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ABSTRACT

Motivation: Advances in high-resolution microscopy have recently

made possible the analysis of gene expression at the level of individual

cells. The fixed lineage of cells in the adult worm Caenorhabditis

elegans makes this organism an ideal model for studying complex

biological processes like development and aging. However, annotat-

ing individual cells in images of adult C.elegans typically requires ex-

pertise and significant manual effort. Automation of this task is

therefore critical to enabling high-resolution studies of a large

number of genes.

Results: In this article, we describe an automated method for anno-

tating a subset of 154 cells (including various muscle, intestinal and

hypodermal cells) in high-resolution images of adult C.elegans. We

formulate the task of labeling cells within an image as a combinatorial

optimization problem, where the goal is to minimize a scoring function

that compares cells in a test input image with cells from a training atlas

of manually annotated worms according to various spatial and mor-

phological characteristics. We propose an approach for solving this

problem based on reduction to minimum-cost maximum-flow and

apply a cross-entropy–based learning algorithm to tune the weights

of our scoring function. We achieve 84% median accuracy across a

set of 154 cell labels in this highly variable system. These results dem-

onstrate the feasibility of the automatic annotation of microscopy-

based images in adult C.elegans.

Contact: saerni@cs.stanford.edu

1 INTRODUCTION

Comprehensive gene expression profiling using high-resolution
images from in situ hybridization or fluorescent reporter experi-
ments has become feasible owing to advances in imaging

technology and the growing availability of genomic resources.
Image-based gene expression analysis is especially promising
for the study of Caenorhabditis elegans, as the fixed developmen-

tal lineage of all 959 cells in the adult worm permits, at least in
principle, direct comparison of expression values of reporter
genes in analogous cells from different individuals. In practice,

however, the process of identifying the cells in an image of an
adult worm is usually performed manually, which is extremely
tedious and time-consuming. Owing to the significant expertise
required for accurate cell identification, most in situ analyses of

gene expression in adult C.elegans to date have been limited to

much lower regional resolution.
A crucial step in making high-resolution global gene expres-

sion analysis possible in the worm is to develop computational

approaches that can extract expression data from images,

thereby allowing high-throughput conversion of unstructured

image data into well-structured gene expression tables suitable

for computational analysis. Previous methods for single-cell gene

expression analysis in model organisms have largely relied on

time-series information and region markers to map the locations

of individual cells (Bao et al., 2006; Fowlkes et al., 2008; Keränen

et al., 2006; Luengo Hendriks et al., 2006; Murray et al., 2008;

Zhao et al., 2008). In C.elegans, however, tracking cell lineages is

extremely difficult after the embryonic stage owing to the

amount of time required for monitoring the development of

each individual worm and the large morphological changes

that take place during development. Therefore, techniques that

allow mapping of single cells without the assistance of time series

information are needed.
For worms in the first larval stage (L1) following embryonic

development, the absolute and relative spatial locations of indi-

vidual cells are highly constrained. Based on this insight, a

marker-guided spatially constrained bipartite matching algo-

rithm was previously developed for labeling cells in 3D images

of L1 worms (Long et al., 2008). This method was shown to

achieve high accuracy (86%) for annotating 357 out of the 558

cells present in the L1 developmental stage (Long et al., 2009).

For adult C.elegans, however, the cell labeling task is substan-

tially more difficult. In addition to a near doubling of the

number of somatic cells from 558 to 959, thousands of germ

line cells are also present in the adult worm resulting in 2500–

3500 total cells. The additional germ line cells occupy locations

near somatic cells of interest throughout the trunk of the worm,

which poses a substantial difficulty for annotation approaches

that rely on location-based features alone. Moreover, the number

of somatic cells is variable in the adult worm unlike worms at the

L1 stage, further decreasing the effectiveness of spatial cues for

cell identification. Methods have been proposed that combine

the segmentation of cells from the 3D images and their label

annotation into a single step for the L1 worm (Qu et al., 2011)

to improve the overall accuracy on the set of 82 muscle cells. This

method requires cell-specific markers to be consistently expressed

in a subset of cells and again relies on an invariable cell lineage.*To whom correspondence should be addressed.
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More concretely, although the adult C.elegans is post-mitotic,
meaning no additional somatic cell divisions take place once de-
velopment is complete, not every individual produces precisely

the same number of cells. In our data, we have observed a high
degree of variability in a set of four intestinal cells, which may
each undergo one additional division to give rise to two daughter

cells. To accurately assign labels to the cells in an individual, it is
crucial to recognize whether the parent intestinal cell or the two
daughter cells are present.
In this article, we formulate the problem of labeling cells in

3D images of adult C.elegans as a combinatorial optimization
problem. Our method builds on prior work by using a rich
scoring function that incorporates additional features beyond

spatial location, such as cell size, intensity of a muscle-marker
gene and neighborhood density. We extend our formulation to
accommodate the cell number variation that arises owing to

post-embryonic cell division. Finally, we show how to solve
the resulting optimization problem efficiently via reduction to
minimum-cost maximum-flow, and describe a straightforward

cross-entropy–based algorithm for fitting parameters of the
model. We test the method on a set of 25 manually curated
images of day 1 adult worms. Using our algorithm, we achieve

84% median accuracy on a subset of 154 cells in the adult
worm, demonstrating the feasibility of automated methods for
this task.

