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Abstract: This paper provides a review of engineering applications and computational methods
used to analyze the dynamics of heart valve closures in healthy and diseased states. Computational
methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves.
Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the
need for a more robust method for resolving valvular disease. For example, while fluid–structure
interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics
is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns,
helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that
computational flow dynamic analyses can be integrated with other methods to create a superior,
more compatible method of understanding risk and compatibility.

Keywords: heart valves; mitral valve; tricuspid valve; aortic valve; pulmonary valve; repair; devices;
computational analyses

1. Introduction

The art of heart valve repairs is constantly developing. Leonardo da Vinci conducted
studies in animals and did more than 30 human dissections to accurately interpret the
anatomy of fresh specimens and the motion of blood in the beating heart through small
metallic tracers. Over half a millennia later, we are still investigating the movement
of blood in the beating heart, albeit by means not available to Leonardo. Noteworthy
technological improvements [1] have facilitated the evolution of computational methods
for heart valve modeling.

The four heart valves include the mitral valve (MV), tricuspid valve (TV), aortic valve
(AV), and pulmonary valve (PV). The configurations of the mitral and tricuspid valves
are similar, comprising two and three valve leaflets, respectively, with inserted chordae
tendineae and anchored to the ventricle walls via papillary muscles. On the other hand,
the aortic and pulmonary valves are comprised of three equally sized semilunar cusps or
leaflets, which are bound at three commissures. The pressure gradient across each valve
controls its opening and closing dynamics. In heart valve disruptions, the design of the
valve may be compromised, leading to stenosis (narrowing of the valve) or regurgitation
(leakage of the valve). Treatment of these conditions can be surgical, transcatheter, or
percutaneous, and include repair or replacement therapies.

Validated using in vitro models, e.g., [2], computational models can be used to (i) aid
in the development of diagnostic tools, therapeutic instruments, and innovative prostheses
for the treatment of heart valve ailments; (ii) indicate surgical consequences for repair or
replacement procedures available for heart valve pathologies, or support pre-procedural
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planning of appropriate transcatheter or percutaneous therapies; (iii) provide help in medi-
cal device regulatory recommendations, and (iv) explain the cause-and-effect associations
between cardiovascular biology and hemodynamics [3]. The latter has the prospect to ex-
tend our knowledge of disease evolution and progression, thereby allowing the expansion
of new translational technologies, diagnoses, devices, and treatment alternatives [4,5].

Computational fluid dynamic (CFD) investigations are a cost-effective mechanism that
can be used for the high-resolution evaluation of clinically pertinent flow parameters, e.g.,
wall shear stress and blood damage. These parameters are of interest during the creation
and optimization of manufactured heart valves but are challenging to measure in vivo
and/or in vitro. Thus, CFD can be used to augment the understanding gained from clinical
and empirical reviews of artificial heart valves. To guide in conducting computational
studies of transcatheter heart valve prostheses, a position paper was disseminated by
an ISO working group [6], while more recently, the FDA has formulated procedures for
evaluating the credibility of computational modeling and simulation in medical device
recommendations [7]. Patient-specific modeling has been earning awareness because of its
prospect to tailor possible therapies and enhance patient outcomes (e.g., [8,9]). However,
there is presently no traditional practice for the patient-specific evaluation of artificial
heart valve performance using CFD. Fully patient-specific computational simulations
are fairly new and not yet exhaustively validated for a wide spectrum of applications.
Similarly, the use of CFD for heart valve modeling is challenged by the intricacy of the
interaction between blood flow and the anatomical and/or device configurations concerned,
oftentimes necessitating the usage of more costly and convoluted fluid–structure interaction
(FSI) models.

This examination emphasizes the role of engineering applications and computational
strategies for heart valve modeling, with a focus on the treatment of heart valve conditions.
This review summarizes recent computational studies that use various FSI analyses to
investigate the heart valves. However, the use of FSI algorithms is still scarce. Hence, recent
CFD studies without considering the FSI were also included. Similar review articles on the
clinical impact of computational models with different priorities can be found [10,11].

