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Abstract

Aim

A recent meta-analysis of genome-wide linkage studies (GWLS) has identified multiple

genetic regions suggestive of linkage with DN harboring hundreds of genes. Moving

this number of genetic loci forward into biological insight is truly the next step. Here,

we approach this challenge with a gene ontology (GO) analysis in order to yield biologi-

cal and functional role to the genes, an over-representation test to find which GO

terms are enriched in the gene list, pathway analysis, as well as protein network

analysis.

Method

GO analysis was performed using protein analysis through evolutionary relationships

(PANTHER) version 14.0 software and P-values less than 0.05 were considered statisti-

cally significant. GO analysis was followed by over-representation test for the identifica-

tion of enriched terms. Statistical significance was calculated by Fisher’s exact test and

adjusted using the false discovery rate (FDR) for correction of multiple tests. Cytoscape

with the relevant plugins was used for the construction of the protein network and cluster-

ing analysis.

Results

The GO analysis assign multiple GO terms to the genes regarding the molecular func-

tion, the biological process and the cellular component, protein class and pathway anal-

ysis. The findings of the over-representation test highlight the contribution of cell

adhesion regarding the biological process, integral components of plasma membrane

regarding the cellular component, chemokines and cytokines with regard to protein

class, while the pathway analysis emphasizes the contribution of Wnt and cadherin sig-

naling pathways.
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Conclusions

Our results suggest that a core feature of the pathogenesis of DN may be a disturbance in

Wnt and cadherin signaling pathways, whereas the contribution of chemokines and cyto-

kines need to be studied in additional studies.

Introduction

Diabetic nephropathy (DN) is a multifactorial disease caused by both genetic and environmen-

tal factors [1, 2]. The functional and structural kidney injury in patients with diabetes is the

result of alterations in both hemodynamic and metabolic factors, as well as inflammatory mol-

ecules and pathways [3–5]. The genetic background of DN has not been elucidated precisely

yet, although multiple genetic factors have been implicated in the pathogenesis of the disease

[5–8]. A recent meta-analysis of genetic association studies regarding 606 variants located in

228 genes highlighted the contribution of 66 genetic variants harbored in 53 genes [9].

Another type of studies for the genetic dissection of complex traits is the conduct of

genome-wide linkage studies (GWLS) [10, 11]. Linkage studies of complex traits frequently

yield a relatively large number of genetic regions suggestive of linkage harboring an impressive

number of genes. One of the challenges in the analysis of large gene lists is unraveling the bio-

logical and functional role of these genes [12, 13]. GWLS in DN, as well as meta-analyses if

these studies, have also identified numerous genetic regions suggestive of linkage with DN,

although the results are inconclusive [14, 15]. Moving forward this impressive number of

genetic loci into the underlying biology is the challenge. One way for the identification and pri-

oritization of the most relevant cellular processes and pathways affected by the multiple genes

is the gene ontology (GO) analysis [16, 17].

The Gene Ontology resource (GO; http://geneontology.org) provides structured, comput-

able knowledge regarding the functions of genes and gene products [16, 17]. The ontology cov-

ers three distinct aspects of gene function: molecular function (the biochemical activity

including specific binding to ligands or structures of a gene product), biological process (a bio-

logical objective to which the gene or gene product contributes) and cellular component (the

place in the cell where a gene product is active) [16, 17].

In effort to analyze the results of the most recent meta-analysis of GWLS in DN [15] and

reveal the underlying biology of the genetic loci located in statistical significant genetic regions,

we performed a gene ontology analysis followed by an over-representation test for the identifi-

cation of enriched GO terms, we constructed the protein network analysis for the identifica-

tions of hub genes and finally, the prioritization of candidate genes for further study, a similar

approach of Shriner et al. [18].