2 METHODS

2.1 Overview of method

In this section, we present methods for automatic annotation of adult

worms. Images in the adult were obtained using an experimental protocol

similar to the approach described in previous work that performed auto-

mated single-cell annotation to obtain high-resolution gene expression

data in the larval worm (Liu et al., 2009). In these images, single cells

are visualized through a combination of 40,6-diamidino-2-phenylindole

(DAPI) staining of DNA in all cells (shown in the blue channel), and

green fluorescent protein (GFP) expression in a subset of nuclei (shown in

the green channel). These two complementary approaches enable detec-

tion of all cells within a worm, and identification of specific marker cells

to guide cell labeling. Figure 1 shows a sample image of a worm where the

3D images have been projected along the z-axis.

Previous work (Long et al., 2008) attempted to solve the annotation

task for worms in the first larval stage (L1) using a marker-guided two-

stage bipartite matching algorithm. In this approach, unlabeled cells in an

input worm image were matched with annotated cells from a reference

atlas on the basis of cell location. This hierarchical strategy focuses on a

small subset of GFP-marker expressing cells before considering all cells in

the L1 worm. It includes a heuristics approach that through an iterative

graph pruning scheme imposes relative spatial constraints on cell label-

ings. Because of the highly stereotyped spatial arrangement of cells within

worm images (Liu et al., 2009), location-based features alone were suffi-

cient to obtain good accuracy for cellular annotation at this early stage of

development.

As discussed in the preceding section, however, adult worms pose a

substantially greater challenge for cellular annotation than L1 worms.

To achieve reasonable accuracy in adult worms, which have an order-of-

magnitude more cells in total, we propose an approach that incorpor-

ates additional features into a cost function that, when used to solve

the annotation task, increases accuracy compared with using location

alone. We first formalize the task of label assignment as a combinatorial

optimization problem, then introduce the set of features used in the

cost function. We show how the optimization problem can be solved

using a minimum-cost maximum-flow algorithm, and propose simple

extensions that allow for the explicit incorporation of additional,

variable, cell division events during late development. We finally

describe the parameter estimation process used to assign weights for

these features.

2.2 Formulation of cell lineage annotation as a combina-

torial optimization problem

Suppose that a 3D input image contains p cells, x ¼ ðx1, x2, . . . ,xpÞ, each

of whose locations and boundaries have already been extracted in a pre-

processing step. Let y ¼ ðy1, y2, . . . , ypÞ denote the corresponding labels

that we wish to predict for each cell, where yi 2 Y for some set of can-

didate labels Y ¼ f‘0, ‘1, . . . , ‘qg. Here, we assume that ‘0 is the label

used to denote cells that have no specified annotation. We refer to this

label as the dud label. ‘1, ‘2, . . . , ‘q correspond to the q different types of

cells identified by an expert human annotator for images in our training

set; in our work, for example, ‘1 through ‘107 represent different types of

muscle cells found in adult worms, including 95 body wall muscles, ‘108
through ‘116 represent different types of hypodermal cells and ‘117
through ‘142 are 26 different intestinal cells. Finally, ‘143 through ‘154
are a set of intestinal cells that participate in variable cell division,

which we will address later.

The task of determining the appropriate label for each cell can be

posed as a combinatorial optimization problem in which

(i) Each cell xi is assigned exactly one label from Y,

(ii) Each label ‘j (for j 6¼ 0) is assigned to exactly one cell and

(iii) The dud label ‘0 may be assigned to multiple cells (e.g. all germ

line cells in the training data are given the label ‘0).

Let ½aij� 2 f0, 1g
p�ðqþ1Þ be a matrix whose entries aij are set to 1 when-

ever cell xi is assigned label ‘j, and 0 otherwise. Similarly, let

½cij� 2 R
p�ðqþ1Þ be a matrix of costs for each possible assignment of cell

to label. Formally, the labeling task can be written as the following inte-

ger programming problem:

minimize
½aij �

Xp
i¼1

Xq
j¼0

aijcij,

subject to
Xq
j¼0

aij ¼ 1, i ¼ 1, . . . , p

Xp
i¼1

aij ¼ 1, j ¼ 1, . . . , q

aij 2 f0, 1g

ð1Þ

where the constraints ensure that all cells are assigned exactly one label,

and vice versa.

Fig. 1. This image of a day 1 adult hermaphrodite contains DAPI-stained

nuclei, visible in blue, and the GFP body wall muscle reporter in a subset

of cells in green. The 3D image is projected along the z-axis to create this

2D image. In the figure, the heterogeneity of the worm cell shapes is easily

visible, including the elongated shape of the green muscle cells, the large

number of germ line cells (white arrowhead) and the large intestinal cells

(red arrowhead)
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2.3 Defining cost matrices

The choice of costs ½cij� is the key factor in determining the quality of the

predicted labelings from our bipartite matching algorithm. In this section,

we describe an approach for constructing cost matrices that takes into

account multiple aspects of compatibility between a cell xi and a putative

label ‘j:

(i) Cell location: A 3D vector indicating the location of a cell xi in

worm-coordinate space with each dimension standardized to

have zero mean and unit variance.

(ii) Cell size: A scalar value indicating the size of a cell xi as mea-

sured by the number of voxels contained in the cell object.

(iii) GFP expression levels: A scalar value indicating and mean green

channel voxel values in the cell object, standardized within each

worm to have zero mean and unit variance across all cells.

(iv) DAPI intensity: Two scalar values indicating the mean and the

standard deviation of the blue channel voxel intensities in the cell

object, standardized within each worm to have zero mean and

unit variance across all cells.

