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Recently, a brain-computer interface (BCI) using virtual sound sources has been

proposed for estimating user intention via electroencephalogram (EEG) in an oddball

task. However, its performance is still insufficient for practical use. In this study, we

examine the impact that shortening the stimulus onset asynchrony (SOA) has on this

auditory BCI. While very short SOA might improve its performance, sound perception

and task performance become difficult, and event-related potentials (ERPs) may not

be induced if the SOA is too short. Therefore, we carried out behavioral and EEG

experiments to determine the optimal SOA. In the experiments, participants were

instructed to direct attention to one of six virtual sounds (target direction). We used

eight different SOA conditions: 200, 300, 400, 500, 600, 700, 800, and 1,100ms.

In the behavioral experiment, we recorded participant behavioral responses to target

direction and evaluated recognition performance of the stimuli. In all SOA conditions,

recognition accuracy was over 85%, indicating that participants could recognize the

target stimuli correctly. Next, using a silent counting task in the EEG experiment, we

found significant differences between target and non-target sound directions in all but

the 200-ms SOA condition. When we calculated an identification accuracy using Fisher

discriminant analysis (FDA), the SOA could be shortened by 400ms without decreasing

the identification accuracies. Thus, improvements in performance (evaluated by BCI

utility) could be achieved. On average, higher BCI utilities were obtained in the 400 and

500-ms SOA conditions. Thus, auditory BCI performance can be optimized for both

behavioral and neurophysiological responses by shortening the SOA.
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INTRODUCTION

Brain-computer interfaces (BCIs)—systems that can operate
external devices using only brain signals—have been actively
studied in recent years (Wolpaw and Wolpaw, 2012), and are
expected to provide a method of communication and interaction
for people with severe motor disabilities. Many BCI studies have
used event-related potentials (ERPs) (Farwell and Donchin, 1988;
Wolpaw and Wolpaw, 2012), which are brain signals that occur
in relation to some event. For example, the P300 obtained during
the oddball paradigm is a positive ERP that occurs approximately
300ms after stimulus presentation (Polich, 2007). Althoughmost
BCI studies have used P300 features evoked by visual stimuli
(Sellers et al., 2006; Martens et al., 2009; Halder et al., 2013),
studies using auditory stimuli, such as different types, tones, or
directions of sound, have also been reported (Klobassa et al.,
2009; Halder et al., 2010, 2013; Kanoh et al., 2010; Kim et al.,
2011). Recently, auditory BCIs using spatial information such
as sound-source direction have been studied and are considered
intuitive and easy to use (Schreuder et al., 2010, 2011; Gao et al.,
2011; Käthner et al., 2013; Nambu et al., 2013; Simon et al.,
2014). The use of a virtual sound source as a stimulus is thought
to have additional advantages (Gao et al., 2011; Käthner et al.,
2013; Nambu et al., 2013; Simon et al., 2014). For example,
in a previous study (Nambu et al., 2013) we used a system of
auditory stimuli from different directions that was generated
by out-of-head sound localization technology and presented as
virtual sound over earphones (Shimada and Hayashi, 1995).
The virtual sounds were produced using individual head-related
transfer functions (HRTFs). Because this system can generate
spatial sound accurately without having to place loudspeakers, it
is considered a viable option for use in a compact and portable
BCI system.

Thus, an auditory BCI using virtual sound has great potential
for practical applications. However, compared with visual BCIs,
which have performed better in past research (as evaluated by
information transfer rate or BCI utility), an auditory BCI system
using virtual sounds with sufficient performance has yet to be
developed (Käthner et al., 2013; Nambu et al., 2013).

In this study, we aimed to improve the performance of an
auditory BCI using virtual sound. For this purpose, we focused
on manipulating the duration between presented stimuli, usually
referred to as stimulus onset asynchrony (SOA). Shortening the
SOA is a very effective means of improving BCI performance
with a simple change in experimental design (Farwell and
Donchin, 1988; Allison and Pineda, 2006; Sellers et al., 2006;
McFarland et al., 2011; Höhne and Tangermann, 2012; Lu et al.,
2013). These previous studies have suggested a 100–200-ms SOA
is applicable for visual BCIs and for a simple auditory BCI.
However, it remains unclear whether short SOA is useful for
many other settings as well as auditory BCIs using virtual sound.