1.1. Chordal Repair/Replacement

Degenerative MV disorder frequently leads to leaflet prolapse due to chordal stretching
or rupture and resulting in MV regurgitation [12]. As noted before, computational strategies
can expand the knowledge attained from empirical methodologies, such as artificial chordae
for mitral and tricuspid valve restorations [13]. For example, Toma et al. and Singh-Gryzbon
et al. developed a chordal material properties iteration technique which delivered a good
match of the computational and experimental coaptation lines between the leaflets in
contact when complete closures are reached in the mitral [14] and tricuspid [15] valves,
respectively. Watton et al. used the immersed boundary (IB) approach to simulate a chorded
prosthetic MV, lodged in a cylindrical conduit, subject to a physiological recurring fluid
flow [16]. While it is inferred that the use of artificial chordae implantation is superior in
a range of pathological environments, several issues remain in their usage, particularly
the appropriate judgment of their length [17,18]. Computational procedures that unravel
these points may enhance patient outcomes. In [19], the resulting regurgitation from
51 distinct potential ruptures in a single-subject subvalvular apparatus is demonstrated.
Failure of MV reconstructive strategies usually may be elucidated to extreme or progressive
alterations of subvalvular apparatus [20]. As articulated in [21], while the importance of
keeping the integrity of papillary muscle, chordae tendineae, and MV cuspid is clear, the
knowledge of the highest resistance that a primary tendinea chorda can resist is not known.
An examination of the not-so-recent literature on recurrent mitral regurgitation due to
ruptured synthetic chordae is delivered in [22]. More current chordal cutting/rupture
investigations, and studies on the significance of preserving the MV apparatus, can be
located [23–30]. A comparative analysis evaluated the medium-term outcomes of the
loop procedure in comparison with the widely embraced leaflet resection approach for
the restoration of isolated posterior mitral leaflet prolapse [31]. A comparison of survival
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aspects of MV repair versus prosthetic substitute for degenerative diseases during twenty
years was completed demonstrating long-term data to defend the merit of restoration
versus prosthetic valve replacement [32]. In patients with degenerative MV and ischemic
heart conditions, MV repair grants a survival benefit over the substitute that becomes
apparent about two years after the procedure [33]. When pursuing a higher benchmark for
degenerative MV repair, evaluating the durability of MV repair is integral [34]. Long-term
consequences of MV repair with chordal replacement were reviewed [35–37]. Nonetheless,
the concern of how to safely estimate the neochordae length remains [17,18,38,39]. For
that cause, techniques are devised to perform beating-heart implantation and off-pump
adjustment of neochordal length [40]. Additional examination of enlarged hearts and
papillary muscle displacement is essential to retain the complete range of pathologies.
Anchoring of neochordae at the papillary muscles, thereby imitating the authentic anatomy,
should be favored over the left ventricular apex [41]. In patients with chronic functional
ischemic mitral regurgitation, papillary muscle relocation has the prospect to yield reverse
left ventricular remodeling. Stitches connected between epicardial discs and individual
trigones can be utilized for papillary muscle relocation [42,43]. The papillary muscle
relocation strategies are seen to dramatically benefit ischemic patients by impacting the
left ventricular form and operation more efficiently compared with the full retention of
the mitral subvalvular apparatus if the MV is to be replaced [44]. Some methods are
investigated independently versus in combination with other techniques. For instance, in
patients with ischemic mitral regurgitation, combined MV repair and revascularization
resulted in comparable five-year survival when compared with revascularization alone.
Regardless, combined MV repair and revascularization generated less postoperative mitral
regurgitation [45].

1.2. Heart Valve Repairs/Devices

Numerous studies have been executed to investigate the impact of medical devices
on decreasing the stress in diverse MV regions [46–48]. While the physio ring is regarded
as an improved rendition of the traditional rigid ring, and the physio ring is more widely
employed, long-term results of repair for degenerative MV disease with the classic and
physio rings are equivalent [48]. However, the low incidence of reoperation and late cardiac
events indicates that the physio ring, with its intrinsic flexibility, presents an indisputable
benefit in the application of remodeling strategies in MV reconstruction [49]. Some ther-
apies of choice for chronic ischemic mitral regurgitation annul active annular movement
and immobilize the posterior leaflet. In a model of chronic ischemic mitral regurgitation,
septal–lateral annular cinching sought to uphold regular annular and leaflet dynamics
was tested [50]. A decrease of the annulus with an undersized ring has once seemed to
be the select surgical choice to rectify ischemic mitral incompetence [51,52]. Nonetheless,
numerous investigations uncovered substantial residual and repeat rates of mild to severe
mitral incompetence in 30% of patients within 6 months of surgery [53–57]. Mitral valve
replacement strategies in patients with left ventricular dysfunction are often chaperoned
with other techniques for more promising left ventricular remodeling compared with total
retention of the mitral subvalvular apparatus during MV replacement [58]. Surgical repair
is the most routine procedure used to rectify mitral regurgitation. However, the effective-
ness of other techniques is still examined. The efficacy of a procedure is specified using an
immense combination of factors, such as the durability of the repaired valve as well as the
valve’s function and hemodynamics under stress states. Thus, a myriad of studies are car-
ried out to assess these parameters at follow-ups [59–62]. By approximating edge-to-edge
repair (to repair ruptured/elongated chords) with chordal replacement, it was discovered
that edge-to-edge repair and chordal replacement are sufficiently suited for the restoration
of both the anterior and posterior leaflets [63]. Regardless, among patients experiencing
transcatheter MV edge-to-edge repair with the MitraClip device, a pertinent ratio (2–6%)
requires open MV surgery within 1 year after unsuccessful clip implantation [64]. Both in
vivo and in silico examinations evaluated the combined force transfer from the papillary
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muscle tips to the MV via the chordae tendineae, and thereby quantified the force shared
through the papillary–chordal complex to augment left ventricular ejection [65,66].

1.3. Repair versus Replacement

The outcomes underscore the significance of early detection and review of mitral
regurgitation [67]. The most satisfactory short-term and long-term results are gained in
asymptomatic patients worked on in state-of-the-art repair centers with low operative
mortality and high repair rates [68]. The durability of a successful mitral reconstruc-
tion for degenerative MV condition is not consistent, and this should be accepted when
asymptomatic patients are proposed early MV repair [69]. Early diagnosis and surgery
are paramount as a life-saving standard for infants with acute MV chordal rupture [61,70].
The unique vision of staging of the valvular diseases, newer predictors, and controversy of
“watchful waiting” versus “early surgical intervention” for severe, asymptomatic, primary
mitral regurgitation are examined in a study that outlines the current interpretation of pri-
mary, degenerative mitral regurgitation concerning etiology, complete examination, natural
history, and control [71]. Based upon a sounder knowledge of the natural history of mitral
regurgitation, the unsatisfactory effects of medical therapies, the adverse consequence
of anomalous left ventricular dimensions and function, and manifestations of long-term
survival, a directive presently exists for early surgical repair of mitral regurgitation be-
fore the start of symptoms and considerable left ventricular dysfunction [72]. New valve
pathology after a repair oftentimes results in recurrent mitral regurgitation. Successive
mitral re-repair is conducted in nearly half of patients and is associated with outstanding
survival, enhanced ejection fraction, and more significant regression in ventricular pro-
portions compared with valve replacement [73,74]. However, an observational analysis
found that MV repair in coronary artery bypass grafting patients with ischaemic mitral
regurgitation and depressed left ventricular ejection fraction is not incomparable to mitral
valve replacement concerning operative early mortality and mid-term survival [75]. A meta-
analysis of randomized controlled trials and adjusted observational studies demonstrated
that for patients with ischemic mitral regurgitation, MV repair seems to be unassociated
with a noteworthy reduction in both early and late all-cause mortality compared with MV
replacement [76]. The mechanisms of MV repair failure as well as aspects that meaningfully
impact the probability of a successful re-repair can be located in [77]. When comparing MV
re-repair versus replacement following failed initial repair, it was uncovered that they are
associated with comparable postoperative outcomes [78]. Repair of rheumatic MVs has
been met with narrow success. Due to residual diseased leaflet tissue, the hemodynamic
obstruction continually endures after repair. An assertive strategy to rheumatic MV repair
with extreme excision of the diseased leaflets area, and subvalvular apparatus and subse-
quent reconstruction, intending to extract all diseased valvular tissue, was devised and
executed [79]. Data comparing processes of MV repair and replacement for ischemic mitral
regurgitation are primarily restricted to small, non-randomized retrospective trials [80].
The only randomized trial data to investigate this topic indicated no distinction in mortality
with either replacement or repair; however, the replacement was shown to be invariably
associated with higher rates of mitral regurgitation recurrence [80]. Regardless, the use
of replacement heart valves persists to grow due to the raised preponderance of valvular
heart disorders resulting from an aging population [81].