Materials and methods

Data sources

In the present study, the data were derived from a meta-analysis of GWLS in DN [15]. DN was

defined on the basis of a long-standing diabetes mellitus, either T1D or T2D, with macroalbu-

minuria and/or chronic renal insufficiency in the absence of nondiabetic renal disease. GWLS

with quantitative surrogate markers for DN such as estimated glomerular filtration rate

(eGFR), albuminuria and serum creatinine were excluded from the meta-analysis. In the

meta-analysis probands with DN from 1833 families were included [15]. We identified the
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genes located in the statistical significant cytogenetic regions from meta-analysis using the

University of California Santa Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/) and

more particularly, the assembly Dec. 2013 (GRCh38/hg38) [19]. Main meta-analysis identified

seven genetic regions (4p14–4q13.3, 5q14.3–5q23.2, 5q23.2–5q34, 15p13–15q11.2, 16p12.3-

16q12.2, 22p13–22q12.3, and 22q12.3–22q13.33) (Fig 1).

GO analysis and over-representation test

GO analysis was performed using protein analysis through evolutionary relationships (PAN-

THER) version 14.0 software (http://www.pantherdb.org/), and P-values less than 0.05 were

considered statistically significant [20, 21]. In the over-representation test, we used the PAN-

THER Classification System. Statistical significance calculated by Fisher’s exact test and

adjusted using the false discovery rate (FDR) for correction of multiple tests. A FDR-corrected

P value threshold of< 0.05 was established.

PPI network construction and module analysis

A PPI network of genes was constructed with interaction data from STRING, and this was

visualized with Cytoscape version 3.8.2 (http://www.cytoscape.org/) [22, 23]. The minimum

Fig 1. Study design flowchart.

https://doi.org/10.1371/journal.pone.0255728.g001
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confidence score was set at 0.700. In order to detect the important modules within the net-

work, ClusterViz based on Molecular Complex Detection (MCODE) tool was used with the

following parameters, degree cutoff of 2, node score cutoff of 0.2, k-core = 2, and max depth

of 100 [24, 25]. This identifies densely connected regions within a network based on topology.

The CytoHubba plug-in was used to select the top 10 hub genes within the entire network,

according to degree [26]. In addition, the ClueGO plugin was applied for the functional anno-

tation of the top 3 clusters [27].

Results

Using the UCSC Genome Browser and more particularly, the assembly Dec. 2013 (GRCh38/

hg38), we identified 2750 genes in the seven genetic regions (4p14–4q13.3, 5q14.3–5q23.2,

5q23.2–5q34, 15p13–15q11.2, 16p12.3-16q12.2, 22p13–22q12.3, and 22q12.3–22q13.33)

(Table 1) where 1305 protein coding genes are located (Table 2).

GO analysis

To understand the functions of the genes located at these regions, we performed GO analysis

using PANTHER version 14.0 software. GO analysis consists of biological process (BP), cellu-

lar component (CC), and molecular function (MF) (S1 Table). We chose the top five results

based on their percentages (Table 3).

Regarding the main meta-analysis genes and the “molecular function” category, it was dem-

onstrated that most of the genes are involved in the binding (23.9% genes), catalytic activity

(18.9% genes), transporter activity (4.9% genes), molecular function regulator (4.2% genes)

and transcription regulator activity (3.7% genes). With regard to “biological processes” cate-

gory, the first five GO categories include cellular process (36.6% genes), metabolic process

Table 1. Diabetic nephropathy genome scan meta-analysis results.

Bin Cytogenetic location

Main analysis

4.3 4p14-4q13.3

5.4 5q14.3-5q23.2

5.5 5q23.2-5q34

15.1 15q11.2-15p13

16.2 16p12.3-16q12.2

22.1 22p13-22q12.3

22.2 22q12.3-22q13.33

https://doi.org/10.1371/journal.pone.0255728.t001

Table 2. Identification of gene type.