(v) Neighborhood: Two scalar values indicating the number of cells

within a certain distance of the cell’s center (either a 10 voxel or

25 voxel radius).

(vi) Cell shape: A set of scalar values representing the percent of

variance captured along each axis from the principal components

analysis (PCA) of the voxel locations contained in the cell. This

roughly represents the elongation along a set of axes for the cell.

In addition, the value of the x-coefficient for the first eigenvector

is included.

All of the above features are those typically used when an expert

human annotator is presented with a new adult worm to label.

Consider a single aspect of compatibility between a cell xi and a

putative label ‘j. Here, we focus specifically on cell location (though the

construction of cost matrices for other aspects of compatibility is done in

the same way). We begin by assuming that we have access to a training set

S of worm images, each of which have been fully annotated by a human

expert. Our goal is to define a cost matrix ½cij� such that cij reflects

the extent to which the location of a cell xi in an input image is compat-

ible with the location of cells that were annotated with label ‘j in the

training set S.

Let hxii
location denote the 3D vector of coordinates for a given cell xi

in standardized worm-coordinate space. Each dimension is standardized

to have zero mean and unit variance. One simple choice of cost is given

by the squared Mahalanobis distance,

clocationij ¼ ðhxii
location � �location

j Þ
T�location�1

j ðhxii
location � �location

j Þ ð2Þ

where �j is a 3D vector giving the average location of training cells with

label ‘j, and �j is the sample covariance matrix of these locations. The

Mahalanobis distance can be thought of as a variation on a weighted

Euclidean distance measure that accounts for correlation between coord-

inates in different dimensions. Similar costs may be defined for cell size,

GFP expression level and additional features. Note that in the case of

scalar-valued features (e.g. cell size), the above expression reduces to

csizeij ¼
hxii

size � �size
j

�sizej

 !2

ð3Þ

where the mean �size
j and standard deviation �sizej are estimated based on

all cells from the training data with a particular label ‘j. Finally, given

multiple separate cost matrices, we can construct a single cost matrix by

taking a simple weighted sum:

cij ¼ ewlocationclocationij þ ewsizecsizeij þ . . .þ ewshapecshapeij ð4Þ

where w ¼ ðwlocation,wsize, . . . ,wshapeÞ is a vector of (log) weights.

2.4 Formulation of cell lineage annotation as a

minimum-cost flow

One approach to solving the combinatorial optimization problem in one

is a straightforward application of maximum weight bipartite matching

(a.k.a., linear assignment) that was used in (Long et al., 2008). In this

approach, one constructs a bipartite graph containing p nodes in each

partition. The left partition contains a single node for each input cell. The

right partition contains a single node for each non-null label ‘1, . . . , ‘q
and p� q nodes for the null label ‘0. The cost for matching the ith node in

the left partition with the jth node in the right partition is set to cij, and

the minimum cost matching can be found in Oðp3Þ time using the

Hungarian algorithm.

Another alternative is to reduce 1 to an instance of the transportation

problem, which eliminates the need to explicitly enumerate nodes with

null labels. For general transportation tasks, the algorithm of

Kleinschmidt and Schannath (Kleinschmidt and Schannath, 1995) takes

Oðpq log pðpþ log qÞÞ time, which is an improvement over the Oðp3Þ

afforded by the Hungarian algorithm. Here, we take an even more gen-

eral approach that also avoids creating these same duplicate nodes by

reduction to minimum-cost flow. We show that a simple algorithm for

minimum cost flow achieves Oðpqðqþ log pÞÞ time as a consequence of

the structure of our problem. The flexibility of the minimum-cost flow

approach allows us to further extend the algorithm to handle the special

case of cells that undergo variable cell division.

Construct a directed graph G ¼ ðV,EÞ containing p nodes (denoted

x1, . . . , xp) representing cells in the input worm, qþ 1 nodes representing

the possible labels for these cells (denoted ‘0, . . . , ‘q and which include

the dud label) and two additional nodes s and t representing the sink and

source for the graph. The edges of the graph consist of the following:

(i) ðs, xiÞ: an edge from the source node to a node representing the

ith cell in the input worm

(ii) ðxi, ‘jÞ: an edge from the ith cell node in the input worm to the

jth label node

(iii) ð‘j, tÞ: an edge from each label node to the sink

There are p total edges of the first type, pðqþ 1Þ total edges of the

second type and qþ 1 total edges of the third type for each input worm.

With each edge ða, bÞ associate a lower bound, Lab, an upper bound

Uab and a cost Cab. These constraints and costs are defined differently for

each type of edge:

� Ls, xi ¼ Us, xi ¼ 1 and Cs, xi ¼ 0, 8i.

� L‘j , t ¼ U‘j , t ¼ 1 and C‘j , t ¼ 0, j40.

� L‘0, t ¼ U‘0, t ¼ p� q and C‘0, t ¼ 0

� Lxi , ‘j ¼ 0, Uxi , ‘j ¼ 1 and Cxi , ‘j ¼ cij as defined in the section

describing the formulation of the combinatorial optimization, 8i, j

where the first two constraints ensure that all cells and non-dud labels are

matched exactly once, the third constraint ensures that dud labels are

provided to exactly p� q cells, and the last constraint sets the costs for

matching particular cells with particular labels.