To improve BCI performance by shortening the SOA, it
is necessary to consider several aspects. First, if the SOA is
too short, the sound perception might become too difficult,
the task might not be performed correctly, and fewer and
smaller ERPs might be induced. Indeed, previous ERP studies
have shown that P300 is attenuated as task difficulty increases

(Kramer et al., 1986; Polich, 1987; Kim et al., 2008). In this
case, BCI performance is expected to worsen. Therefore, to
improve BCI performance by shortening the SOA of stimulus
presentation, the participant needs to be able to recognize the
direction from which the stimulus sound comes at the shortened
SOA. Additionally, even if participants can recognize the sound
direction, whether ERPs can be induced clearly with respect to
the attended sound and whether the performance of the auditory
BCI can be improved remain unknown. Short target-to-target
intervals have been shown to cause small ERPs (Gonsalvez and
Polich, 2002; Gonsalvez et al., 2007) because of refractory effects
and minimally required attentional effort (Polich, 2007). Because
target-to-target interval is closely related to SOA (when target
probability and stimulus sequence are fixed), similar low ERPs
are likely to be observed when the SOA is too short.

Therefore, the optimal SOA that maximizes BCI performance
is the one for which participants can still accomplish the task,
and for which sufficient identification accuracy is obtained. For
these reasons, determining the optimal SOA is required for
assessing both behavioral and electroencephalographic (EEG)
data (ERP and identification accuracy) (Allison and Pineda,
2006). Several BCI studies have examined the effects of SOA on
ERPs and/or BCI performance in visual (Farwell and Donchin,
1988; Sellers et al., 2006; McFarland et al., 2011; Lu et al., 2013)
and auditory BCIs (Höhne and Tangermann, 2012) without
considering behavioral data. Further, although a few studies have
examined behavioral responses (or count) and ERPs (Gonsalvez
and Polich, 2002; Allison and Pineda, 2006), they did not check
them in the context of BCI performance. Thus, to our knowledge,
no study has yet investigated both behavioral and EEG data with
an auditory BCI.

To examine the effectiveness of shortening the SOA on an
auditory BCI using virtual sounds, here we conducted both
behavioral and EEG measurements using an oddball paradigm.
In each experiment, we tested eight different SOA conditions:
200, 300, 400, 500, 600, 700, 800, and 1,100ms. Using behavioral
button-press responses to the pre-defined target direction of
the sound, we first checked that the participants recognized
the sound direction when the SOA was shortened relative to
the 1,100-ms SOA condition that we used in a previous study
(Nambu et al., 2013). Then, we examined the ERPs for the
target and non-target sub-trials, and calculated the identification
accuracies offline using a regularized Fisher discriminant analysis
(FDA) (Gonzalez et al., 2014). Finally, we evaluated the BCI
performance using BCI utility (Dal Seno et al., 2010). Based on
these results, we were able to determine how much the SOA
should be shortened.

MATERIALS AND METHODS

Participants
This study was conducted according to the Declaration of
Helsinki and approved by the ethics board of the Nagaoka
University of Technology. Nine healthy people (eight males and
one female, mean age: 22.5) participated. All participants were
given information about the experiment and then signed consent
forms.
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Experiment Condition
All participants carried out eight experimental sets, each of which
used one of the eight different SOAs. Each SOA condition was
tested on a different day. A single experimental set comprised
a localization accuracy check, the behavioral experiment, and
the EEG experiment. Experiments were conducted in the
following order: localization accuracy check (pre), behavioral
experiment (pre), EEG experiment, behavioral experiment (post),
and localization accuracy check (post) (Figure 1A).

Auditory Stimuli (Virtual Sound)
We used virtual sound sources that employed out-of-head sound
localization (Shimada and Hayashi, 1995; Nambu et al., 2013) as
auditory stimuli. The out-of-head sound localization technology
can produce accurate virtual sounds from earphones using
the HRTF. This technique can be realized by equalizing the
stimulation in the eardrum generated by sound waves from
loudspeakers and headphones. The principle of this technique is
described by following equation:

HRTF = SSTF · LSTF−1 (1)

where SSTF (referred to as spatial sound transfer function) is
a transfer function from loudspeakers and ear canals. LSTF is
loudspeaker transfer function that is defined for each loudspeaker
(for details, see Shimada and Hayashi, 1995; Yano et al.,
2000).

However, sound waves in the eardrum are different for each
participant because of the shape of the head and the pinna.
Therefore, the HRTFs (SSFTs) need to be measured separately for
each user to ensure accurate virtual sound synthesis.