Gene type BOTH DM

ncRNA 406

other 61

protein coding 1305

pseudo 850

rRNA 1

snoRNA 106

snRNA 3

Total 2732

https://doi.org/10.1371/journal.pone.0255728.t002
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(22.8%), biological regulation (21.9% genes), response to stimulus (13.9% genes) and cellular

component organization or biogenesis (11.3% genes). Regarding the “cellular component” cat-

egory, the majority of the genes were components of the cell (44% genes), cell part (44%

genes), organelle (27.4% genes), membrane (17.9% genes) and protein-containing complex

(13.3% genes). Regarding the “protein class” category, the most of the proteins are metabolite

interconversion enzymes (7% proteins), protein modifying enzymes (5.8% proteins), nucleic

acid binding proteins (5% proteins), transporters (4.2% proteins) and gene-specific transcrip-

tional regulators (3.7% proteins). Finally, in the “pathway” category, the majority of genes are

involved in Wnt signaling pathway (5.5% pathways), cadherin signaling pathway (4.4% path-

ways), angiogenesis (1.3% pathways), EGF receptor signaling pathway (1.3% pathways) and

gonadotropin-releasing hormone receptor pathway (1.2% pathways) (Table 3) (Figs 2–6).

Table 3. The top five GO terms per category.

GO Term Top 5 GO Terms Percent of gene hit against total #

genes

Molecular

Function

1 binding (GO:0005488) 23.9%

2 catalytic activity (GO:0003824) 18.9%

3 transporter activity (GO:0005215) 4.9%

4 molecular function regulator (GO:0098772) 4.2%

5 transcription regulator activity (GO:0140110) 3.7%

Biological Process

1 cellular process (GO:0009987) 36.6%

2 metabolic process (GO:0008152) 22.8%

3 biological regulation (GO:0065007) 21.9%

4 response to stimulus (GO:0050896) 13.9%

5 cellular component organization or biogenesis

(GO:0071840)

11.3%

Cellular

Component

1 cell (GO:0005623) 44.0%

2 cell part (GO:0044464) 44.0%

3 organelle (GO:0043226) 27.4%

4 membrane (GO:0016020) 17.9%

5 protein-containing complex (GO:0032991) 13.3%

Protein Class

1 metabolite interconversion enzyme (PC00262) 7.0%

2 protein modifying enzyme (PC00260) 5.8%

3 nucleic acid binding protein (PC00171) 5.0%

4 transporter (PC00227) 4.2%

5 gene-specific transcriptional regulator (PC00264) 3.7%

Panther Pathway

1 Wnt signaling pathway (P00057) 5.5%

2 Cadherin signaling pathway (P00012) 4.4%

3 Angiogenesis (P00005) 1.3%

4 EGF receptor signaling pathway (P00018) 1.3%

5 Gonadotropin-releasing hormone receptor pathway

(P06664)

1.2%

https://doi.org/10.1371/journal.pone.0255728.t003
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Over representation test

Having established the biological functions, protein families and pathways in which genes are

involved, we performed over-representation test using PANTHER software to determine

which GO terms are statistically significant enriched in our gene list. PANTHER protein class

tool compares the set of gene lists to the reference genome, in this case Homo sapiens, and

computes if our data set is enriched with categories of gene or protein families (S2 Table). We

chose the top five results based on their P-values (Table 4).

In main analysis, regarding the “biological process” category, the most enriched terms were

the homophilic cell adhesion via plasma membrane adhesion molecules, cell-cell adhesion via

plasma membrane cell adhesion molecules, cell-cell adhesion, calcium-dependent cell-cell

adhesion via plasma membrane cell adhesion molecules and biological adhesion. The most

over represented GO terms in the “molecular function” category include the calcium ion

Fig 2. Results of “molecular function” category.

https://doi.org/10.1371/journal.pone.0255728.g002

Fig 3. Results of “biological process” category.

https://doi.org/10.1371/journal.pone.0255728.g003
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binding, ligand-gated anion channel activity, GABA-gated chloride ion channel activity,

transferase activity transferring sulfur-containing groups and CXCR chemokine receptor

binding. The most enriched GO term in “cellular component” category are integral compo-

nents of plasma membrane. With regard to the most enriched protein class, the majority of the

proteins are chemokines and cytokines, while the most enriched pathways in our gene list are

the cadherin and Wnt signaling pathways (Table 4).

Protein network analysis

For further understanding the function of the 1305 genes harbored in the seven cytogenetic

regions, we constructed a PPI network that consists of 1266 nodes and 2047 edges by using

STRING database and Cytoscape software (Fig 7). The line thickness indicates the strength of

data support. The PPI enrichment p-value is 4.98e-08 that means that this network has signifi-

cantly more interactions than expected.