The minimum-cost maximum-flow problem is stated as follows:

min
X
ðu, vÞ2E

Cuvfuv

subject to
X

v:ðu, vÞ2E

fuv �
X

v:ðv, uÞ2E

fvu ¼ �u 8u 2 V,

Luv � fuv � Uuv 8ðu, vÞ 2 E,

where �u represents the signed supply value for each node, defined as

�u ¼
p if u ¼ s
�p if u ¼ t
0 otherwise:

8<
:
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For any solution to the minimum-cost maximum-flow problem stated

above, the edges with fxi , ‘j ¼ 1 represent the annotations of cell xi with

label ‘j.

The computational advantage of a minimum-cost maximum-flow for-

mulation can be more clearly seen using a slightly modified but equivalent

formulation of the problem above in which the ‘0 node is omitted from the

graph, the costs of all ð‘j, tÞ edges (for j40) are adjusted by subtracting

C‘0, t and the supply values are adjusted accordingly to achieve a target

flow of q (rather than p). When solving the latter formulation, at most

q augmentations are required to find the optimal solution using the sim-

ple minimum-cost maximum-flow algorithm suggested by Edmonds and

Karp (Edmonds, 1972), giving an asymptotic runtime ofOðpqðqþ log pÞÞ.

This is a substantial improvement over theOðp3ÞHungarian algorithm for

weighted perfect matching, as q� p in our setting.

In our experiments, we opted for the more straightforward formula-

tion described here (which we extend in later sections) and used the

Network Simplex function in the Lemon Library (Király and Kovács,

2010; Dezs et al., 2011) for optimization. As expected, this gave a sub-

stantial practical speed-up compared to a highly efficient implementation

of the Hungarian algorithm for bipartite matching.

2.5 Annotation with variable cell divisions

Although the cell lineage for adult worms is known and largely fixed,

some exceptions exist. In particular, we observed in our data that the four

posterior intestinal cells (two ventral and two dorsal) can each undergo an

additional cell division. As an example, let’s assume ‘j is the j
th cell in the

C.elegans atlas (Altun and Hall, 2008) and is determined to be present in

all adult cells. However, the data indicate that ‘j divides and gives rise to

two additional cells, an anterior and posterior daughter cell. We will refer

to these sets of cells, which undergo variable cell division as the set of

labels at the indices P ¼ f143, 146, 149, 152g. For each of the parent cells

j 2 P, let DaughterðjÞ ¼ fjþ 1, jþ 2g denote the set of daughter cells

produced when j divides. Biologically, either a parent cell is present, or

it has divided and given rise to the two daughter cells. In particular, a

matching should never simultaneously label both a parent cell and any

daughter cell; similarly, a matching that labels one of the daughter cells

should also label its sister cell. These types of constraints cannot be

modeled using the standard bipartite matching algorithm.

The minimum-cost flow formulation can capture some of these con-

straints resulting from the variability in cell divisions in the annotation

process by adding nodes and edges to the graph constructed in the pre-

vious section. For each variably dividing parent cell j 2 P, create two

decision nodes, d 1
j and d 2

j , and construct edges as follows:

� ð‘j, d
1
j Þ with constraints L‘j , d 1

j
¼ 0, U‘j , d 1

j
¼ 1 and cost C‘j , d 1

j
¼

0 8j 2 P

� ð‘jþ1, d
1
j Þ with constraints L‘jþ1, d 1

j
¼ 0, U‘jþ1, d 1

j
¼ 1 and cost

C‘jþ1, d 1
j
¼ 0 8j 2 P

� ð‘jþ2, d
2
j Þ with constraints L‘jþ2, d 2

j
¼ 0, U‘jþ2, d 2

j
¼ 1 and cost

C‘jþ2, d 2
j
¼ 0 8j 2 P

� ð‘0, d
2
j Þ with constraints L‘0, d 2

j
¼ 0, U‘0, d 2

j
¼ 1 and cost C‘0, d 2

j
¼

0 8j 2 P

� ðd k
j , tÞ with constraints Ld k

j , t
¼ 1, Udk

j , t
¼ 1 and cost Cdk

j , t
¼

0 8j 2 P, k 2 f1, 2g

Any previous edge directly connecting ‘j, ‘jþ1 or ‘jþ2 to the sink node t

(for any j 2 P) should be deleted. Finally, the amount of flow from the

dud label l0 to the sink t is reduced as a result of flow redirected to the

decision nodes.

� ð‘0, tÞ with constraints L‘0, t ¼ p� q� r, U‘0, t ¼ p� q� r and

cost c‘0, t ¼ 0

where r is the number of parent cells that can variably divide; here r¼ 4.

The decision nodes are used to impose mutual exclusion constraints.

For example, d 1
j ensures that exactly one of the two labels, either the

parent ‘j or the anterior daughter ‘jþ1, will be present in the final anno-

tation. Similarly, d 2
j is used to determine whether the posterior daughter

‘jþ2 will be annotated.

Ideally, the method achieves a solution in which the pair of daughter

cells ð‘jþ1, ‘jþ2Þ or only a parent cell ð‘jÞ is used by routing a unit of flow

through the dud, ‘0. However, this construction imposes no restriction on

both daughter cells being labeled simultaneously, nor does it prevent the

parent being labeled alongside the posterior daughter. For this reason a

heuristic post-processing step is needed after the two assignments are

performed independently (Note, a graph construction exists that does

account for these additional constraints. However, given the current for-

mulation of costs, a solution cannot be obtained that properly scores

these relationships. A modification to the cost formulation should be

explored in future work.)