Measurements were made in a sound insulation room that
was insulated with sound-absorbing glass wool material. A chair
was placed at the center of the room (4.0 × 5.3m). For HRTF
measurements, a miniature microphone (UC-92H, Rion, Japan)
was placed at the entrance to the participants’ ear canals to
measure white noise (100 Hz−15 kHz) that was produced by
a set of speakers (SD-0.6, Soundevice, Japan) arranged around
them in six different directions (60◦ apart). The speakers were
located 1.5m from the participants, and the height from the floor
to the center of the speakers was set to 1.2m, which was the
same height as the participants’ ears. The height and angles of the
chair were adjusted so that the position of the small microphone
was aligned with the speaker at the 90◦ position (see Figure 1B).
Once everything was adjusted for a participant, we measured
the impulse response of the HRTFs. Including preparation time,
the total procedure took about total 30–60min per participant,
although actual measurement was completed within one min for
each direction. The virtual sounds were produced by convolving
the measured impulse responses with white noise. We prepared
six different directions for the virtual sound (30◦, −30◦, 90◦,
−90◦, 150◦,−150◦), using the same white noise stimulus for each
direction.

Localization-Accuracy Check
Even though we used HRTFs that were customized for each
participant, virtual sound is not always localized well. Practically,

localization errors can occur on different days even when
the same HRTF is used. To ensure that participants always
correctly identified the position of the out-of-head virtual
sound, a localization-accuracy check was carried out in all SOA
experiments. One check-trial lasted 3,000ms, including the 100-
ms sound stimulus presentation. After stimulus presentation, the
participant was asked to verbally report the perceived direction of
the stimulus. Sound directions were randomly selected. A single
block of the localization-accuracy check was performed before
and after the behavioral experiments, respectively (Figure 1A).
Each block contained 60 check-trials, and the accuracy of
direction identification for the presented sounds was calculated
using both blocks.

Behavioral Experiment
Procedures
The behavioral experiment was carried out using a button-press
task to confirm whether participants could recognize the sound
direction in each SOA condition. The sound image could be
located in one of six directions described above. We used an
oddball experimental paradigm. One direction was defined as the
target, and the other directions were non-target. We instructed
participants to press the button as soon as possible when a sound
was heard from the target direction.

Six blocks of the behavioral experiment were performed block
before and after the EEG experiment in each SOA condition.
Each of the six directions was the target in one of the six blocks.
The time between blocks was about 1min. Each block comprised
10 trials, and each trial included six sub-trials: one target sub-
trial and five non-target sub-trials (Figure 1C). In each sub-trial,
the white noise stimulus was presented for 100ms followed by a
silent interval. SOAwas defined as the duration of the white noise
plus the silent interval (Figure 1C), and varied by condition (200,
300, 400, 500, 600, 700, 800, and 1,100ms). In the same way, as in
the localization accuracy check, the direction of sounds in each
sub-trial was pseudorandomized. Note that definition of a trial
here differs from the check-trial used in the localization check
(see above).

Analysis
The behavioral responses in the button-press task were analyzed
for eight out of nine participants. One participant was excluded
from the analysis because of missing data. Using data obtained
in both pre- and post-behavioral experiments, we obtained target
recognition accuracy, which was calculated by checking whether
the participant pressed the button after the presentation of
the target sound. We defined a correct button press as one
that occurred in a time window starting at 150ms after the
beginning of sound presentation and lasting until the next sound
presentation. This definition was based on the assumptions that:
(1) motor response latency to auditory stimuli is probably at least
160ms (Welford, 1988); and (2) they finished their responses
before the next sound. However, for very short SOAs, the second
assumption does not hold because they might be shorter than the
participant’s reaction time (RT). In fact, when we checked the
average RTs across participants for short SOA conditions, they
were 400–500ms. Therefore, we counted responses within the
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FIGURE 1 | Experimental protocol. (A) Outline of the experiments. (B) The sound image was located in one of six different directions (30◦, −30◦, 90◦, −90◦, 150◦,

−150◦) with 0◦ directly facing the user (black head) in the horizontal plane. (C) A sub-trial comprised a 100-ms sound (white noise) and an interval without sound. The

SOA was manipulated by changing the interval. Sound duration was fixed at 100ms for all SOA conditions. For each experiment, one of the eight SOAs (200, 300,

400, 500, 600, 700, 800, and 1,100ms) was selected.

range of 150–600ms after the stimulus for short SOA conditions
(<500ms).

EEG Experiment
Procedures
The EEG experiment used basically the same oddball task as
the behavioral experiment. However, instead of the button press,
we instructed the participants to silently count the number of
times that the stimulus sound was heard from the target direction
(referred to as the count task). Each of eight experimental
sets used one of the eight SOAs (200, 300, 400, 500, 600,
700, 800, and 1,100ms). Each experiment comprised 12 blocks,
and each block included 30 ± 1 trials. As in the behavioral
experiment, single trials consisted of six sub-trials (Figure 1C).
A sub-trial consisted of 100ms of white noise followed by
the variable silent interval, in which no sound was produced.
The target direction was relocated for each block, and each
direction served as a target twice in each SOA condition (total
12 blocks). After completing six blocks, we took a break for about
5min.

