding a bacterial pathogen

Proteomic and immunohistochemical evidence of infection

(acylcarnitine, CD68, intercellular adhesion molecule-1, etc)

HISTOPATHOLOGY

Histopathology shows mild inflammatory changes within the lungs (reflecting recent viral infection) in a large proportion of cases. 41 42 The brainstem may show subtle changes in a minority of cases (discussed below). The intestine may show inflammatory or other changes; 43 pathologists often report autolytic change. Reports of cardiomyocyte⁴⁴ and diaphragm myocyte changes have been demonstrated⁴⁵ but do not seem to have been corroborated. Evidence of a systemic inflammatory event is present in some cases of SIDS (discussed below).

CLINICAL FINDINGS

Poets⁴⁴ has provided several important clues to understanding the aetiopathogenesis of SIDS. Babies whose moment of death was captured on memory monitors showed a progressive decrease in heart rate, which developed over minutes or hours. A total of 14 recordings are published. 46-52 Witnessed cases have been reported.⁵³

Poets⁵⁴ concluded that none of the recordings showed evidence of the occurrence of prolonged central apnoea as the primary cause of death. The exact cause(s) of the bradycardia could not be determined from the recordings, but there is evidence from similar recordings that have been obtained during apparent life-threatening events and which included data on oxygenation that showed progressive heart rate slowing was probably due to hypoxic cardiac depression. 55-58 In the monitored SIDS cases, breathing continued in the form of gasping and followed cardiac standstill. Hypoxaemia as part of the lethal episode in SIDS seems to be well accepted; however, the cause of hypoxaemia deserves reconsideration. One important cause seemingly overlooked by mainstream researchers is infection and sepsis.

Inflammatory markers in SIDS

C reactive protein is not consistently detected or elevated 41 59 In her review, Blood-Siegfried⁶⁰ assembled convincing autopsy and other evidence of infection and inflammatory responses in SIDS. Similarly, Blackwell et al⁶¹ summarised the evidence in terms of risk factors and specific tissue and serum findings of inflammatory markers. Both reviews confirm strong links between infection/inflammation and SIDS. Some of the evidence is contained in studies of genes involved in inflammatory

responses. Examples include a tumour necrosis factor- α polymorphism responsible for high cytokine production 62 and an interleukin (IL)- 1α polymorphism in parents of SIDS babies associated with an exaggerated response to toxic shock syndrome toxin. 63 Others include an IL-6 polymorphism (IL-6-174G/C), associated with specific ethnic background of SIDS cases 64 and a number of IL-10 polymorphisms associated with population-specific variations in polymorphisms and indicate other risk factors must also play a role. $^{65-67}$

MICROBIOLOGY

As mentioned above unusual colonisation by coliforms and toxigenic organisms is a feature of SIDS ¹³ ¹⁷⁻¹⁹ and goes some way to explain the risk factor of prone sleep position particularly in relation to the heightened risk associated with contaminated sleeping surfaces. ⁵ ¹⁴ ²⁰ ²¹ At autopsy normally sterile sites (heart chamber blood, spleen, cerebrospinal fluid) may contain a bacterial pathogen (eg, *S aureus*, *Escherichia coli*, other coliforms) in about one-fifth of cases. ¹⁹ ⁶⁸ This could represent a footprint of a lethal bacteraemic episode. Coliforms and *S aureus* are isolated from the lungs and airways more frequently from SIDS cases than non-SIDS deaths. ¹⁹ ⁶⁸

Evidence of viral infection involving the airways, lungs, heart and the small intestine is relatively common.⁴¹ ⁴²⁴³ As mentioned above, maternal smoking promotes viral colonisation in their infants.¹⁵ ¹⁷ ²²

New technology including proteomics is helping in identifying the role of infection in SIDS. The Great Ormond Street Hospital group, which used tandem mass spectrometry, could not distinguish SIDS from autopsy-proven infection-related deaths on the basis of acylcarnitine and other related compounds associated with infection, 69 which strongly indicated that infection was temporally related to SIDS deaths and supports the infection hypothesis of SIDS aetiopathogenesis.