In particular, if the posterior daughter ‘jþ2 is labeled, then ensure that

the anterior daughter ‘jþ1 is also labeled (reassigning from the parent ‘j
to the anterior daughter ‘jþ1 as needed). Similarly, if the posterior daugh-

ter ‘jþ2 is unlabeled, this implies that the parent cell has not divided, and

so ensures it is labeled (reassigning from the anterior daughter ‘jþ1 to

parent ‘j as needed). Figure 2 presents a representation of the structure of

the network.

2.6 Estimating parameter weights for improved matching

results

This section focuses on the method for learning the appropriate weights

used in Equation (4). Once determined, using the weights in the optimal

assignment in the matching problem will yield an annotation of the p cells

in an input worm.

Define YðxÞ as the set of all possible matchings for an input worm x,

and define y0 2 YðxÞ as the solution that minimizes the network flow

problem for a given set of weights w ¼ ðwlocation,wsize, . . . ,wshapeÞ. The

goal is to learn the appropriate weights w for combining the cost matrices

as defined in Equation (4) such that for each worm x 2 S the solution y0 is

close to the true labeling, y.

Let Q(y) denote the number of cells that have been assigned a label

other than ‘0 in y (i.e. the number of cells named by the expert annotator,

Fig. 2. The network consists of a source node (s), a sink node (t), a set of

nodes for each of the p total input cells, x1,x2, . . . ,xp, a dud label node

‘0 and q unique labels of which a subset participating in variable cell

divisions. The label ‘j represents a parent and ‘jþ1 and ‘jþ2 its daughters
as described in the text. d1j and d2j represent the decision nodes for that cell

divisions. The source node, s, pushes p units of flow into the network. All

blue edges have a lower and upper bound of 1. The black edges all have

lower bound of 0 and an upper bound of 1. Finally, the red edge from the

dud label node, ‘0, to the sink node, t, has a lower and upper bound equal

to p� q� r where r is the number of parent cells that may divide
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QðyÞ ¼ jfyijyi 6¼ l0gj). Also, define Rðy, y0Þ to be the number of cells with

the same label in y and y0, other than l0 (i.e. Rðy, y0Þ ¼ jfyijyi ¼

y0i ^ yi 6¼ l0gj).

Define the learning objective as the average percentage of cells that

have the correct annotation for any given weight w.

hðX ,Y,wÞ ¼
1

N

X
ðx, yÞ2X ,Y

Rðy, y0Þ

QðyÞ
ð5Þ

where N is the number of training worms. A supervised learning

technique must be chosen that estimates a set of weights w for the cost

function such that for the resulting predictions the difference between the

predicted labels y0 and the true labels y is globally minimized.

Finding a solution that minimizes not the cost of the labels for the

individual cells, but rather the global matching is challenging. Various

methods have been proposed to solve this parameter estimation problem

(de Boer et al., 2005; Caetano et al., 2007, 2009; Le and Smola, 2007;

Petterson et al., 2009; Rubinstein and Kroese, 2004; Taskar, 2004; Taskar

et al., 2005; Tsochantaridis et al., 2005). Some approaches may be effi-

cient computationally, such as max-margin structured estimation and

need to be explored (Taskar, 2004; Taskar et al., 2005). Here, we take

a sampling approach described below.

Start with a distribution over the space of weights (i.e. R
n), where n is

the number of features used in the matching problem in 1 and randomly

sample from this a number of times (e.g. 100) to obtain a set of weight

vectors, fw½1�, . . . ,w½100�g. For each sampled weight vector, w, solve the

network flow problem modeling variable cell division for each training

worm, and compute the average per-worm accuracy in annotation given

by Equation (5). Then take the top fraction of performing weights (the so

called elite set), and use them to estimate a new distribution from which

to sample the next set of weights. This is repeated until convergence as

defined by a plateau in the objective function. For sampling, each of the

dimensions of the weight vectors are drawn independently. In particular,

each wi is sampled from a separate distribution Nð�i, �
2
i Þ. After each

iteration, the mean and standard deviation of the wis for the top �% of

samples scored are used to estimate each weight’s �i and �i in the next

iteration of sampling. The algorithm is run until convergence.

Intuitively this means that the matching problem is solved on the

worms using a set of sampled weights. As the space of possible weights

is searched, the evaluation of the performance of the sample at each step

allows the algorithm to identify a distribution for weights that show good

performance on the training. In essence, it is sampling the set of top

performers, and removing the poor-performing set from the population.

A schematic is shown in Figure 3.

3 RESULTS AND DISCUSSION

A set of 25 day 1 adult hermaphrodites were imaged using fluor-

escent confocal microscopy, producing a series of 3D image

stacks. These images were processed similarly to the approaches

used in the first larval stage (Liu et al., 2009). Each worm was

stained with DAPI, making all nuclei visible in the blue channel.

In addition, the worms contained muscle-specific GFP markers,

making a subset of body wall muscle cells visible in the green

channel as shown in Figure 1. The cells were automatically seg-

mented using a modified version of a gradient-based approach

described in other work (Li et al., 2007), which was adapted and

parallelized to improve performance on the larger adult worms.