1.4. Tissue Engineering

Traditional replacement treatments for heart valve disorders are associated with con-
siderable deficiencies. Heart valve diseases harbor a significant chance of morbidity and
mortality. Results are particularly enhanced by valve replacement, but presently available
mechanical and biological replacement valves are associated with difficulties of their own.
Mechanical valves have a high rate of thromboembolism and demand lifelong anticoag-
ulation. Biological prosthetic valves retain a considerably shorter lifespan, and they are
inclined to degradation and ripping. Both types of valves lack the ability to grow, making
them specifically troublesome in pediatric patients. Scientific and technological break-
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throughs through the last 50 years have put forward diverse surgical options to patients
with progressive heart failure encompassing surgical ventricular repair to surgical gene
therapy and stem cell replacement of the diseased ventricles [82]. The specialization of tis-
sue engineering has appeared as a compelling option in the quest for improved heart valve
replacement designs. One of the tenets behind this vision is the transplantation of living
elements, implanted in a suitable scaffold fabric, to the diseased area where the structure
becomes merged with patients’ tissue to revive natural function [83]. There are various 3D
printing procedures that rely on the types of materials employed. Various types of organs
(bone, cartilage, heart valve, liver, and skin) assisted by 3D printed scaffolds and printing
methods that are applied in the biomedical specializations were examined [84]. Flanagan
and Pandit assembled a review of the advancement that has been made in the evolution of
living manufactured heart valve options [85]. Some tissue-engineered heart valves have
had clinical success, whereas others have failed, with structural deterioration resulting
in patients’ deaths. Blum et al. discussed the need for tissue-engineered heart valves to
treat pediatric patients with valve diseases, the history of tissue-engineered heart valves,
and a future that would aid from the extension of the reverse translational trend in this
area to retain small animal investigations [86]. Regardless, heart valve tissue engineering
suffers from narrow long-term performance in vivo because of unbridled tissue remodeling
phenomena, such as valve leaflet shortening, which often yields valve failure regardless of
the bioengineering procedure employed to generate the implant [87]. The integration of
computationally inspired heart valve configurations into tissue engineering procedures
could steer tissue remodeling toward long-term functionality in tissue-engineered heart
valves [88].

1.5. Imaging Modalities

The European Association of Echocardiography in collaboration with the American So-
ciety of Echocardiography has devised the guidance for the use of echocardiography in new
transcatheter interventions for valvular heart disorders [89]. The use of echocardiography
for catheter-based therapies is paramount for the success of the procedures [90]. Neverthe-
less, to evaluate the effective orifice area, it was discovered that the results are undervalued
when using the 2D transesophageal echocardiography approach compared with the 3D
methods (multislice CT, MRI and 3D transesophageal echocardiography) [91,92]. Using
3D echocardiography simultaneously with geometric modeling and rendering strategies,
high-resolution, quantitative, 3D procedures for imaging the human MV are created [93].
Tamborini et al. conducted a comparison between different 3D echocardiographic render-
ing devices in the imaging of percutaneous edge-to-edge MV repair [94]. Echocardiography
can determine MV features that are predictive of successful valve repair. However, even
with echocardiography specifying MV attributes, repair in hypertrophic cardiomyopathy
patients with symptomatic obstruction who experience myectomy, although long-lasting,
is achievable in only about half of patients [95]. A multi-center analysis discovered that
software modeling utilizing pre-procedural computed tomography angiography is a de-
tailed methodology for indicating the risk of mild and severe mitral regurgitation due
to paravalvular leak after transcatheter MV replacement [96]. The function of cardiac
computed tomography for assessing the MV has been restricted since echocardiography
is the primary form of evaluation. Yet, recent advances in cardiac computed tomography
have facilitated thorough evaluation of the anatomy and geometry of the MV [97].