THE MICROBIOME AND SIDS

Early studies show differences between the gut microbiome of SIDS babies compared with healthy babies ¹³ ⁷⁰ The study by Highet and Goldwater ¹³ goes some way to explain the risk factor of prone sleep position with an infinitely high OR for the occurrence of gut colonisation with *S aureus* and prone position of infants when found. *S aureus* (frequently enterotoxigenic) seems to more commonly colonise babies' intestines in the first year of life while *E coli* colonisation is on the decline. ⁷¹ Extraintestinal *E coli* are frequently found in SIDS babies ⁷² and are isolated from normally sterile sites and often from the airways and lungs in SIDS babies and rarely in non-SIDS

α-Haemolysin (HLyA)-producing uropathogenic *E coli* strains causing urinary tract and other extraintestinal infections are found more frequently in SIDS infants compared with healthy babies or non-SIDS deaths⁷² and serotypes O1:H-, O1:H5, O2: H1, O4:H5, O6:H1, O25:H1 and O75:H5 are over-represented in SIDS.⁷² Bücker *et al*⁷³ found that α-HLyA of *E coli* triggers intestinal inflammation in mouse models of inflammatory bowel disease by impairing the intestinal barrier and thereby intensifying antigen uptake. Such a mechanism could operate in SIDS wherein an inflamed gut mucosa could promote microbial translocation into the bloodstream and cause overwhelming sepsis.⁷⁴ New information showing an otherwise previously unknown microbiome of the airways and lungs could also involve predisposition to abnormal inflammatory responses.⁷⁵

Metagenomics reveals additional data indicating the importance of gut microbiome dysbiosis in relation to development of

disease such as obesity, type 1 diabetes, colitis and metabolic syndrome. A preliminary metagenomics study by Leong *et al* has demonstrated a significant association between *Anaerostipes* and SIDS but previously shown associations between *S aureus*, *E coli* and Clostridia was not corroborated in this small sample (29 SIDS; 21 controls).

CLOTTING SYSTEM IN SIDS

The blood within the chambers of the heart is liquid/unclotted²³ and remains unexplained; however, raised fibrin degradation products (FDPs) are characteristic of SIDS.⁷⁷ Evidence of disseminated intravascular coagulopathy (DIC) is usually not found. While the intrathoracic petechial haemorrhages could represent a distinct vasculopathy, linking this to raised FDPs has not yet been established. Systemic infection is recognised as being linked to elevated FDPs without the development of DIC. The question remains as to the underlying reasons for raised FDPs in SIDS. Abnormally increased FDPs are an indication of increased fibrinolytic activity and are not specific to DIC.⁷⁸

CRITIQUE OF MAINSTREAM APPROACH

Mainstream researchers have tended to focus on a single pathological finding and have developed hypotheses centred on this while tending to ignore the epidemiology/risk factors or the other clinicopathological findings. Examples include intrathoracic petechiae as the basis for an asphyxial event.³⁰ Evidence to support this idea is either lacking or raises serious questions; for instance, why is the distribution and number of petechiae affected by the age, ethnicity, parity, exposure to cigarette smoke and the sleep position?²⁵ Or why infants placed prone show a reduced frequency of pleural petechiae?²⁵