The segmentation was manually corrected, and from the set of 25

expert-curated worms, we extracted features of the cells,

described in full detail in Section 2.3. In short, the orientation

of the worm was determined manually (head, tail, ventral). We

then extracted many features of the cells including location,

DAPI and GFP intensity, shape (e.g. size and elongation) and

neighborhood density.
Each worm was manually annotated with 142 labels consisting

of a set of intestinal, muscle and hypodermal cells. In addition,

each worm was also annotated with a set of labels for cells that

undergo variable division, consisting of four intestinal cells that

could each divide and give rise to two daughter cells, accounting

for 12 unique additional labels. Therefore, each worm was anno-

tated with a subset of the 154 total labels. These particular cells

were targeted by the expert annotator to study the biological

process of aging. The muscle and intestinal tissues degenerate

most during aging and are therefore cells of interest. The hypo-

dermal cells were also included as a set that were readily recog-

nized by the expert annotator.

3.1 Performance evaluation of an untrained matching

approach using 5-fold cross-validation

We first present the performance of automatically annotating

cells by combining different sets of features into a scoring func-

tion where these features are linearly combined. Table 1 sum-

marizes the results of combining the indicated set of features with

equal weight in a cost function for assigning a given label to a

cell. These costs are used to solve the minimum-cost labeling of

all cells using the set of available labels. This assignment problem

Fig. 3. This schematic of the sampling approach depicts the method used

to learn optimal weights for the label assignment problem. At the top, the

two toy matching examples (A and B) show different performances of

model fits at sampled weights (C). The ‘Model’ shows the available cell

labels. The ‘Subject’ is a training example with its true labels indicated,

1 through 10. The edges represent the final matching computed using the

sampled weights. In the top (yellow) example, the solution labels only six

cells correctly. In the lower red model, seven labels are correctly assigned.

We use a red shade to represent higher accuracy in this schematic. To

learn the weights for the assignment problem, the method proceeds as

follows: 1. Randomly sample many weights for the features (2 features

shown here) from the given distribution and solve the matching problem

on the training sets, computing the average accuracy of the annotation at

those weights (D). 2. Identify the top-scoring samples (represented by red)

and use their weights to recompute a new distribution for the next iter-

ation (shown in E). Repeat until convergence
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and cost functions are described in full in Section 2. The table

reports average accuracy as computed using Equation (5), the

percentage of uniquely labeled cells in a test worm receiving the

correct annotations. In each model, as only a subset of cells in a

worm is assigned a unique label (at most 150), there is a large

number of unlabeled cells. We present two models, one in which

we ignore the unlabeled cells in the scoring of an assignment, and

another in which the unlabeled cells are scored. For each com-

bination of features, the table shows a model where unlabeled

cells incur no cost in using the cost matrix described in the

Equation (4) cki0 ¼ 0 8i, k, the ith cell receiving the label of dud

(a label given to cells without a unique annotation, e.g. germ line

cells) and the kth feature. For those models in which the dud cells

were scored, the cost is computed from the estimated �0 and �0
as formulated in Equation (4). In Table 1, these models are

denoted by the inclusion of the symbolþ in the ‘Dud cells scored’

column. When dud cells are not scored, the column contains the

symbol �. In all experiments in Table 1, wi ¼ 0 8i.
As the result with a cost, ci0 ¼ 0 8i should always result in the

use of the model with no cell division taking place, in experi-

ments where dud label nodes are unscored, the bipartite match-

ing formulation is used in which all 154 cells are assigned.

Forþmodels, the minimum-cost maximum flow is solved

using the LEMON open source graph template library (Dezs

et al., 2011) (The LEMON library uses integral cost values to

solve the network flow resulting in a decrease in precision. It is

noted that experiments were run to permit precision to five deci-

mal places and had little effect on the results.)
In Table 1, the first two rows represent the model using loca-

tion alone. When the cost of unlabeled cells is not included (loc-),

the model achieves an average accuracy of 36% per worm across

the 5-fold cross-validation experiment. Including a cost for un-

labeled cells (locþ), results in an increase in accuracy to 41% per

worm. These location-based models achieve the lowest accuracy

across all models shown in Table 1.
Each subsequent model includes the feature of location in

addition to other morphological features (see Section 2.3 for

full detail). Incorporating two features of a cell, gfp intensity

and size, results in a large increase in accuracy per worm to

67% (model gs- in Table 1), while scoring the unlabeled cells

in the model shows further improvement to 71% (model gsþ

in Table 1).

However, the highest mean accuracy score belongs to the

model including a large set of features fullþ at 73%. In the sub-
sequent section, this set of features was used to train a more

complete model in which the weights for combining features in

the scoring function are learned using the sampling approach

described in Section 2.6.

3.2 Performance evaluation using trained feature weights

Using the set of 25 worms, we assessed the ability to improve

accuracy of the annotation by learning feature weights for the

cost function defined in Equation (4). Applying the sampling

technique (Section 2.6), we report results on a 5-fold cross-val-

idation experiment using the features from the fullþ model.
The initial distribution for each weight is set as Nð0, 4Þ. Each

iteration performs 100 independent samplings, and uses the
� ¼ 10 top-scoring samples to compute the distribution of the

weights for the subsequent iteration. In the first iteration of

training, solving the label assignment problem using the

LEMON Library (Dezs et al., 2011; Király and Kovács, 2010)

took on average 1 second (with an inter-quartile range of 0.69 to

1.29 s). Each model was trained for over 30 iterations, at which
point all models converged (the point where training accuracy no

longer increases). The model taken from the 30th iteration of

each cross-validation run is used for testing on the held-out set

of worms. Results are shown in Table 2.
As reported above, solving the matching problem using loca-

tion alone resulted in the mean accuracy of only 41%, even when

estimating the � and � of the locations of unlabeled cells.