Fig 4. Results of “cellular component” category.

https://doi.org/10.1371/journal.pone.0255728.g004

Fig 5. Results of “protein class” category.

https://doi.org/10.1371/journal.pone.0255728.g005
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The protein network analysis revealed the following 10 genes as the nodes with the most

interactions: MAPK1, CXCL8, RBX1, POLR2F, EP300, SKP1, POLR2B, MAPK3, NHP2L1,

PPP2CA most of which are enzymes and more specifically kinases, whereas one (EP300) is

implicated in epigenetic modifications (Table 5) (Fig 8).

MCODE clustering results

Moreover, pivotal modules were identified from the PPI network using ClusterViz plugin

based on MCODE algorithm in Cytoscape, while ClueGO was used for the functional annota-

tion of the top 3 clusters. Module 1 included 19 nodes with 171 edges (Fig 9) and ClueGO anal-

ysis indicated that they were correlated with RNA splicing. Module 2 included 15 nodes with

105 edges significantly enriched (Fig 10) in neuropeptide signaling. Module 3 included 14

nodes with 91 edges related to chemokine signaling pathway (Figs 11 and 12).

Discussion

In the present study, we used a bioinformatics method to identify key genes and signaling

pathways in the diabetic nephropathy pathogenesis with a focus on the role of protein coding

genes. A total of 1305 coding genes were located in the seven cytogenetic regions which were

identified statistically significant in the meta-analysis of GWLS. Gene ontology with enrich-

ment analysis, pathway analysis and protein network analysis revealed that these genes are

involved in specific cellular processes, signaling pathways and gene networks. The data analysis

reveals the cell adhesion as the most over-represented biological process among these genes,

the calcium ion binding as the most over-represented molecular function and also reveals that

integral components of plasma membrane are key regulators in our gene list. Chemokines and

cytokines constitute the most significant protein classes, whereas Cadherin and Wnt signaling

pathways are the most affected signaling pathways in our gene list.

With regard to the enrichment of chemokines and cytokines, many lines of evidence indi-

cate the role of inflammation and immune response in the pathogenesis of diabetic nephropa-

thy [4, 28]. Although DN is considered as a non-immune disease, proteinuria which is a

hallmark of DN, contributes to further tubular and interstitial damage. A recent meta-analysis

revealed the significance of variants in CCL2, CCR5, IL6, IL8, EPO, IL1A, IL1B, IL100, IL1RN,

Fig 6. Results of pathway analysis.

https://doi.org/10.1371/journal.pone.0255728.g006
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GHRL, MMP9, TGFB1, VEGFA, MMP3, MMP12, IL12RB1, PRKCE, TNF and TNFRSF19
genes with an increased risk of DN [5]. Many studies evaluated altered cytokine expression in

DN. For instance, in animal models of DN renal expression of IL-1 is increased [29]. Another

clinical study showed that serum levels of IL-6 were substantially higher in patients with DN

than in control patients without renal lesions [30]. Patients with DN showed elevated serum

levels of IL-18, as well as increased urinary excretion of this cytokine [31]. Various biological

effects mediated by TNF are relevant in diabetic nephropathy, including its direct cytotoxicity

to renal cells, activation of cell pathways leading to apoptosis and necrosis, and induction of

alterations in intraglomerular hemodynamics and reduction of glomerular filtration [32–35].

In addition, TNF is associated with increased endothelial cell permeability [36]. Moreover,

many clinical studies have found that both serum and urinary levels of TNF in patients with

DN are higher than in nondiabetic individuals, and also higher than in patients with diabetes

Table 4. Results of the over-representation test of the main analysis (only over-represented).