Another major area of mainstream research focuses on brainstem, limbic forebrain and hippocampus and possible central homeostatic control. Isolated pathological findings (such as hypoplasia of the arcuate nucleus (respiratory chemosensitive zone of the ventral medulla) and gliosis of cerebral white matter)⁷⁹ occur only in a minority of cases. This focus, limited to a single anatomical site, ignoring overall morbid pathology or epidemiological associations leaves the hypothesis wanting in many respects. Similarly wanting are research paths taken based on a single finding such as prone position found, head covered by bedding, sleeping and dying in the parental bed (overlying). Other researches have centred on the heart, given that adult sudden deaths have been attributed to cardiac dysrhythmia such as QT interval genetic pathology and other causes of channelopathy⁸⁰⁻⁸⁴ or brainstem dysfunctional control. Genetically diagnosed channelopathies are found in a minority of SIDS cases. The finding does not necessarily mean the inherited channelopathy actually caused the deaths. Nor does anatomical abnormality of brainstem neuronal nuclei necessarily relate to causation of death, given that similar findings are observed in brainstems of non-SUDI deaths, although in a smaller proportion.⁷⁹ These hypotheses are speculative and lethality is not necessarily established in relation to the purported underlying problem nor have animal models provided clear answers.

A major failing of mainstream investigations is the rarity of inclusion of general autopsy findings in their publications that could otherwise provide useful information. We are not privy to the intrathoracic findings or nature of the heart blood (clotted/unclotted) or organ weights of cases reported, for example, in relation to hypotheses based on brainstem or cardiac aetiologies. If pertinent information were published, it could become clearer that purported cardiac channelopathies were associated with a specific pathological picture, for example, absent intrathoracic

petechiae that could help explain the <10% of SIDS cases lacking the typical pathological findings (triad of petechiae, liquid cardiac blood, large brain, heavy wet lungs, etc).

POSSIBLE LETHAL PROCESS

Male gender is a risk factor for almost all infections⁸⁵ (pertussis being the exception). Akin to infection, X-linked genetic susceptibility would apply in the instance of SIDS.⁸⁵ In consideration of a lethal process that would fit with the epidemiology and clinicopathological findings there would appear to be only one that is bacterial infection and overwhelming sepsis/septic shock. This is not a new proposal; Morris et al⁸⁶ provided the common bacterial toxin hypothesis encompassing sepsis and/or toxic shock. Other groups accept and explore this approach. 87-94 These authors have shown that toxigenic organisms notably ones normally considered non-pathogenic commensals may well have an important role in SIDS pathogenesis. Bacterial infection accompanied by viral infection may exacerbate the effects of bacterial infection. 91 Similarly, dual bacterial infection produces a lethal synergy.⁹³ Bacterial infection and septic shock is often difficult to diagnose in life as it is at autopsy. 95 In a vulnerable host, death from sepsis can be rapid and can be missed at autopsy. Rapid-onset sepsis and death may not leave the hallmarks of infection and there may be no features of sepsis apparent at autopsy except for bacteria in normally sterile sites in some cases. CD68 cells and other markers of infection are not consistently found in the lungs of SIDS cases⁹⁶ and may reflect the rapid nature of the septic process before conscription of sufficient immune cells to be left as a marker. The immature immune system of neonates who have died of confirmed sepsis show extremely variable innate and adaptive immune responses. Indeed many infants have no evidence of CD68 or CD54 cells in their lungs or other tissues. Intercellular adhesion molecule-1 (ICAM-1, CD54) is a cell surface protein that is expressed at very low levels on pulmonary endothelium, lymphocytes and macrophages, Expression of ICAM-1 is upregulated on stimulation by inflammatory mediators such as cyto-ICAM-1 that mediate inflammatory responses by adhesion of leucocytes to activated endothelium and subsequent leucocyte translocation through the pulmonary endothelial layer.⁹⁶

Doberentz et al⁹⁷ examined CD45RO, CD68 and leucocyte common antigen-positive cells in pulmonary tissue and the cell adhesion molecules E-selectin, P-selection and ICAM-1 and found no difference between SIDS and non-SIDS cases. The lack of a consistent finding reflects the situation of suspected fatal sepsis wherein the microscopic autopsy lung findings may be minimal, non-specific or unconvincing. Confounding our understanding is the lack of detailed published pathological information with respect to the existence or otherwise of intrathoracic petechiae and liquid heart blood in cases of fatal neonatal sepsis.