1.6. Transcatheter Repairs

Percutaneous intervention for MV disorder has been designated as an alternative to
open surgical repair, especially in high-risk and inoperable candidates [98]. With procedures
completed earlier in disease advancement and improved patient longevity, the demand for
a repeat intervention is not rare. With the associated dangers of reoperation and patient
comorbidities, percutaneous procedures for acute or delayed failure after ring annuloplasty
are arising [99]. A myriad of catheter-based techniques for patients with regurgitant as
well as stenotic valvular disease is presently at disposal. A thorough understanding of
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mitral valvular anatomy is vital for the selection of patients, the implementation of devices,
and further improvements of these transcatheter practices if they are ultimately to deliver
procedural and clinical triumph [100,101]. For mitral stenosis employing either a single
balloon or double-balloon procedure, percutaneous MV dilatation is routinely executed.
Computational approaches are utilized to compare the two techniques [102]. A screening al-
gorithm to evaluate anatomical eligibility for transcatheter MV replacement in patients with
severe mitral regurgitation, based on simple multislice computed tomography measures
was designed [103]. The existing overall range of interventional treatment options enables
patient-oriented therapies individually targeting various mitral regurgitation pathologies.
The current variety of transcatheter treatments for relevant mitral regurgitation is debated
in [104]. Similarly, new transcatheter procedures to execute tricuspid annuloplasty are
unwinding and are presented in the clinical practice. Nonetheless, clinical experience is
limited [105]. Furthermore, present refinements in transcatheter valvular interventions
have resulted in a growing market for refined cardiac imaging to help conduct these opera-
tions [106]. A summary of fundamental notions linking to transcatheter MV replacement
pre-procedural planning, with distinct priority on imaging-based techniques for indicating
transcatheter MV replacement-related left ventricular outflow tract obstruction can be
located in [107,108].

2. Computational Simulations

To determine the coupling between the fluid and structural domains, FSI strategies are
utilized. Particularly in computational simulations meant to imitate the functions inside
the human body, intricate dynamics are present, e.g., heart valves opening and closing
every second interacting with blood flow. Consequently, for physiologically authentic
simulations, the fluid dynamics associated with the valves, the structural mechanics of the
valves, and tissue characteristics, should be modeled concurrently. Nonetheless, standard
FSI studies present several challenges, e.g., considerable extra computation time.

FSI simulations can be separated into three significant classifications: (1) Pseudo-state
simulations are generally used to investigate the downstream flow domains of heart valves
under the supposition that the valve is unmoving, and they can be modeled utilizing
ordinary computational fluid dynamics strategies for flow fields [109]. (2) One-way FSI
lets heart valves move under a stipulated geometric deformation. The prescribed structure
dynamic movement impacts the fluid flow but not contrariwise. In two-way FSI (3), the
most demanding type of FSI simulation, the structural and fluid fields influence one another.
The structural model of a two-way FSI solver requires adequately representing material
properties and the interaction between the leaflets and the surrounding fluid. Naturally,
most two-way FSI solvers can solve one-way FSI problems.

Two techniques are utilized for the coupling between the fluid and structure domains.
(A) Partitioned technique: The fluid and solid domains are treated individually with two
separate solvers (Figure 1a). Communication between the two solvers is passed along their
domain interface. Since each domain is solved employing a different solver, autonomous
numerical algorithms can be involved to solve the fluid and solid equations. Consequently,
less memory storage is demanded compared to the monolithic approach. However, in the
FSI heart valves simulations, which typically include large deformations, this technique
tends to face converge issues due to stability problems [109]. (B) Monolithic approach: The
fluid and structural domains are solved simultaneously by discretizing the problem into a
single system of equations employing a single numerical algorithm [110]. This generates
fewer convergence issues since the joint impact of the two domains on one another is
incorporated directly. However, for extensive 3D problems, with a high number of degrees
of freedom, a prohibitive quantity of memory storage is required.
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Initialization

Solve fluid
domain
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FSI Convergence
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Did all interface
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Solve fluid domain (SPH)
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to its neighboring fluid particles
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(b) FSI with SPH

Figure 1. Flowcharts of the FSI solution algorithms with (a) arbitrary Lagrangian–Eulerian (ALE)
and (b) smoothed-particle hydrodynamics (SPH) methods.

An alternative method to classify FSI techniques is to (1) body-fitted and (2) non-body-
fitted methods. This categorization depends on whether the computational fluid domain
mesh conforms to the borders of the computational solid domain mesh. The Arbitrary
Lagrangian–Eulerian (ALE) approach is an illustration of a body-fitted method, and the
Immersed-Boundary (IB) method is one of the non-body-fitted methods. The IB approach is
an efficient way of modeling fluid–structure interactions. Numerical simulations employing
coupled MV and left ventricle models are devised utilizing IB and finite element methods
(FEM) [111]. An FSI model of the left atrium and MV employing an IB-FEM framework
is utilized in [112] to examine the impacts of diverse pathological conditions. Regardless,
it bears two major constraints: namely, the difficulty of use and capacity to model static
loading. Additionally, one other thing can be detected in all the IB analyses, i.e., 3D models
employed seem to be geometrically streamlined with the purpose of evading computational
instability and convergence problems.

Thus far, the ALE approach is the most traditional technique embraced in industrial
applications. This conforming mesh method divides the computational domains associated
with the structure and fluid. Considering the extensive deformation of the heart valve struc-
tures together with the connection between the fluid and solid elements, it demands mesh
adaptations for the fluid domain, which significantly diminishes computational efficiency
and results in poor mesh quality. Since remeshing is essential, it may result in artificial
diffusivity and instabilities. The IB method embeds the structure to the static fluid mesh
implicitly, which delivers a significant benefit for simulating largely moving/morphing
structures. Nevertheless, the near-wall flow resolution of the leaflets of the IB approach
may be inadequate to the ALE method.

Peskin et al., in 1997, presented FSI simulations in prosthetic and biological heart
valve models with the muscular heart wall retained. Their models depicted the capacity
to apply Navier–Stokes equations to moving solid immersed boundaries [113]. In 2003,
Tang et al. employed a 3D thick-wall model to imitate blood flow in the carotid arteries
and presented asymmetric stenosis to quantify the impact of stenosis while mimicking
the pressure conditions on blood flow and artery contraction [114]. This strategy was
then expanded upon, including geometries reconstructed from CT scans well resembling
the intricate anatomy of the human artery [115,116]. The usage of traditional mesh-based
numerical procedures for biomedical applications remains a challenge, and it is nevertheless
the standard approach to streamline the computational models by skipping the fluid
domain [117]. However, lately, studies can be encountered demonstrating the benefit of
smoothed-particle hydrodynamics (SPH) techniques, as shown in Figure 1b, for accurately
executing simulations even within the context of blood flow and thrombosis [118]. A more
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thorough overview of FSI algorithms employed to simulate heart valves can be found
in [119].