We measured the EEG signals using a digital
electroencephalograph system (Active Two, BioSemi,
Amsterdam, The Netherlands) with 64 electrodes attached
to the scalp using a cap. The driven right leg passive electrode
and common mode sense active electrode were attached to the
left and right ears, respectively, to reduce impedance (for details,
see1). The EEG data were sampled at 256Hz. We instructed the
participants to perform the task with their eyes closed.

1www.biosemi.com.

Preprocessing
Preprocessing of EEG data was performed for all SOA conditions.
Data were high-pass and low-pass filtered. The low-pass cutoff
frequency was 0.1Hz and the high-pass cutoff frequency was 8Hz
(Gonzalez et al., 2014). After the filtering, we removed motion
artifacts using the ADJUST toolbox (Mognon et al., 2011). We
used a 1,000-ms span of EEG data to determine the identification
accuracy for each different SOA. For each channel, we averaged
the last 100ms of the signal before stimulus onset as a baseline
correction, and subtracted it from the measured data. Then we
downsampled the data by averaging every 10 samples.

ERP Analysis
For each SOA condition, we examined differences in ERP
waveforms to check whether they were evoked by sound from
the target direction. Data from each participant were averaged
for each target and non-target waveform in each SOA condition.

First, we examined the temporal changes in the ERP at
the Pz channel. Significant differences were tested for using a
paired t-test for each time sample in the interval of 0–1,000ms.
To eliminate false positives caused by multiple comparison,
the FDR (False Discovery Rate) was adjusted by a method
proposed by Benjamini and Hochberg (1995) (number of
samples Ntime = 256).

Next, we examined spatiotemporal ERP differences between
the target and non-target sub-trials, focusing on differences in
ERP data at the three times points at which we expected to
see N100, P200, or P300 (Allison and Pineda, 2006). Based
on previous studies (Gonsalvez and Polich, 2002; Allison and
Pineda, 2006), we determined the peak onsets (i.e., latencies)
in the ERP during the 80–180, 170–260, and 300–500ms
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after stimulus onset for N100, P200, and P300 components,
respectively (Figure 2). We tested for significant differences
between target and non-target sub-trials for each channel using
a paired t-test. Like the ERP analysis at Pz, FDR correction was
employed (number of samples Nch = 64).

BCI Performance Evaluation
Training a Binary Classifier and Calculating a Score
In an offline analysis, we identified the target direction
individually for each participant using the six sound directions
and 5-fold cross-validation as follows. First, we split the data into
five sets. In each cross-validation, four sets were used as training
data and the remaining set was the test data. Using the training
dataset, we trained a binary classifier to distinguish between
target and non-target sub-trials. We used a variant of regularized
FDA (Blankertz et al., 2011) as the classification algorithm, which
is a supervised learning classifier that is typically used to reduce
the dimensionality of data. The method we used was proposed
by Gonzalez et al. (2014), where a regularized parameter for
FDA is searched for by particle swarm optimization (PSO)
(Kennedy, 2011). Although this method can also select EEG
channels to be used as feature values, we used all channels without
selection.

FDA trained a weight w that projects input vector x of D
dimensions to scalar y. Thus, a hyperplane is obtained as follows:

y = wTx (2)

We determined the w that maximizes the amount of separation
of the data after projection. The objective function to maximize
is represented by:

J (w) =
〈w, mt −mnt〉

2

wTSww + λ ‖w‖2
(3)

where mt and mnt are averages of the target and non-target
sub-trials respectively, and mt–mnt is the difference between
the average of each class. Sw is the covariance between classes.
Angle brackets denote the inner product and ||w|| indicates
the Euclidean norm of x. λ is the regularization parameter
determined by the PSO. This parameter plays a crucial role as it is
needed to prevent imprecisions in the calculation of w that might
appear because of the high dimensionality of the data. When λ

is 0, normal FDA is obtained. The parameter λ was determined
by 5-fold cross-validation of the PSO in the training data (PSO
details are described in Supplementary Materials).

Next, we evaluated the test data using the estimated w. We
used the test data as an input dataset by judging which of the
target and non-target distributions of training data was closer
to the input. Then, we determined a score that represented the
distance from a hyperplane (Equation 2). A score of 0 means that
the output y is on the hyperplane. It is recognized as a target if
the score is positive, and a non-target if it is negative.