CONCLUSION

Mainstream researchers propose multiple causes of SIDS to accommodate the several organ system-based lines of research (box 3). If multiple causes were involved, then it would be reasonable to expect a variety of pathological findings. This demonstrably is not the case. There is a fixed pattern to the vast majority of cases. The crux of the argument against broad polycausality of SIDS is the *consistent* pathological picture (usually in more than 90% of cases). Given this consistency of pathological findings and their congruency with the SIDS risk factors and giving due acknowledgement to Occam, it is logical to hypothesise a 'single' causal mechanism for those 90%. As

Box 3 Sudden infant death syndrome research approaches

- Brainstem control of respiratory function
- ▶ Brainstem control of cardiac function
- Respiratory obstruction/unintentional asphyxia
- Cardiac channelopathy
- ► Common bacterial toxins/sepsis/toxaemia
- Shock including anaphylaxis
- Thermal stress
- Diaphragmatic failure
- ► CO₂ rebreathing, CO₂ poisoning
- ► Helicobacter pylori infection
- Respiratory infection
- ▶ Pneumocystis jiroveci (carinii) infection
- Inborn errors of metabolism
- ► Genomic load of deleterious mutations
- Physiological anaemia (from early cord clamping)
- Fatal anoxic encephalopathy associated with respiratory tract infection (RTI) (Mage and Donner⁸⁵)
- ► Toxic gases from mattress
- Overlaying
- Abuse

indicated above, deaths from possible causes which form only a tiny minority of SIDS cases (eg, channelopathies) may not exhibit the classical pathology of SIDS and therefore provide an explanation for 'different' pathological findings such as the absence of intrathoracic petechiae or the finding of normal organ weights. It is therefore essential that the overall pathological findings of suspected channelopathy or brainstem pathology cases are published. Inclusion of the epidemiological features is also desirable.

In moving forward, SIDS researchers should be asking the following questions: (1) Does my hypothesis take into account the key pathological findings in SIDS? (2) Is my hypothesis congruent with the key epidemiological risk factors? (3) Does the hypothesis link questions (1) and (2)? This review has shown that infection meets these questions appropriately and researchers in this area deserve acknowledgement and funding support. There remain gaps in our knowledge with regard to the infection model, but it is clear that other lines of research are not making the grade. How the microbiome shapes the immune system in infancy could be the key in the SIDS story especially in relation to host pathogen recognition and vulnerability. It is hoped that in future we will see support and action in line with a more enlightened approach to solving the tragic enigma of SIDS

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1 Krous HF, Beckwith JB, Byard RW, et al. Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 2004;114:234–8.

- Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. *Biol Neonate* 1994;65:194–19.
- 3 Courts C, Madea B. Genetics of the sudden infant death syndrome. Forens Sci Int 2010:203:25–33.
- 4 Opdal SH, Rognum TO. Gene variants predisposing to SIDS: current knowledge. Forensic Sci Med Pathol 2011;7:26–36.
- 5 Blair PS, Sidebotham P, Berry PJ, et al. Major epidemiological changes in sudden infant death syndrome: a 20-year population-based study in the UK. Lancet 2006;367:314–19.
- 6 Hoffman HJ, Damus K, Hillman L, et al. Risk factors for SIDS. Results of The National Institute of Child Health and Human Development SIDS Cooperative Epidemiological Study. Ann N Y Acad Sci 1988;533:13–30.
- 7 Stockwell EG, Swanson DA, Wicks JW. Economic status differences in infant mortality by cause of death. *Public Health Rep* 1988;103:135–42.
- 8 Highet AR, Goldwater PN. Maternal and perinatal risk factors for SIDS: a novel analysis utilizing pregnancy outcome data. Europ J Paediatr 2013;172:369–72.
- 9 Mitchell EA, Taylor BJ, Ford RPK, et al. Four modifiable and other major risk factors for cot death: The New Zealand study. J Paediatr Child Health 1992;28(Suppl 1): S3–8.
- 10 Rintahaka PJ, Hirvonen J. The epidemiology of sudden infant death syndrome in Finland in 1969. 1980. Forens Sci Intl 1986;30;219–33.
- 11 Poets CF, Samuels MP, Wardrop CA, et al. Reduced haemoglobin levels in infants presenting with apparent life-threatening events—a retrospective investigation. Acta Paediatr 1992:81:319–21.
- 12 Osmond C, Murphy M. Seasonality in the sudden infant death syndrome. *Paediatr Perinat Epidemiol* 1988;2:337–45.
- Highet AR, Goldwater PN. Staphylococcal enterotoxin genes are common in Staphylococcus aureus intestinal flora in sudden infant death syndrome (SIDS) and live comparison infants. FEMS Immunol Med Microbiol 2009;57:151–5.
- 14 Tappin D, Brooke H, Ecob R, et al. Used infant mattresses and sudden infant death syndrome in Scotland: case-control study. BMJ 2002;325:1007.
- 15 Carpenter R, McGarvey C, Mitchell EA, et al. Bed sharing when parents do not smoke: is there a risk of SIDS? An individual level analysis of five major case control studies. BMJ Open 2013;3:e002299.
- MacIntyre CR, Leask J. Immunization myths and realities: Responding to arguments against immunization. J Paediatr Child Health 2003;39:487–91.
- Biackwell CC, Gordon AE, James VS, et al. The role of bacterial toxins in Sudden Infant Death Syndrome (SIDS). Int J Med Microbiol 2002;291:561–70.
- 18 Blood-Siegfried J, Rambaud C, Nyska A, et al. Evidence for infection, inflammation and shock in sudden infant death: parallels between a neonatal rat model of sudden death and infants who died of sudden infant death syndrome. *Innate Immun* 2008;14:145–52.
- 19 Weber MA, Klein NJ, Hartley JC, et al. Infection and sudden unexpected death in infancy: a systematic retrospective case review. Lancet 2008;371:1848–53.
- 20 Gilbert R, Rudd P, Berry PJ, et al. Combined effect of infection and heavy wrapping on the risk of sudden unexpected infant death. Arch Dis Child 1992;67:171–7.
- 21 Brooke H, Gibson A, Tappin D, et al. Case-control study of sudden infant death syndrome in Scotland, 1992–5. BMJ 1997;314:1516–20.
- 22 Blackwell CC, Moscovis SM, Gordon AE, et al. Ethnicity, infection and sudden infant death syndrome. FEMS Immunol Med Microbiol 2004;42:53–65.
- 23 Berry PJ. Pathological findings in SIDS. J Clin Pathol 1992;45(11 Suppl):11–16.
- 24 Sunderland R, Emery JL. Febrile convulsions and cot death. *Lancet*. 1981;2:176–8.
- Becroft DM, Thompson JM, Mitchell EA. Epidemiology of intrathoracic petechial hemorrhages in sudden infant death syndrome. *Pediatr Dev Path* 1998;1:200–9.
- 26 Goldwater PN. Intrathoracic Petechial Haemorrhages in sudden infant death syndrome and other infant deaths: time for re-examination? *Pediatr Dev Pathol* 2008;11:450–5.
- 27 Goldwater PN. Sudden infant death syndrome: a critical review of approaches to research. Arch Dis Child 2003;88:1095–100.
- 28 Goldwater PN. A perspective on SIDS pathogenesis. The hypotheses: plausibility and evidence. BMC Med 2011;9:64.
- 29 Goldwater PN, Bettelheim KA. SIDS risk factors: time for new interpretations the role of bacteria. *Pediatr Res Int J* 2013;867520. http://www.ibimapublishing.com/ journals/PRIJ/prij.html
- 30 Krous HF, Nadeau JM, Silva PD, et al. Intrathoracic petechiae in sudden infant death syndrome: relationship to face position when found. Pediatr Dev Pathol 2001:4:160–6.
- 31 Krous HF, Haas EA, Chadwick AE, et al. Intrathoracic petechiae in SIDS: a retrospective population-based 15-year study. Forensic Sci Med Pathol 2008;4:234–9.
- 32 Naeye RL, Whalen P, Ryser M, et al. Cardiac and other abnormalities in the sudden infant death syndrome. Am J Pathol 1976;82:1–8.
- 33 Siebert JR, Haas JE. Organ weights in sudden infant death syndrome. *Pediatr Pathol* 1994;14:973–85.
- 34 Elliott JA, Vink R, Jensen L, et al. Brain weight-body weight ratio in sudden infant death syndrome revisited. Med Sci Law 2012;52:207–9.