The intricacy of computational simulations that involve heart valves (e.g., complex
geometries and large deformations) makes SPH well suited to execute these FSI calcula-
tions, namely SPH methods mixed with high-order FEM. Employing SPH methods brings
numerical stability because the communication between the solid and fluid domains is
fairly straightforward to treat numerically. Moreover, it is more manageable to parallelize
SPH. Consequently, it is achievable to run FSI simulations with convoluted geometries,
i.e., conserving all their geometrical details; and, at the same time, maintaining the sim-
ulations numerically steady, accurate, and parallelized on a standard GPU workstation.
Thus, the user can run these complicated simulations “under the table” rather than on
large supercomputers, with the typical runtime being only hours/days as opposed to
weeks/months.

The following literature cited is divided according to the four heart valves (Figure 2).

Tricuspid Valve

[169]–[181]

Pulmonary Valve

[194]–[199]

Aortic Valve

[182]–[193]

Mitral Valve

[120]–[168]

Figure 2. Organization of this review paper. The references are further divided according to which of
the four heart valves is their main focus.

3. Mitral Valve

Computational hemodynamic simulations employing conventional numerical strate-
gies are conducted to apprehend the impact of MV leaflets on blood flow [120,121]. Simi-
larly, the vortex formation process inside the left ventricle is investigated concerning the
dynamics of the mitral leaflets while they interact with the flow crossing the valve during
diastole [122–125]. A computational analysis demonstrated that the presence of the MV
and the shape of its leaflets significantly qualifies the building and development of vortex
structures in the left ventricle [126]. Similarly, computational techniques are employed to
evaluate MV leaflet in-plane strains from clinical images [127], while other investigations
concentrate on the MV chordae, e.g., to quantify their load-dependent adaptations in the
collagen fiber architecture for the strut chordae tendineae-leaflet insertion [128].

The intricacy of heart valve geometries, mixed with the extensive deformations they
experience with every heartbeat between their fully opened and closed positions, make SPH
well suited for running FSI computations. The SPH approach was illustrated and validated
in several reports on MV closure [14,66,129,130]. Henceforward, it was utilized to evaluate
several diseased MV states [19,131–133] and applications of medical devices developed to
rectify them [46,134–136]. In addition to the MV, other valves have been researched using
the same procedures [15,130,137–140]. The SPH technique has been validated to investigate
the hemodynamics of the left ventricle [141]. Interaction between bioprosthetic heart valves
and blood flow was alike analyzed employing SPH [142].

Chordal transposition is employed in MV repair [143], yet the impacts of second-order
chordae transection on valve operation have not been broadly investigated. In vitro ex-
perimentations utilizing excised porcine valves indicate that second-order chordae may
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intercede leaflet tethering in the setting of apical displacement of papillary muscles, as
might be witnessed in patients with ischemic mitral regurgitation [144]. Occasional investi-
gations assessed leaflet coaptation, 3D anterior MV leaflet shape, and valve competence
after clipping anterior second-order chordae in vivo [27] and in silico [19]. In vitro exami-
nations using stress–strain analysis on excised porcine mitral chordae by Kunzelman and
Cochran [145] have ascertained that primary (first-order) chordae are considerably more
inflexible (with higher stress at any given degree of strain) than second-order chordae.
Accordingly, it was hypothesized that due to their number and mechanical properties,
primary chordae endure the prevalence of systolic pressure load exerted on the mitral
leaflets. For instance, in [19], 51 potential chordal ruptures on a single MV were examined.
A primary chord (one with a large diameter) was clipped in two distinct locations. Yet, one
cut resulted in considerable regurgitation, and the other cut (on the same chord) did not
particularly transform the regurgitant orifice area. In that singular location, a large number
of second-order chords averted the leaflet prolapse.

During transcatheter MV implantation, encroachment on the left ventricular outflow
tract may generate a flow obstruction. Therefore, the proper placement and dimensions
of mitral prostheses in transcatheter MV implantation is vital [108]. Patient-specific CFD
simulations of transcatheter MV implantation with various cardiac anatomy and insertion
inclinations were conducted to anticipate the consequence of transcatheter MV implantation
exploiting image-based computational models [146]. The quantification of structural and
hemodynamic variables by computational modeling may foster more accurate prognoses
of the left ventricular outflow tract obstruction in transcatheter MV replacement, especially
for patients who are evaluated to bear a marginal risk of obstruction [147].

Image-based defined displacement can be executed to use the patient-specific shifting
of the ventricle in the computational MV investigations. In [148], their pipeline contains
image processing of the left ventricle and the MV and numerical examination of cardiac
hemodynamics in a moving domain with image-based specified displacement. Patient-
specific geometry and activity of the left ventricle are evaluated employing the ALE strategy,
while the reconstructed MV is engrossed in the computational domain utilizing a resis-
tive method. Hemodynamic testing employing 3D printing and CFD preoperatively may
deliver more additional data in mitral repair than a conventional image dataset [149].
Computational investigations supply a visualization of flow patterns (in both long- and
short-axes), which then can be quantified with flow analyses. It was discovered that in
comparison to a native valve, valve implantation boosted the balance of the mitral inflow
staying in the basal area and consequently increased the residual volume in the apical re-
gion [150]. Computational models can additionally be employed to optimize the treatment
chances; e.g., FEM is used to compare several indirect mitral annuloplasty percutaneous
restoration practices to determine the least-invasive remedies for a considerable inoperable
patient population [151].