Improvements were observed by linearly combining location
with additional features in the cost function, but further im-

provements in accuracy can be achieved by training the cost

model to weight the features differently. Learning these weights

led to an increase from the untrained per-worm mean accuracy

of 73% to a per-worm mean accuracy of 77% on the worm

model fullþ.
In addition to reporting a per-worm accuracy, a per-label

accuracy is provided. This is the mean and median accuracies
achieved on each label when it was present in a worm. Figure 4

shows the histogram of accuracies on a per-cell basis. In this

histogram, the distribution of per-cell accuracies when performing

annotation using amodel that uses location alone is clearly shifted

to the left. The fully trained model with learned feature weights

Table 1. Results for 5-fold cross-validation on single-cell label annotation with equally weighted features: the model is built from 20 training worms and

used to label the remaining five

Name Features Duds scored Median � �2

loc Location � 0.38 0.36 0.012

þ 0.43 0.41 0.014

gs Location, size, GFP � 0.68 0.67 0.0079

þ 0.70 0.71 0.018

full Location, size, GFP & DAPI, shape, neighborhood � 0.66 0.65 0.0088

þ 0.74 0.73 0.011

Note: In all cases features were equally weighted. The symbolþ in the column ‘Dud cells scored’ indicates the � and �2 were estimated for unlabeled cells. These unlabeled cells

were given a score of 0 otherwise. The features used are described in detail in Section 2.3. The per-worm accuracy is computed for each worm using Equation (5). The median,

mean and variance are reported across all 25 worms.
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shows the strongest shift to the right. This demonstrates that the
improvement in accuracy is not only on a per-worm basis, but

also observed in a general improvement of individual cell label
assignments. These accuracies are at a median of 35% for the
model using location alone, and 84% (with a mean of 77%) for

the trained model. In addition, five cells are given the correct label
100% of the time they are present in a worm. An additional 35
labels are correctly assigned in the 90th percentile.

3.3 Accuracy of cell division identification using

network-flow formulation

Using the results of the cross-validated trained models described,
we evaluated the accuracy of identifying cell divisions when they
occur in the four intestinal cells. Among the 25 worms, 100

intestinal cells (4 per worm) are able to undergo additional cell

divisions. We observed 54 events where one of these intestinal
cells underwent the further division. Only 3 of the 25 worms

had no additional cell divisions in all 4 of these intestinal cells.
Table 3 summarizes the results for each intestinal cell. The four

intestinal cells that are capable of dividing and giving rise to two
daughter cells are the last two ventral cells in the intestine,
Ventral9 and Ventral10, and the last two dorsal intestinal cells,

Dorsal9 and Dorsal10. The posterior-most cells of this tissue in
both the dorsal and ventral hemispheres are named Dorsal10 and
Ventral10. The intestines just anterior to these two (Dorsal9 and

Ventral 9) divide most frequently at 14 times each in the total of
25 worms.
Overall, the state of these cells is accurate 80% of the time. The

dorsal cells receive high accuracies at 88 and 80%. The most
challenging cell to predict is the ventral intestinal cell number 9

(Ventral9), which achieved 72% accuracy. It is important to note
that the identification of a division is not necessarily indicative of
the correct annotation. That is, although the two daughter labels

are assigned within the worm, they are not necessarily assigned
to the correct cells. However, use of these labels still serves an
important purpose in understanding variability in the worm’s

development. In addition, identifying when cell divisions have
not occurred prevents mis-annotation of the label to another
cell when the actual cell is not present.

4 DISCUSSION

Creating automated techniques to annotate individual cells based
on their unique cell labels in the organism C.elegans makes

single-cell studies possible for non-experts and provides assist-
ance for experts to perform analyses more rapidly. The manual

curation of the automatically segmented cells can be performed
in a few hours, for which the 154 cells can be rapidly annotated
at high accuracy. In contrast, manual segmentation and annota-

tion of the 154 cells in 3D for a well-trained biologist takes on the
order of 2 days (X.Liu, personal communications). To truly
enable widespread research of single cells in images, high-fidelity

labeling of cells must be possible. This work demonstrates the
potential of automatic techniques to succeed in the adult
organism.

In C.elegans, existing approaches creating digital atlases in the
developing embryo (Bao et al., 2006) and larvae (L1) (Long
et al., 2008, 2009) proved to be poorly suited for the challenges

of the adult worm as described earlier. In particular, the previous

Fig. 4. Accuracy for annotation of 154 cells in adult worm images. In

black, we show the accuracy using an untrained model considering loca-

tion alone. The gray histogram gives the per-cell accuracy counts of the

untrained model incorporating additional features. In white, we show the

model with weights learned for these set of features and estimated means

and variance for all cell labels, including ‘other’ cells

Table 2. Results for 5-fold cross-validation on single-cell label annotation

with trained feature weights: training of feature weights was performed

on 20 training worms using the set of features from the full model for the

154 cell labels

Accuracy measurement Median � �2

Per-worm accuracy 0.77 0.77 0.0083

Per-cell accuracy 0.84 0.77 0.032

Note: The model included the scoring of unlabeled cells. The per-worm accuracy is

computed for each worm using Equation (5). The table reports both the per-worm

and the per-cell label accuracies, including their median, mean and variance in

separate columns across the 25 test worms.