- 35 Falck G, Rajs J. Brain weight and sudden infant death syndrome. J Child Neurol 1995;10:123–6.
- 86 Kadhim H, Sébire G, Khalifa M, et al. Incongruent cerebral growth in sudden infant death syndrome. J Child Neurol 2005;20:244–6.
- 37 Bamber AR, Paine SML, Ridout DA, et al. Brain weight in sudden unexpected death in infancy: experience from a large single-centre cohort. Neuropathol Appl Neurobiol 2016;42:344–51.
- 38 NICHD. Targeting Sudden Infant Death Syndrome (SIDS): A Strategic Plan. 2001. http://www.nichd.nih.gov/publications/pubs/upload/SIDS_Syndrome.pdf
- 39 Hinchliffe SA, Howard CV, Lynch MRJ, et al. Renal developmental arrest in sudden infant death syndrome. Fetal Pediatr Pathol 1993;13:333–43.
- 40 Kelmanson IA. Differences in somatic and organ growth rates in infants who died of sudden infant death syndrome. J Perinat Med 1992;20:183–8.
- 41 Rambaud C, Guibert M, Briand E, et al. Microbiology in sudden infant death syndrome (SIDS) and other childhood deaths. FEMS Immunol Med Microbiol 1999:25:59–66.
- 42 Weber MA, Hartley JC, Ashworth MT, et al. Virological investigations in sudden unexpected deaths in infancy (SUDI). Forens Sci Med Pathol 2010;6:261–7.
- 43 Variend S, Sunderland R. Small intestinal mucosal abnormalities in post-perinatal deaths. *J Clin Pathol* 1984;37:283–7.
- 44 Kariks J. Cardiac lesions in sudden infant death syndrome. Forens Sci Int 1988;39:211–25.
- 45 Kariks J. Diaphragmatic muscle fibre necrosis in SIDS. Forensic Sci Int 1989;43:281–91.
- 46 Poets CF, Meny RG, Chobanian MR, et al. Gasping and other cardiorespiratory patterns during sudden infant deaths. Pediatr Res 1999;45:350–4.
- 47 Haas JE, Taylor JA, Bergman AB, et al. Relationship between epidemiologic risk factors and clinicopathologic findings in SIDS. Pediatrics 1993;91:106–12.
- 48 Hilton JMN. The pathology of sudden infant death syndrome. In: Mason JK, ed. Paediatric forensic medicine and pathology. London: Chapman, 1998:156–64.
- 49 Byard RW, Krous HF. Specific Pathologic problems and possible solutions. In: Byard RW, Krouse HF, eds. Sudden infant death syndrome: problems, progress and possibilities. London: Hodder Arnold, 2001:230–1.
- Kelly DH, Pathak A, Meny R. Sudden severe bradycardia in infancy. *Pediatr Pulmonol* 1991;10:199–204.
- 51 Meny RG, Carroll JL, Carbone MT, et al. Cardiorespiratory recordings. from infants dying suddenly and unexpectedly at home. Pediatrics 1994;93:44–9.
- 52 Poets CF, Southall DP. Prone sleeping position and sudden infant death. N Engl J Med 1993;329:425–6.