Nevertheless, whether stress distributions from these computational models translate
into concrete and applicable intraoperative conclusions is debatable. For instance, a mere
slight modification in the neochordae location or length could seriously transform the leaflet
action and stress allocation in the MV computational model. It is irrational to anticipate
that such diminutive adaptations could be executed by a surgeon operating in a restricted
field of view [152]. While computational modeling of the MV is a hopeful path to enhance
the surgical outcomes, the intricate MV geometry thwarts the usage of simplified mod-
els. In addition, the absence of comprehensive in vivo geometric data raises considerable
challenges in the evolution of patient-specific computational models [153]. Nonetheless,
geometry does play a major role in MV mechanics and thus highly affects the precision of
computational models emulating MV function and repair [154]. While it is widely debated
that conserving the intricacy of the complete mitral apparatus is essential for attaining
practical results computationally [155–157], there is likewise demand for fast image-based
MV simulations employing individualized semi-automatically produced computational
models of MV geometries [158]. Despite the unprecedented advancement in artificial
intelligence, numerical algorithms, computer capacity, and data (and its increasing effect on
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industrial/monetary refinement), the evolution of computational models that can be solved
with lower computational endeavor is always reasonable and unremitting [159,160]. For
instance, a semi-automated framework that incorporates machine learning image analysis
with geometrical and biomechanical models to create a patient-specific MV manifestation
that integrates image-derived material properties is formed [161]. It is worth mentioning
that when extracting an MV geometry from the identical set of medical images, consider-
able discrepancies can be encountered when segmented by distinct users [162,163]. The
sensitivity of MV model execution to the precision of the input geometry is addressed [164].
Three distinct chordae models, namely elaborate, ‘pseudo-fiber’, and simplified chordae,
are compared to resolve how diverse chordae representatives influence the dynamics of the
MV [165]. Investigations on the inter-user variability of landmarks in MV segmentation
deduce that errors delivered as a result of the user dependency were comparable to the
deviations of computed hemodynamics [166]. A review outlining the state-of-the-art mod-
eling of the MV, including stationary and dynamics models, models with FSI, and models
with the left ventricle interaction, can be located in [167]. A summary of pertinent MV
conditions, and the development of numerical models of surgical valve repair strategies,
can likewise be found in [168].

4. Tricuspid Valve

Tricuspid regurgitation is an ordinary discovery present in a considerable number
of asymptomatic patients. However, mild or more harmful tricuspid regurgitation is as-
sociated with a poor prognosis [169]. The investigations highlight that the spectrum of
TV disorders is beyond that of the annulus and the leaflets [170,171]. There is no class I
indication for surgical remedy of isolated functional tricuspid regurgitation in the existing
policies [172,173]. On the grounds that right heart failure and pulmonary hypertension
are typical disorders in these patients [174], intrahospital mortality after isolated tricuspid
surgery is around 10% [175]. Mechanically induced transformations in the TV extracel-
lular matrix structural elements, e.g., collagen fiber spread and dispersal (to resolve the
overall macro-scale tissue reactions and thereafter its function/malfunction in physiolog-
ical/pathophysiological states) are quantified in [176]. Computational modeling can be
employed to enhance the interpretation of TV biomechanics and addendum understand-
ing attained from bench-top and large animal investigations. A computational model of
the TV, using high-resolution micro-CT imaging and FSI simulations, was produced by
Singh-Gryzbon et al. [15]. A computational multi-scale procedure was employed to analyze
mechanically induced transformations in TV anterior leaflet microstructure [177]. The
computational investigation concerning TVs is presently inadequate, and most analyses
still concentrate on the development of structural models rather than engaging FSI calcu-
lations. For instance, three FEMs were assembled from human subjects with healthy TVs
from CT images incorporating detailed leaflet geometries, realistic nonlinear anisotropic
hyperelastic material properties of human TV, and physiological boundary conditions
tracked from CT images [178]. As of late, an FEM of one porcine TV geometry was formed
to study how diverse pathological disorders impact the general biomechanical function
of the TV [179]. There were three immediate observations from that examination. Firstly,
the outcomes of the papillary muscle displacement revealed more prominent inconstancies
in the TV biomechanical function. Secondly, compared to uniform annulus dilation, the
nonuniform dilation rendered more apparent differences in the stresses and strains for
the three TV leaflets. Finally, outcomes of pulmonary hypertension exhibited opposing
tendencies compared to the papillary muscle displacement and annulus dilation scenarios.

Some of the facts that have been fathered during the development and investigation
of MV devices can also be applied to the TV. An in-depth understanding of the bizarre
anatomy of the TV and of the right heart chambers, with disparities and similitudes between
the two atrioventricular valves, is essential to overcoming the characteristic challenges
connected to transcatheter TV treatments [180,181].
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5. Aortic Valve

Even with the current improvements in computer technology, and numerical algo-
rithms, that permit the inclusion of complex truly patient-specific geometries together
with FSI strategies, designing simpler (e.g., structural only) analysis techniques for the
simulation of AV closure will always be in demand [182]. An outline of numerical ap-
proaches for FSI models of AVs can be located in [183]. A more current assessment of
general computational strategies for the aortic heart valve and its replacements can be
encountered in [184].

A string of large eddy simulations validated by particle image velocimetry was com-
pleted on physiologically representative aortic stenosis models to systematically depict the
blood flow in mild, moderate, and severe aortic stenoses [185]. Employing two patient-
specific aortas diagnosed to carry pathological dilation of the ascending segment, a compu-
tational hemodynamics approach was devised to examine how the morphotype and the
functional state of AV would impact the attributes of blood flow in aortas with pathological
dilation, particularly the intensity and diffusion of flow turbulence [186]. The postoper-
ative ventricular hemodynamics of substituting both aortic and MVs are not sufficiently
comprehended. A computational FSI analysis was employed to generate an improved
interpretation of this outcome by modeling a left ventricle with the aortic and MVs sub-
stituted with bioprostheses [187]. Other, more superficial, numerical investigations of
patient-specific left ventricular models with both mitral and AVs using FSI calculations can
be encountered [188,189].