Homo sapiens

(REF)

Client Text Box Input (Hierarchy)

GO biological process complete # # expected Fold Enrichment + raw P value FDR

homophilic cell adhesion via plasma membrane adhesion molecules 167 59 10.45 5.64 + 7.60E-23 1.21E-

18

cell-cell adhesion via plasma-membrane adhesion molecules 256 68 16.02 4.24 + 2.17E-20 1.72E-

16

cell-cell adhesion 510 83 31.92 2.60 + 2.69E-13 1.42E-

09

calcium-dependent cell-cell adhesion via plasma membrane cell adhesion

molecules

42 15 2.63 5.71 + 6.95E-07 9.19E-

04

biological adhesion 953 104 59.65 1.74 + 2.12E-07 3.06E-

04

GO molecular function complete # # expected Fold Enrichment + raw P value FDR

calcium ion binding 733 95 45.88 2.07 + 3.81E-10 1.82E-

06

ligand-gated anion channel activity 19 9 1.19 7.57 + 2.06E-05 8.97E-

03

GABA-gated chloride ion channel activity 13 8 .81 9.83 + 1.45E-05 8.64E-

03

transferase activity, transferring sulfur-containing groups 73 17 4.57 3.72 + 1.73E-05 8.29E-

03

CXCR chemokine receptor binding 18 9 1.13 7.99 + 1.48E-05 7.85E-

03

GO cellular component complete # # expected Fold Enrichment + raw P value FDR

integral component of plasma membrane 1656 149 103.64 1.44 + 2.24E-05 4.50E-

02

intrinsic component of plasma membrane 1734 154 108.53 1.42 + 2.68E-05 2.69E-

02

PANTHER Protein Class # # expected Fold Enrichment + raw P value FDR

chemokine 17 10 1.06 9.40 + 1.63E-06 3.17E-

04

cytokine 81 15 5.07 2.96 + 4.76E-04 2.32E-

02

PANTHER Pathways # # expected Fold Enrichment + raw P value FDR

Cadherin signaling pathway 160 58 10.01 5.79 + 6.28E-23 1.03E-

20

Wnt signaling pathway 317 72 19.84 3.63 + 2.74E-18 2.24E-

16

https://doi.org/10.1371/journal.pone.0255728.t004
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who have no kidney involvement [4]. Studies in animal models of T1DM and T2DM have

shown potential beneficial anti-inflammatory effects on DN with the use of immunosuppres-

sive drugs [4], such as mycophenolate mofetil and infliximab [37, 38].

Regarding the most enriched pathways in our gene list of 1305 coding genes, Cadherin and

Wnt signaling pathways, there are findings of convergence between Wnt, β-catenin, and cad-

herin pathways [39]. Cadherins are glycoproteins that constitute a type of cell adhesion mole-

cules that mediate calcium dependent, homotypic cell–cell adhesion in all solid tissues of the

organism[39, 40]. More specifically, E-cadherin which is considered one of the most vital mol-

ecules in cell-to-cell adhesion in epithelial tissues, it is localized on the surfaces of epithelial

cells in areas of cell-to-cell connection known as adherent’s junctions [41]. A study indicated

Fig 7. STRING protein network analysis with hidden disconnected nodes in the network. High confidence 0.7, it is

full network (the edges indicate both functional and physical protein associations).

https://doi.org/10.1371/journal.pone.0255728.g007

Table 5. The top 10 nodes based on their degree.

Official gene symbol Official full name Degree

MAPK1 mitogen-activated protein kinase 1 34

CXCL8 C-X-C motif chemokine ligand 8 34

RBX1 ring-box 1 33

POLR2F RNA polymerase II, I and III subunit F 33

EP300 E1A binding protein p300 31

SKP1 S-phase kinase associated protein 1 30

POLR2B RNA polymerase II subunit B 30

MAPK3 mitogen-activated protein kinase 3 29

NHP2L1 (SNU13) small nuclear ribonucleoprotein 13 29

PPP2CA protein phosphatase 2 catalytic subunit alpha 28

https://doi.org/10.1371/journal.pone.0255728.t005
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Fig 8. Top 10 nodes based on their degree.

https://doi.org/10.1371/journal.pone.0255728.g008

Fig 9. Cluster 1 based on MCODE analysis.

https://doi.org/10.1371/journal.pone.0255728.g009
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Fig 10. Cluster 2 based on MCODE analysis.