- 53 Randall B. Witnessed sudden infant death syndrome: a case report. J SIDS Infant Mortal 1996:1:53–5.
- Poets CF. Status thymico-lymphaticus, apnea, and sudden infant death—lessons learned from the past? Eur J Pediatr 1996;155:165–7.
- 55 Kinney HC, Burger PC, Harrell FE, et al. "Reactive gliosis" in the medulla oblongata of victims of the SIDS. *Pediatrics* 1983;72:181–7.
- 56 Poets CF, Samuels MP, Noyes JP, et al. Home event recordings of oxygenation, breathing movements, and heart rate and rhythm in infants with recurrent life-threatening events. J Pediatr 1993;123:693–701.
- 57 Baird TM. Clinical correlates, natural history and outcome of neonatal apnea. Semin Neonatol 2004:9:205–11.
- 58 Bentele KHP, Albani M. Are there tests predictive for prolonged apnea and SIDS? A review of epidemiological and functional studies. Acta Paediatr 2008;77:1–21.
- Fryce JW, Bamber AR, Ashworth MT, et al. Immunohistochemical expression of inflammatory markers in sudden infant death; ancillary tests for identification of infection. J Clin Pathol 2014;67:1044–51.
- 60 Blood-Siegfried J. The role of infection and inflammation in sudden infant death syndrome. *Immunotoxicol* 2009;31: 516–23.
- 61 Blackwell CC, Muscovis S, Hall S, et al. Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection. Front Immunol 2015;6:44.
- 62 Ferrante L, Opdal SH, Vege A, et al. TNF-alpha promoter polymorphisms in sudden infant death. *Hum Immunol* 2008;69:368–73.
- 63 Moscovis SM, Gordon AE, Hall ST, et al. Interleukin 1-beta responses to bacterial toxins and sudden infant death syndrome. FEMS Immunol Med Microbiol 2004;42:139–45.
- 64 Opdal SH, Rognum TO. The IL6 -174G/C polymorphism and sudden infant death syndrome. *Hum Immunol* 2007;68:541–3.
- 65 Opdal SH, Opstad A, Vege A, et al. IL-10 gene polymorphisms are associated with infectious cause of sudden infant death. *Hum Immunol* 2003;64:1183–9.
- 66 Summers AM, Summers CW, Drucker DB, et al. Association of IL-10 genotype with sudden infant death syndrome. Hum Immunol 2000;61:1270–3.
- 67 Moscovis SM, Gordon AE, Al Madani OM, et al. Interleukin-10 and sudden infant death syndrome. FEMS Immunol Med Microbiol 2004;42:130–8.
- 68 Goldwater PN. Sterile site infection at autopsy in sudden unexpected deaths in infancy. Arch Dis Child 2009;94:303–7.
- 69 Pryce JW, Weber MA, Heales S, et al. Postmortem tandem mass spectrometry profiling for detection of infection in unexpected infant death. Forensic Sci Med Pathol 2012;8:252–8.