Functional 3D modeling has developed to incorporate a hemodynamically relevant AV
model, where multi-material 3D printing was employed to beget patient-specific functional
models that were then validated utilizing Gorlin catheter-based and Doppler continuity-
based techniques [190]. A proof-of-concept analysis integrating 3D FSI models with ideal-
ized geometries indicates that there are distinct discrepancies across haemodynamics and
valve mechanics associated with bicuspid AV phenotypes, which may be essential to suc-
cessive functions associated with their pathophysiology processes [191]. The distinctions
in hemodynamics and mechanical properties of bicuspid AVs with various phenotypes
throughout the cardiac cycle using FSI calculations were discovered [192]. The conclusions
of that investigation imply distinctive contrasts in the hemodynamic characteristics and
valve mechanics of different bicuspid AV phenotypes, including various severity of stenosis,
flow patterns, and leaflet strain, which may be vital for the prognosis of other ensuing
aortic disorders and differential treatment plan for specific bicuspid AV phenotype. While
FSI calculations are yet barely employed to study AVs, CFD is utilized to evaluate the
impact of various AV morphologies on velocity profiles, flow patterns, helicity, wall shear
stress, and oscillatory shear index in the thoracic aorta [193].

6. Pulmonary Valve

The PV holds an equally consequential function in the circulatory system. However,
there are remarkably few mathematical models to accurately emulate its function. Some
models were devised employing simplified geometries and without accounting for the
FSI [194]. A pilot study sought to prove the feasibility of reconstructing right ventricle action
and simulating intracardiac flow in corrected tetralogy of Fallot patients, solely employing
traditional cardiac MRI and an IB approach [195]. The impact of a percutaneous PV reducer
on hemodynamics in dilated right ventricle outflow tract is analyzed by computational
modeling [196]. Similarly, a reduced-order computational technique was presented as
an efficient design analysis of a reducer stent to be percutaneously implanted in dilated
right ventricular outflow tracts [197]. Since local shear stress and pressure are predictive
for intimal hyperplasia and wall deterioration, CFD computation was employed to select
the optimal degree of oversizing for a 12 mm native right ventricle outflow tract with the
expectancy that the local hemodynamics may clarify intimal hyperplasia [198]. Likewise,
to uncover the impacts of conduit oversizing on the hemodynamics observed after conduit
implantation and outgrowth, three different sizes of valved conduits, including the largest
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possible conduit size, virtually implanted in a child-sized healthy pulmonary artery and
the related adult-sized model were studied employing CFD [199].

7. Discussion

Valvular heart disorders are a prominent health burden [200]. The remedies for
such conditions depend on medication, valve restoration, and replacement with artificial
(mechanical and bioprosthetic) heart valves. However, as outlined, long-term stability and
biocompatibility issues are conveyed, emphasizing the demand for developing more long-
lasting and efficacious replacements [201]. They may assist in the evolution of unexplored
or improved diagnostic mechanisms and therapeutic devices, and they can help anticipate
patient outcomes. Computational procedures that unravel issues, such as flow patterns,
wall stress, and anatomic eligibility, may enhance valve replacement patient outcomes.

Many computational investigations sidestep employing FSI computations. Computa-
tional fluid dynamics is still more standard. Simplified open-source software frameworks
for cardiovascular integrated modeling and simulation are devised [202]. The purpose is
to concoct a software environment that delivers powerful computational hemodynamics
tools accessible to a broad audience. To attain that goal, model sharing and reproducibility
examinations in scholarly publishing are urged to improve the quality of modeling and
simulation analyses, which would also inform future users of computational models [203].

It is reasoned that computational simulations of heart valve closures ought to be
patient-specific for them to be practical. To maintain patient-specificity, they need to em-
ploy geometries and boundary/initial conditions without simplifications and to retain the
FSI calculations. Computational simulations bear the prospect of the predictive capability
to determine if a valve would more assumably benefit from restoration or replacement. The
mixture of smoothed-particle hydrodynamics and the high-order finite element method
delivers the capacity to maintain the calculations integrity while minimizing needed run-
time on the GPU workstations. Nevertheless, many simulations remain somewhat costly
within a clinical context. In addition, the inevitable inter-user variability appears to be
partially accountable for errors in calculated hemodynamics, specifically in complex valve
geometries, such as the MV. Furthermore, the employment of adequately validated models
is vital [204]. Similarly, just like detailed patient-specific geometries, proper realistic bound-
ary and initial conditions need to be utilized to preserve the authenticity of the simulations.
There are processes occurring simultaneously on molecular, cellular, and organ levels.
Multiscaled computer models are developed to incorporate these levels into a single model.
For example, Campbell et al. outlined an approach to create patient-specific computer
models that integrate genomic, proteomic, imaging, and functional data to predict how
each patient would respond to possible therapeutic interventions [205]. Other algorithms
are developed to implement realistic heart rhythms [206]. The objective of computational
modeling is to seize all that we know about disorders and to generate improved treatments
tailored to the conditions of individuals, which is usually referred to as ‘computational
medicine’ [207]. Computational medicine is applied in a myriad of areas, such as cancer,
diabetes, cardiology, neurology, and so on [208]. However, more additional advancements
in translating these computational methods to the clinic are essential [209,210]. The forth-
coming computational medicine will also have to integrate more commonly the use of
artificial intelligence to rectify the algorithm mistakes in order to enhance the predictive
model confidence [211]. The advances in artificial intelligence and precision medicine are
posed to revolutionize health care [212].