Identification of Target Direction
Because we used six sound directions and wanted to identify
the target direction from those directions, we calculated the

FIGURE 2 | Averaged ERP data for each SOA. Averaged ERPs across

participants at channel Pz from 0 to 1 s. The red line shows target data and

the blue dashed line shows non-target data. The black and gray lines at the

top of each panel represent duration, showing a significant difference between

target and non-target data using paired t-tests (p < 0.05) with and without

FDR correction, respectively. Vertical dashed lines show the averaged

latencies (98, 203, and 375ms; average across SOA conditions) at which

positive or negative peaks occurred, each of which probably represents N100,

P200, and P300, respectively.
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identification accuracy as the accuracy of identifying the target
out of six directions (6-class identification; chance level is about
16.7%). The score described above was calculated for the target
estimation. Six trials, one from each direction, were defined
as a single set, and the direction in which the score becomes
maximum is considered the target direction. We examined the
identification accuracy for a single trial and averaged trials for
n times (n = 2, 3, . . . , 10). When performing the averaging, the
score of a single trial was averaged for each direction, and the
direction in which the average score was the maximum was set as
the estimated target direction.

Thus, we calculated identification accuracy for each cross-
validation repetition and obtained averaged identification
accuracy across repetitions and participants. To examine the
effect of SOA on the identification accuracy, we conducted a
three-way analysis of variance (ANOVA) with factors of SOA, a
number of averaged trials, and participant. Differences compared
with the 1,100 SOA condition (used in our previous study) were
tested using a Turkey-Kramer post-hoc test.

BCI Utility
Information transfer rate (ITR) is commonly used to evaluate
BCI performance (Wolpaw and Wolpaw, 2012). However, ITR
does not consider error correction if it is used in an offline
analysis. Furthermore, by its definition, ITR becomes higher
when the SOA is small, even if the accuracy (identification
accuracy) is low (around 50%). In the present study, we evaluated
performance using BCI utility (Dal Seno et al., 2010). The
definition of the BCI utility U is as follows:

U =

{

(2P/100−1)log2(N−1)
c (P ≥ 50)

0 (P < 50)
(4)

where P is the identification accuracy (%) and N is the number
of directions. Denominator c is the duration of a single trial
and defined by c = nNt, where n is a number of averaged trials
and t is the SOA. In contrast to the ITR, this measure takes
into account error correction. If the identification accuracy is
<50%, BCI utility is zero because the accumulated probability of
detecting the correct direction becomes very small and then error
correction is always necessary. Additionally, BCI utility and ITR
become equal when the identification accuracy is 100%.

RESULTS

Localization-Accuracy Check
The localization-accuracy check was conducted to ensure that
participants could localize the virtual sound accurately without
any SOA manipulation (i.e., unshortened SOAs). In this check,
all participants reported the virtual sound direction correctly.
The localization accuracy was 99.0% averaged across all SOA
conditions and all eight participants. The result for the worst
SOA condition was 91.7%.We thus confirmed that virtual sounds
generated using out-of-head sound localization that was tuned
for each participant was well localized for each direction.

Behavioral Performance
We calculated averaged recognition accuracies for all directions
across the eight participants in the button-press task, as shown in
Table 1.

Recognition accuracies in all SOA conditions were over 85%,
suggesting no or little differences in recognition performance
across experimental days. The highest accuracy rate was 96.4%
for the 1,100-ms SOA. The lowest result was obtained for the
200-ms SOA (86.9%).

ERP Differences
The results for the averaged ERP time course at channel Pz
from 0 to 1,000ms are shown in Figure 2. We observed that
for all but the 200-ms SOA condition, the target and non-target
ERPs differed significantly around 400ms after stimulus onset
(p < 0.05, FDR corrected). For the 200-ms condition, a paired
t-test showed a significant difference when correction was not
applied (p < 0.05, uncorrected).

To examine differences in the EEG waveforms, EEG data for
N100, P200, and P300 were averaged across participants in every
SOA condition for each channel (Figure 3). The latency of each
ERP is listed in Supplementary Table 1.

At the N100 time point (Figure 3, left), channel showed a
significant difference between target and non-target (with FDR
corrected) only in the 700-ms SOA condition. In contrast, at
the P200 time point (Figure 3, middle), some channels were
significantly different (p< 0.05, FDR corrected), except when the
SOA was 200, 300, or 600ms. These changes had negative values
for the frontal areas, suggesting a decreasing P200 component.
At the P300 time point (Figure 3, right), ERPs in target and
non-target sub-trials were significantly different for the central
and posterior channels (p < 0.05, FDR corrected). This was not
observed in the 200-ms SOA condition. The amplitude was larger
in the target sub-trials than in the non-target sub-trials because
the observed ERP differences were positive, which probably
reflects P300. No channel showed significance at any time for the
200-ms SOA.