Review

- 70 Leong LHX, Choo JM, Goldwater PN, et al. Gut microbiota composition in sudden infant death syndrome (SIDS) infants and healthy age-matched controls. Abstract International Symposium on Microbial Ecology Montreal 2016.
- 71 Lindberg E, Nowrouzian F, Adlerberth I, et al. Long-Time Persistence of Superantigen-Producing Staphylococcus aureus Strains in the Intestinal Microflora of Healthy Infants. Pediatr Research 2000;48:741–7.
- 72 Pearce JL, Bettelheim KA, Luke RKJ, et al. Serotypes of Escherichia coli in sudden infant death syndrome. J Appl Microbiol 2010;108:731–5.
- 73 Bücker R, Schulz E, Günzel D, et al. α-Haemolysin of Escherichia coli in IBD: a potentiator of inflammatory activity in the colon. Gut 2014; 63:1893–901.
- 74 Goldwater PN. Gut microbiota and immunity: possible role in sudden infant death syndrome. Front Immunol 2015;6:269.
- 75 Dickson RP, Erb-Downward JR, Martinez FJ, et al. The microbiome and the respiratory tract. Ann Rev Physiol 2016;78:481–504.
- 76 Koenig JÉ, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. PNAS Early Edition. 2016. http://www.pnas.org/ cqi/doi/10.1073/pnas.1000081107
- 77 Goldwater PN, Williams V, Bourne AJ, et al. Sudden infant death syndrome: a possible clue to causation. Med J Australia 1990;153:59–60.
- 78 Barash PG, Cullen BF, Stoelting RK, et al. eds. Handbook of clinical anesthesia. 6th edn. Philadelphia, Lippincott Williams & Wilkin, 2009:409.
- 79 Kinney HC, Cryan JB, Haynes RL, et al. Dentate gyrus abnormalities in sudden unexplained death in infants: morphological marker of underlying brain vulnerability. Acta Neuropathol 2015;129:65–80.
- 80 Tester DJ, Ackerman MJ. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res 2005;67:388–96.
- 81 Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 2007;115: 361–7
- 82 Tester DJ, Dura M, Carturan E, et al. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 2007:4:733–9
- 83 Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 2007;4:161–6.

- 84 Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA 2013;309:1473–82.
- 85 Mage DT, Donner EM. Is excess Male infant mortality from sudden infant death syndrome and other respiratory diseases X-linked. Acta Paediatr 2014;103:188–93.
- Morris JA, Haran D, Smith A. Hypothesis: Common bacterial toxins are a possible cause of the sudden infant death syndrome. Med Hypotheses 1987;22:211–22.
- 87 Bettelheim KA, Goldwater PN, Dwyer BW, et al. Toxigenic Escherichia coli associated with sudden infant death syndrome. Scand J Infect Dis 1990;22:467–76.
- 88 Bettelheim KA, Luke RKJ, Johnston N, et al. A possible murine model for investigation of pathogenesis of sudden infant death syndrome. Current Microbiol 2012:64:276–82.
- 89 Drucker DB, Aluyi HS, Morris JA, et al. Lethal synergistic action of toxins of bacteria associated with sudden infant death syndrome. J Clin Pathol 1992;45:799–801.
- 90 Bettiol SS, Radcliff FJ, Hunt ALC, et al. Bacterial Flora of Tasmanian SIDS Infants with Special Reference to Pathogenic Strains of Escherichia coli. Epidemiol Infect 1994:112:275–84.
- 91 Jakeman KJ, Rushton DI, Smith H, et al. Exacerbation of bacterial toxicity to infant ferrets by influenza virus: possible role in sudden infant death syndrome. J Infect Dis 1991;163:35–40. Erratum in: J Infect Dis 1991;164(1):232.
- 92 Malam JE, Carrick GF, Telford DR, et al. Staphylococcal Toxins and Sudden Infant Death Syndrome. J Clin Pathol 1992;45:716–21.
- 93 Sayers NM, Drucker DB, Morris JA, et al. Lethal synergy between toxins of staphylococci and enterobacteria: implications for sudden infant death syndrome. J Clin Pathol 1995;48:929–32.
- 94 Murrell WG, Stewart BJ, O'Neil C, et al. Enterotoxigenic bacteria in the sudden infant death syndrome. J Med Microbiol 1993;39:114–27.
- 95 Tsokos M. Postmortem diagnosis of Sepsis. Forens Sci Int 2007;165:155–64.
- 96 Hiller AS, Kracke A, Tschernig T, et al. Comparison of the immunohistology of mucosa-associated lymphoid tissue in the larynx and lungs in cases of sudden infant death and controls. Int J Legal Med 1997;110:316–22.
- 97 Doberentz E, Albalooshi Y, Madea B. [Immunohistochemical investigations on pulmonary tissue in cases of sudden infant death syndrome (SIDS)]. Arch Kriminol 2016;237:47–60.
- 98 Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system. Science 2016;352:539–44.