Author Contributions: Conceptualization, M.T., S.S.-G., Z.W. and A.P.Y.; methodology, M.T., S.S.-G.,
Z.W. and A.P.Y.; formal analysis, M.T., S.S.-G., E.F., Z.W. and A.P.Y.; investigation, M.T., S.S.-G., E.F.,
Z.W. and A.P.Y.; resources, M.T., S.S.-G., Z.W. and A.P.Y.; data curation, M.T., S.S.-G., E.F., Z.W. and
A.P.Y.; writing—original draft preparation, M.T., S.S.-G., E.F., Z.W. and A.P.Y. writing—review and
editing, M.T., S.S.-G., E.F., Z.W. and A.P.Y.; supervision, M.T. and A.P.Y.; project administration, M.T.
and A.P.Y.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Materials 2022, 15, 3302 13 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MV mitral vavle
TV tricuspid valve
AV aortic valve
PV pulmonary valve
CFD computational fluid dynamics
ISO international organization for standardization
FDA food and drug administration
FSI fluid–structure interaction
IB immersed boundary
FEM finite-element method
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202. Arthurs, C.J.; Khlebnikov, R.; Melville, A.; Marčan, M.; Gomez, A.; Dillon-Murphy, D.; Cuomo, F.; Vieira, M.S.; Schollenberger,
J.; Lynch, S.R.; et al. CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation.
PLOS Comput. Biol. 2021, 17, e1008881. [CrossRef] [PubMed]

203. Erdemir, A.; Guess, T.M.; Halloran, J.P.; Modenese, L.; Reinbolt, J.A.; Thelen, D.G.; Umberger, B. Commentary on the Integration
of Model Sharing and Reproducibility Analysis to Scholarly Publishing Workflow in Computational Biomechanics. IEEE Trans.
Biomed. Eng. 2016, 63, 2080–2085. [CrossRef]

204. Toma, M.; Guru, S.; Wu, W.; Ali, M.; Ong, C. Addressing Discrepancies between Experimental and Computational Procedures.
Biology 2021, 10, 536. [CrossRef]

205. Campbell, K.S.; Yengo, C.M.; Lee, L.-C.; Kotter, J.; Sorrell, V.L.; Guglin, M.; Wenk, J.F. Closing the therapeutic loop. Arch. Biochem.
Biophys. 2019, 663, 129–131. [CrossRef]

206. Atangana, A.; Araz, S.I. Rhythmic behaviors of the human heart with piecewise derivative. Math. Biosci. Eng. 2022, 19, 3091–3109.
[CrossRef]

207. Tiwary, B.K. Computational medicine: Quantitative modeling of complex diseases. Brief. Bioinform. 2019, 21, 429–440. [CrossRef]
208. Olivier, B.G.; Swat, M.J.; Moné, M.J. Modeling and Simulation Tools: From Systems Biology to Systems Medicine. Syst. Med. 2016,

1386, 441–463._19. [CrossRef]
209. Winslow, R.L.; Trayanova, N.; Geman, D.; Miller, M.I. Computational Medicine: Translating Models to Clinical Care. Sci. Transl.

Med. 2012, 4, 158rv11. [CrossRef]
210. Sakellaropoulos, T.; Hur, J.; Melas, I.N.; Guo, E.Y.; Alexopoulos, L.; Bohlooly, M.; Bai, J.P. Computational Approaches to

Accelerating Novel Medicine and Better Patient Care from Bedside to Benchtop. Adv. Protein Chem. Struct. Biol. 2016, 102, 147–179.
[CrossRef] [PubMed]

211. Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133.
[CrossRef] [PubMed]

212. Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the
Future of Personalized Health Care. Clin. Transl. Sci. 2020, 14, 86–93. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fphys.2021.716015
http://www.ncbi.nlm.nih.gov/pubmed/34381379
http://dx.doi.org/10.1016/j.jtcvs.2016.09.040
http://dx.doi.org/10.1371/journal.pone.0199390
http://dx.doi.org/10.1007/s13239-021-00558-3
http://dx.doi.org/10.1007/s13239-015-0240-z
http://dx.doi.org/10.1080/10255842.2015.1133811
http://dx.doi.org/10.1093/icvts/ivv108
http://www.ncbi.nlm.nih.gov/pubmed/25912476
http://dx.doi.org/10.5301/ijao.5000443
http://www.ncbi.nlm.nih.gov/pubmed/26541279
http://dx.doi.org/10.15420/cfr.2016:25:2
http://dx.doi.org/10.1016/j.mtbio.2019.100038
http://www.ncbi.nlm.nih.gov/pubmed/32211604
http://dx.doi.org/10.1371/journal.pcbi.1008881
http://www.ncbi.nlm.nih.gov/pubmed/33970900
http://dx.doi.org/10.1109/TBME.2016.2602760
http://dx.doi.org/10.3390/biology10060536
http://dx.doi.org/10.1016/j.abb.2019.01.006
http://dx.doi.org/10.3934/mbe.2022143
http://dx.doi.org/10.1093/bib/bbz005
http://dx.doi.org/10.1007/978-1-4939-3283-2_19
http://dx.doi.org/10.1126/scitranslmed.3003528
http://dx.doi.org/10.1016/bs.apcsb.2015.09.005
http://www.ncbi.nlm.nih.gov/pubmed/26827605
http://dx.doi.org/10.1016/j.amjmed.2017.10.035
http://www.ncbi.nlm.nih.gov/pubmed/29126825
http://dx.doi.org/10.1111/cts.12884
http://www.ncbi.nlm.nih.gov/pubmed/32961010

	Introduction
	Chordal Repair/Replacement
	Heart Valve Repairs/Devices
	Repair versus Replacement
	Tissue Engineering
	Imaging Modalities
	Transcatheter Repairs

	Computational Simulations
	Mitral Valve
	Tricuspid Valve
	Aortic Valve
	Pulmonary Valve
	Discussion
	References