To determine if P300 amplitude was related to direction
identification, we examined the correlations between peak
differences of P300 amplitude between target and non-target
sub-trials at three representative channels (Fz, Cz, and Pz) and
the single-trial identification accuracy for each SOA. Results
showed strong positive correlations between P300 amplitude
and identification accuracy (r = 0.88, 0.91, and 0.83 for each
respective channel; all ps < 0.05; n = 9 samples). Similarly,
we also tested whether amplitude difference between target
and non-target sub-trials before P300 (minimum value during
150–300ms) negatively correlated with single-trial identification

TABLE 1 | Averaged button-press accuracy for eight participants.

SOA (ms) 200 300 400 500 600 700 800 1,100

Accuracy (%) 86.9 90.8 89.9 88.0 92.3 95.3 95.5 96.4

(± SDa) (± 5.0) (± 8.0) (± 5.1) (± 6.2) (± 5.5) (± 3.3) (± 4.2) (± 4.1)

aSD, standard deviation over directions.
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FIGURE 3 | Topography of ERP difference (target – non-target). Differences in

ERPs were calculated from averaged EEG data for all participants. Each row

represents one of the eight SOA conditions and shows difference maps at

each latency for N100, P200, and P300 (Supplementary Table 1). White and

gray filled circles represent channels that showed statistically significant

differences (p < 0.05) with and without FDR correction, respectively.

accuracies for frontal and central channels (Fz and Cz). Analysis
revealed no significant correlations (r = −0.45 and 0.10 for the
Fz and Cz, respectively; p > 0.05), but found a tendency toward a
negative correlation at the Fz channel.

Identification Accuracy and BCI Utility
The average accuracy in identifying target direction across
participants was determined for each SOA condition
(Figure 4A). Averaging-induced increases in identification
accuracy can be seen in all SOA conditions. Identification
accuracy reached about 80% in many SOA conditions.
Accuracies for the 200-ms and 300-ms conditions were relatively
low (around 70% at maximum) compared with the other
SOA conditions. When SOA was 400–1,100ms, identification
accuracies became 70% when averaging four trials and rose to
around 80% when averaging more than nine trials. The highest
accuracies were found for the 500 and 800-ms SOAs. The highest
accuracies were achieved for the 500-ms (87.7% at maximum,
averaged 10 times) and 800-ms (86.2% for the, averaged 10
times) SOAs. A three-way ANOVA revealed a main effect of
SOA [F(7,719) = 18.69, p < 0.001]. Turkey-Kramer post hoc tests
showed that performance for the 500-ms SOA was significantly
higher (p< 0.002) than that for an 1,100-ms SOA, while those for
the 200-ms and 300-ms SOAs were significantly lower (p < 0.001
and p < 0.02, respectively).

Analysis with the BCI utility U revealed a maximal U of 9.5
bits/min for the 500-ms SOA when averaging twice. The U for
the 400-ms SOA condition was also high (7.2 bits/min).

In summary, even when the SOA was shortened by 400ms,
performance accuracy was higher or almost the same as were
observed with the 1,100-ms SOA. As a result, the BCI utility
increased to 9.5 bit/min.

DISCUSSION

In this study, we examined the impact of shortening the interval
of the stimuli presented (SOA) in an auditory BCI that estimates
user intention during a virtual sound-listening task. To this end,
we analyzed both behavioral and EEG data (ERP, identification
accuracy, and BCI utility).

The results of the behavioral experiment showed that
participants obtained target recognition accuracies greater than
85% in all SOA conditions. This indicates that they were able
to recognize the target direction and complete the required task.
In the EEG experiment, significant ERP differences were found
between target and non-target sub-trials for 300–1,100-ms SOAs,
and higher identification accuracy and BCI utility were observed
when the SOAwas shortened to 400 and 500ms. Thus, compared
with the 1,100-ms SOA used in previous research (Nambu et al.,
2013), we confirm that shortening the SOA can indeed improve
performance in an auditory BCI using virtual sounds.

Target Recognition Ability
Here, we calculated three different measures to examine the
feasibility of shorter SOAs in an auditory BCI using virtual
sounds.

First, target-recognition performance was assessed as a
behavioral measure. It is important to understand whether
SOAs used in the experiment are long enough for participants
to recognize the target stimuli in an oddball paradigm. Yet,
in previous studies of auditory BCIs using spatial sound
information (Gao et al., 2011; Käthner et al., 2013; Nambu

Frontiers in Neuroscience | www.frontiersin.org 7 February 2018 | Volume 12 | Article 108

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sugi et al. Shortening SOA for Auditory BCIs

FIGURE 4 | Identification accuracy of target direction and BCI utility.