Table 3. Results for 5-fold cross-validation identification of cell divisions

of posterior intestinal cells

Parent cell name Number of

observed divisions

Correctly predicted

state (%)

Ventral 9 14 72

Ventral 10 13 80

Dorsal 9 14 80

Dorsal 10 10 88

Note: The column indicated as correctly predicted state is calculated

as True Positive þ True Negative
Total .
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state-of-the-art bipartite matching algorithm for labeling L1
worms failed in the adult for a number of reasons. The adult
variability in the marker expression and exceptionally large

number of germ line cells prevented the use of the same ap-
proach. Instead, we created a more complex model in which
we learned the weights for a richer set of features, including

cell characteristics of location and morphology. What is more,
the bipartite matching approach used in the L1 was prohibitively
slow for training a full adult model given the number of cells. As

a result, learning feature weights required a new formulation
using network flow, enabling the successful training of a more
complex cost function.

We believe this work demonstrates the utility of using such a
rich model to generate these high-confidence labels. The im-
provements in accuracy given in the results section provide evi-

dence of the benefit of including morphological features in atlas-
based modeling of C.elegans.
Future work might consider incorporating meta-features, such

as posterior probabilities of a classifier that identifies tissue types,
into the pipeline. Such an approach can mimic the behavior of
the expert annotator who generally first identifies the tissue type

of a cell (e.g. intestine) then assigns it the lineage-specific label,
selecting from those available within its tissue type. Alternatively,
incorporating such classifier probabilities directly into a cost

function may result in a more flexible model. However, for the
set of cells labeled in this work, the most salient features of the
tissue were modeled directly in the scoring function (e.g. size for

intestinal cells). In the future, training data will include cells from
additional tissue types. At this time, inclusion of tissue classifiers
might prove valuable, particularly in the case of neurons. These

classifiers might distinguish small cells from over-segmented cell
fragments, for example.
A confounding factor in the annotation process is the variabil-

ity in the number of cells. For example, we identified a set of
intestinal cells where we observed variable cell divisions. That is,
at times they underwent an additional cell division, resulting in the

presence of two daughter cells rather than the single parent iden-
tified in the 959 known somatic cells. Such variability cannot
be properly represented by a traditional bipartite matching ap-

proach. This article presents a solution that through the
construction of a special network structure for solving the anno-
tation problem enables the selection of either the parent or the two

daughters explicitly. Although achieving good accuracy, the cur-
rent construction requires a post-processing step to identify the
presence of a second intestinal-like cell. Future work might in-

clude developing a method that does not rely on the identification
of a single additional cell in the division, but rather identifies
either one large parent cell, or simultaneously both daughter cells.

We also observed an anterior intestinal cell, Ventral3, that
divided just once in the 25 worms used in this work. This was
not modeled owing to the infrequency of the cell division.

However, this observation indicates that there is likely further
variability that has not yet been observed. With increasing
amounts of data, additional variability can be modeled explicitly

to further improve cell annotation. What is more, it may be pos-
sible to model the co-occurrence of these cell divisions. Some
weak evidence exists in this dataset indicating that two intestinal

cells might be correlated in their division patterns. However, the
relatively small amount of data makes it difficult to obtain

statistical significance, and therefore a model that takes into con-
sideration the co-occurring cell divisions is left for future work.
Finally, extending the annotator to include labels for more of

the total 959 known cells will be most valuable. In addition to
creating a more complete model of the worm, it will also improve
overall annotation accuracy. We believe this work has provided

evidence for such potential gains in the fidelity of automated cell
labeling through the inclusion of more cell labels. In this work,
we achieved an improvement in accuracy by modeling the cells

that did not receive a unique cell lineage label, which we call the
dud label. Yet, even the models including the duds could be
further extended. There is significant variability within the set

of unlabeled cells as it comprises many eggs, sperm cells, neu-
rons, hypodermal cells and pharyngeal cells just to name a few. It
is possible to create a larger set of dud labels with more homo-

geneous features representing the different subclasses within the
unlabeled cells (e.g. the oocytes in the germ line). Therefore, the
groups of duds can be mapped to their correct subtype.

In summary, we believe future work must focus on extending
the annotation process by using more labels or by identifying
additional subgroups to further improve accuracy. With more

data, richer models can be built to account for cell division vari-
ability and inclusion of additional features. The ultimate goal is a
larger model that labels a large proportion of all cells that are

uniquely and reproducibly identifiable in the adult worm. This
work represents the first step toward such a goal and provides a
rich modeling approach capable of scaling with such extensions.

5 CONCLUSION

In this article, we present a method capable of annotating a set of
single cells in images of adult C.elegans at a median accuracy of

84%. The work develops a novel framework for producing labels
for 154 cells that is able to handle the additional challenges pre-
sent in the adult worm that previous methods (created for earlier

stages in the worm’s development) are not able to handle. These
challenges include the increase in the number of cells, and vari-

ability in cell location and cell divisions. We address these chal-
lenges through training a rich model that incorporates
morphological and spatial features, constructing a special net-

work structure and explicitly modeling cells that receive non-
unique labels. By reducing the computational complexity in
using a minimum-cost maximum-flow algorithm, we make feas-

ible a cross-entropy–based learning algorithm to tune the weights
of the features in our scoring function and ultimately train a
more accurate model that is capable of handling the variable

cell divisions. As a result, we demonstrate that the inclusion of
additional features and the reformulation of the traditional ap-
proach to the label assignment make possible the training of a

richer model to improve accuracy. Furthermore, we also demon-
strate that inclusion of more cells, in addition to more features,
leads to gains in accuracy for all cell label assignments.
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