https://doi.org/10.1371/journal.pone.0255728.g010

Fig 11. Cluster 3 based on MCODE analysis.

https://doi.org/10.1371/journal.pone.0255728.g011
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that levels of E-cadherin decreased before normoalbuminuria concluding that E-cadherin is

an early kidney biomarker, a finding that confirms the results of another study which mea-

sured urinary soluble E-cadherin and its expression and they demonstrated that the levels sig-

nificantly raised in the early stage of DN and elevated with the progression of DN [41, 42]. It is

also known that human proximal epithelial cells uniquely express N-cadherin instead of E-cad-

herin as major cell-cell adhesion molecule [43]. Studies have also found that increased levels of

urinary protein in DN are associated with podocyte injury, including podocyte apoptosis,

detachment and EMT [44]. Altered cadherin expression is implicated in podocyte epithelial-

mesenchymal transition (EMT) which is characterized by the loss of epithelial cell markers

(e.g., E-cadherin) and re-expression of mesenchymal markers (e.g., vimentin and α-SMA)

[45]. These data suggest that altered cadherin expression is involved in DN associated

proteinuria.

Wnts are strong regulators of processes like cell proliferation and differentiation, and their

signaling pathway involves proteins that participate in both gene transcription and cell adhe-

sion [39]. Proper β-catenin expression is essential to maintain the glomerular filtration barrier

and its function [46], whereas several studies have suggested that activation of Wnt/β-catenin

signaling promoted podocyte dysfunction in DN [46–48]. It is also known that developmental

abnormalities ranging from stem cell loss to kidney and reproductive tract defects are caused

by mutations in Wnt genes [49]. In addition, β-catenin is tight ligand to the cytoplasmic part

of type I cadherins and is involved in the structural organization and function of cadherins

[50, 51].

Fig 12. ClueGO annotation results based on biological process analysis.

https://doi.org/10.1371/journal.pone.0255728.g012
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The findings of the present bioinformatics analysis which found that genes involved in cad-

herin and Wnt signaling pathways are associated with DN are confirmed and validated by sev-

eral biological data. Accumulating evidence indicate the involvement of Wnt/β-catenin

signaling pathway in renal cell injury including mesangial cells, podocytes [52] and tubular cell

damage and also in tubular interstitial fibrosis in DN [46, 53, 54] leading to intense interest

about the effects of this pathway in the pathophysiology and progression of DN [55]. Another

study found that the levels of β-catenin and WNT proteins were upregulated in the kidney tis-

sues of both Type I and Type Akita mice, streptozotocin-induced diabetic rats and db/db mice

compared with their non-diabetic controls [54]. However, lowering blood glucose levels by

insulin attenuated the activation of WNT signaling pathway [54]. In addition, hyperglycaemia

and oxidative stress were found to activate the WNT pathway in the kidneys of diabetic ani-

mals [54]. Furthermore, blockade of WNT signaling by a monoclonal antibody to LDL-recep-

tor-related protein 6 (LRP6) ameliorated DN [54] whereas another study found that liraglutide

suppressed the production of extracellular matrix proteins and ameliorated renal injury of DN

by enhancing Wnt/β-catenin signaling [55]. The aforementioned experimental data suggest

the involvement of dysregulated WNT pathway in the diabetic kidney could play a pathogenic

role in DN. Zhou et al. also observed a concurrent upregulation of multiple WNT ligands

across different diabetic animal models suggesting that most WNT ligands are positively upre-

gulated in the kidneys by diabetes [54]. Moreover, it has been reported an increase of WNT1

protein levels in the podocytes of human kidney biopsies from patients with DN [46]. In addi-

tion to DN, obstructive kidney injury and ischaemia-reperfusion injury have also shown to

induce overexpression of several WNT ligands and FZD receptors, whereas activation of Wnt/

β-catenin was involved in the cyst formation of polycystic kidney disease [56] indicating that

WNT signaling pathway could constitute a common pathogenic mechanism of some kidney

diseases [54]. Many lines of evidence have also demonstrated that Wnt/β-catenin is involved

in the epithelial-mesenchymal phenotypic transition of mesangial cells under DN conditions

[57], as well as in the apoptotic regulation of mesangial cells [53, 58, 59]. Furthermore, phar-

macologic activation of β-catenin induced albuminuria in wild-type mice but not in β-cate-

nin-knockout littermates [46] suggesting that targeting hyperactive Wnt/β-catenin signaling

[60] may represent a novel therapeutic strategy for proteinuric kidney diseases and not only

for hindering DN [54].