(A) Identification accuracies. Each line represents the average accuracy across

participants in each SOA condition as a function of the number of averaged

trials (1–10 times). (B) BCI utility for each SOA condition as a function of the

number of averaged trials.

et al., 2013; Simon et al., 2014), the behavioral performance was
not considered. Only one study using loudspeakers (Schreuder
et al., 2010) examined recognition performance for eight spatial
directions of sound (condition Cr). However, whether their
participants could recognize target direction with a very short
SOA is not clear because they used a ∼2,000-ms SOA, which
was much longer than those generally used in BCI experiments.
The current results of our behavioral experiment showed that
target recognition accuracy was over 85% in all SOA conditions,
indicating that participants could recognize the target direction
fairly easily in a spatial auditory BCI paradigm even when the
SOA was very short (200ms). Thus, our results highlight the
effectiveness of very short SOAs (down to 200ms) in target
recognition.

We should note a methodological limitation when evaluating
behavioral performance in short SOA conditions (200 and
300ms). To evaluate recognition performance, we counted the
responses during the 150–600ms after stimulus onset for short
SOA conditions (see 2.4.2). For 200 and 300-ms SOAs, this

duration overlaps with non-target stimuli before and after the
target stimulus. Thus, a response to the non-target stimulus
before or after the target stimulus could potentially be wrongly
considered as a correct response to the target. However, we
think that such misrecognition of responses is unlikely because
the responses (mean reaction times) were similar across SOA
conditions (Supplementary Table 2).

The high target recognition that we observed in the behavioral
task was likely maintained during the EEG experiment because
the cognitive processing required for perceiving virtual sounds
was virtually the same between the two experiments. The
only difference between experiments was how the participants
reported a sound from the target detection: in the EEG
experiment they silently counted the number of times that they
occurred, while in the behavioral experiment they pressed a
button as soon as they heard one. In fact, errors during silent
counting were <1.5% for all SOA conditions (Supplementary
Table 3), supporting successful target recognition. Thus, we
conclude that participants were able to recognize the target
direction in the EEG experiment when the SOAs were very
short.

Relationship between Behaviors, Evoked
Potentials, and Identification
Now we consider the relationship between identification
accuracy and the other factors. The ERP results (Figures 2, 3)
showed two types of differences between target and non-target
sub-trials. One was the strong P300 component in the target
sub-trials. This was observed over many channels for all but the
200-ms SOA. The lack of a strong P300 component at very short
SOAs is in line with previous ERP studies (see Polich, 2007 for a
review). For example, P300 was reported to be small when target-
to-target intervals for either auditory or visual stimuli were 1 s
(Gonsalvez and Polich, 2002). In the current study, the average
target-to-target interval for the 200-ms SOA was 1.2 s, and we
saw similarly low small P300 amplitudes. Overall, the correlation
analyses revealed a strong correlation between P300 amplitude
and identification accuracy, suggesting that this ERP is related
to identification of direction, which is associated with attentional
allocation processing (Polich, 2007).

The other difference that we observed was in a negative
component. A previous study (Allison and Pineda, 2006)
examined the effects of short SOA on ERPs in a visual BCI setting
and suggested that in addition to the three ERPs examined here,
N200 is also influenced by SOA. Similar results have also been
observed in auditory BCIs (Schreuder et al., 2010; Halder et al.,
2013; Nambu et al., 2013). In line with these findings, we observed
differences in negative components 150–300ms after stimulus
onset, primarily distributed in the frontal and central channels
(Figure 3). We found a tendency for the amplitude in this
negative component to negatively correlate with identification
accuracy for the Fz channel (but not significantly). This might
thus reflect a decrease in P200 or N200 components in the
frontal/central areas.

Thus, P300 and negative components (decrease in
P200/N200) were consistently observed even when the SOA was
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shortened. Based on our results, P300 is a strong indicator of
identification accuracy, and frontal negative components may
also be related.

Toward Optimization of the SOA
The best identification accuracy that we observed and the best
BCI utility were achieved at a 500-ms SOA (Figure 4). We
compared our current results for seven different SOAs (ranging
from 200 to 800ms) with those from the 1,100-ms SOA used
in our previous study (Nambu et al., 2013). The results showed
that identification accuracy for the 400–800ms SOA conditions
were higher or about equal to the accuracy at an SOA of 1,100ms
(significant improvement was found for the 500-ms SOA). Using
BCI utility, we found that the maximum BCI performance for
all SOA conditions were improved compared with those for the
1,100-ms SOA. This suggests that shortening the SOA is crucial
for improving BCI performance.