Systems biology approaches in diabetic nephropathy have also indicated Wnt signaling

pathway and cytokine-cytokine receptor interaction as significantly related pathways with DN

[61]. Other significant pathways include MAPK signaling pathway, extracellular matrix

(ECM)-receptor interaction, angiogenesis, PI3-Akt signaling pathway, Jak-STAT signaling

pathway, renin-angiotensin pathway, NF-kappa B and TGF-beta signaling pathways, as well as

oxidative stress response [61]. Another study also revealed significance of the cytokine-cyto-

kine receptor interaction and Jak-STAT signaling pathway [62]. Systems biology approaches

have been already used in chronic kidney disease and other nephrological diseases [63, 64].

In addition, it is noteworthy to be mentioned that non-coding RNAs (ncRNAs) that are

located in the seven cytogenetic regions identified from the meta-analysis could further regu-

late gene expression. Roles of microRNA (miRNA), long ncRNA (lncRNA) and circular RNA

(circRNA) in DN have recently studied [65–67]. MiRNA is the best characterized non-coding

RNA for transcriptional gene regulation. MiRNAs play significant roles in regulationg inflam-

mation in DN [67]. Regarding circRNAs, they regulate gene expression because they act as

sponges of miRNA [68] and play an significant role in renal diseases [69]. Non-coding RNAs

as well as other epigenetic modifications, such as DNA methylation and histone modification,

modulate numerous inflammatory pathways in DN [65]. Although there are many lines of evi-

dence regarding the roles on non-coding RNAs in DN, further studies are warranted to reveal
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their specific contribution in the pathogenesis of DN as well as potential therapeutic

approaches and diagnostic biomarkers for DN.

Conclusions

The present study design can decipher the most relevant biological precesses, molecular func-

tions, protein classes and signaling pathways which may point to a novel approach to enhance

the understanding of pathophysiology of DN. In conclusion, the cadherin and Wnt signaling

pathways might represent promising targets in developing new treatments to prevent not only

DN caused by both T1DM and T2DM but a variety of proteinuric kidney diseases in humans

and the cytokines and chemokines could also constitute potential therapeutic targets in DN.

Supporting information

S1 Table. Gene ontology analysis results.

(DOCX)

S2 Table. Protein class analysis.

(DOCX)

S3 Table. Pathway analysis results.

(DOCX)

S1 File. Results of the over representation test.

(DOCX)

Author Contributions

Conceptualization: Maria Tziastoudi.

Data curation: Maria Tziastoudi.

Formal analysis: Maria Tziastoudi.

Funding acquisition: Maria Tziastoudi.

Methodology: Aspasia Tsezou.

Supervision: Ioannis Stefanidis.

Writing – original draft: Maria Tziastoudi.

References
1. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for

genetic susceptibility to diabetic nephropathy. The New England journal of medicine. 1989 May; 320

(18):1161–5. https://doi.org/10.1056/NEJM198905043201801 PMID: 2710189

2. Cowie CC, Port FK, Wolfe RA, Savage PJ, Moll PP, Hawthorne VM. Disparities in incidence of diabetic

end-stage renal disease according to race and type of diabetes. The New England journal of medicine.

1989 Oct; 321(16):1074–9. https://doi.org/10.1056/NEJM198910193211603 PMID: 2797067

3. Dronavalli S, Duka I, Bakris G. The pathogenesis of diabetic nephropathy. Nature clinical practice Endo-

crinology & metabolism [Internet]. 2008; 4(8):444–52. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/18607402 https://doi.org/10.1038/ncpendmet0894 PMID: 18607402
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