Our results extend the findings from past studies using
virtual sound (Gao et al., 2011; Käthner et al., 2013). Gao et al.
(2011) examined a BCI system using virtual sound from five
directions. They used randomized SOAs from 300 to 500ms
and obtained ∼40% accuracy (binary classification) in single
trial and more than 80% accuracy with 10-trial averaging. In
our current study, accuracies were relatively higher; 200 and
500-ms SOAs resulted in single-trial accuracies of 41.6 and
57.5%, respectively. This discrepancy might have resulted from
differences in the measurement environment when creating the
virtual sound source (they used an HRTF database), and the use
of a support vector machine as the classifier. For that reason, we
suggest the effectiveness of virtual sound generated by individual
HRTFs and the FDA classifier used in this study. In another
study (Käthner et al., 2013), Käthner and colleagues used SOAs
from 200 to 600ms and obtained the highest identification
accuracy for the 600-ms SOA (560ms ISI) and the best ITR for
the 440-ms SOA (2.76 bits/min). These were in line with our
results in which better performances were obtained using 400
and 500ms SOAs. Furthermore, we also observed higher BCI
utility, which was likely because of shortening the SOA, reducing
the number of averaged trials, better direction recognition
using individual HRTF, and the different classifier algorithm
(regularized FDA).

Another study (Schreuder et al., 2010) examined shortened
SOAs using loudspeakers for eight directions. They obtained
about a 30–60% identification accuracy at an SOA of 215ms
in a single trial using five participants. Our results were similar
to these. This previous study used five frontal directions (45◦

apart) and loudspeakers. Thus, the task used in the previous study
was much simpler than the task used in our study. However,
identification accuracies did not show large differences. From
this, our results also suggest that for auditory BCIs, shortening
SOAs in combination with virtual sounds that employ individual
HRTFs is effective.

Very short SOA has been shown to be feasible for visual
BCIs (Farwell and Donchin, 1988; Sellers et al., 2006; McFarland
et al., 2011; Lu et al., 2013). In auditory BCIs, studies using
loudspeakers have used very short SOAs of around 200ms

(Schreuder et al., 2010, 2011) and another study suggests that
SOAs can be shortened to around 200ms in a simple auditory
setting without spatial information (Höhne and Tangermann,
2012). In contrast to these findings, our results indicate that
auditory BCIs using virtual sound can be optimal for anyone
when SOAs are between 400 and 500ms. Although our results
showed that an SOA of 200ms resulted in low performance on
average, this does not mean that a 200-ms SOA is inappropriate
for use in auditory BCIs using virtual sounds. Rather, our results
indicate that individual differences in the ability to identify
the target location at 200-ms SOA were large. Because some
participants did quite well at this very short SOA (more than 80%
after averaging; Supplementary Figure 1), the appropriateness
of a 200-ms SOA should be evaluated on a case-by-case
basis.

We also confirmed from our behavioral experiment results
that the recognition accuracy at an SOA of 200ms was low
compared with the other SOA conditions even though the
recognition accuracy was over 85%. (Table 1). This could be
related to the low identification accuracy at an SOA of 200ms.
For that reason, we suggest that identification accuracy can be
improved when conducting EEG by training participants on
the tasks before beginning the experiments. The present study
focused on recognition of sound using spatial information. To
this end, we used the same white noise stimuli for all directions.
The virtual sounds in the current setting were 60◦ apart. This
resolution is enough for participants to recognize the sound
correctly. Although virtual sounds with spatial resolutions of
<15◦ are possible (Shimada and Hayashi, 1995; Middlebrooks,
1999), increasing the resolution beyond 60◦ will likely result
in increases in recognition errors. Performance could be also
improved by adopting different sound patterns for each direction,
for example, different tones (Schreuder et al., 2010, 2011; Käthner
et al., 2013), or natural stimuli (Simon et al., 2014). We intend to
study this in the future.

CONCLUSION

In this study, we examined the impact of shortening SOAs
on an auditory BCI using virtual sounds. By assessing both
behavioral performance and brain activity data in offline analysis,
we confirmed that SOAs can be shortened and the best
improvements in BCI utility could be achieved with a 500-
ms SOA. Considering individual differences, good identification
accuracies can likely be achieved for many people even at an
SOA of 200ms. Thus, shortening the SOA is an effective means
for improving auditory BCIs that use virtual sounds. In the
future, we will consider shortening SOAs in online practical
settings.
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