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Abstract

Urbanization is among the largest threats to wildlife populations through factors such as
fragmentation, isolation, and habitat destruction. Urban open spaces, such as parks and
golf courses, have the potential to provide wildlife with suitable habitat within an urbanized
matrix. These refugia may be particularly important for amphibians, which represent one of
the most endangered and least vagile vertebrate groups on earth. During the spring and
summer of 2018, we conducted surveys to determine the presence of anurans at 51 wetland
sites within the Piedmont ecoregion of South Carolina. Nearly one-third of these wetlands
were located within urban open spaces, one-third in low development areas, and one-third
in highly developed areas. Impervious surface and total road length surrounding the wet-
lands were measured at two scales, a core habitat scale (300 m) and average maximum
migration scale (750 m), and we measured several within-wetland habitat variables. Urban
Open Space wetlands had levels of surrounding impervious surface similar to High Urbani-
zation wetlands at the larger scale and were intermediate between Low and High Urbaniza-
tion wetlands at the smaller scale. The total length of road segments occurring within buffers
(at both scales) surrounding our study wetlands was higher for Urban Open Space com-
pared to Low and High Urbanization sites. Among the within-wetland variables measured,
Low Urbanization sites had higher canopy cover and were more likely to have a terrestrial
buffer zone relative to the other categories. Species richness decreased significantly as
total road length increased among all wetlands. Wetland category was not a significant
driver explaining species richness, but B-diversity was more variable among Urban Open
Space wetlands than either Low or High Urbanization wetlands. Urban Open Space wet-
lands did not appear to increase suitability for anurans relative to High Urbanization wet-
lands. Urban Open Space wetlands had higher variability in species composition, which was
perhaps attributable to the diversity among sites represented in the Urban Open Space
category.
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Introduction

Undeveloped habitat is rapidly being replaced with urban infrastructure such as roads, build-
ings, houses, large paved areas, and other impervious surfaces [1, 2]. An increase in housing
and building density has a negative effect on native species through habitat loss and reduction
in habitat quality [2-6]. Decreases in native bird, arthropod, rodent, and amphibian species
richness accompany urban density increases [7-11]. The long-term consequences of urbaniza-
tion can be difficult to accurately predict, as negative responses of species to development may
intensify over decades after initial development [3, 12].

As the size and density of urban development continues to increase, it is important to find
areas that can serve as conservation refuges for species that might otherwise be negatively
affected by urbanization. Urban open spaces (also referred to as green spaces) may offer areas
of biodiversity conservation for native species within a matrix of otherwise unsuitable habitat
[13, 14]. Urban open spaces are defined within this study as publicly accessible, managed out-
door spaces that are partly or completely covered by significant amounts of vegetation that
exist primarily as semi-natural areas within an urban environment [15-17]. These areas may
be public parks, community gardens, sports recreation zones (e.g. golf courses), or cemeteries.
The habitat fragmentation, destruction, and isolation that occurs due to urbanization are all
threats to biodiversity that urban open spaces can help mitigate [16]. Not only can urban open
spaces help to preserve local biodiversity, their presence and the presence of the plant and ani-
mal species they can contain can also have positive psychological benefits to the people who
utilize them [18, 19].

One group of animals that may particularly benefit from urban open spaces is amphibians.
Their relatively small body sizes, low vagility, and small home ranges make them particularly
vulnerable to localized habitat loss and urban impacts, and as such, ideal candidates for studies
focusing on localized effects of urbanization. Amphibian species are at a higher risk of extinc-
tion than any other vertebrate class with nearly one-third (32%) of the world’s amphibians
listed as threatened and 43% with declining populations as of 2004 [20-23]. These declines
have been noted worldwide, with North America being no exception [24, 25]. While many
studies have sought to evaluate amphibian responses to urbanization, few have evaluated how
this group responds to small-scale habitat protection within a developed matrix [21, 26].

Urbanization and associated road densities can influence the movement of amphibians
between suitable habitats and can increase the exposure of a wetland to pesticides, herbicides,
and other chemical contaminants [4, 21, 27]. Additionally, urban development can increase
wetland eutrophication through lawn fertilizer and chemical runoff and alter wetland hydrol-
ogy [4, 27-29]. Urbanization also leads to an increase in the coverage of impervious surfaces
across developed landscapes which, in turn, can contribute to habitat fragmentation by sepa-
rating breeding wetlands from important upland habitats [29-32]. Not only do roads act as
barriers between otherwise contiguous habitats, but traffic along these roads has a direct nega-
tive, and typically lethal, effect on anuran population [33, 34]. Frogs and toads may struggle to
navigate even short distances (in relation to their overall dispersal abilities) in urbanized areas
[32]. Factors such as vehicle collisions, exposure to runoff (salt, oil, etc.), noise, exhaust emis-
sions, and vibrations can all affect anuran populations through either direct mortality or
behavior interruptions [34, 35].

Despite the challenges that amphibians face in urban systems, urban open spaces can pro-
vide important habitat and habitat connectivity for anuran species, particularly those spaces
containing wetlands or ponds [32, 36]. Not only can anurans benefit from these open spaces,
but the open spaces can benefit from them. Tadpoles feed on algae and juvenile and adult
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anurans feed on insects which could reduce the need to utilize pesticides and herbicides, or to
stock fish as an insect control method [28, 36].

While it is well-established that urban development can decrease the diversity and abun-
dance of anurans, the efficacy of small-scale buffers around wetland habitats to bolster
amphibian populations and diversity remains an open question [37]. Reviews of the literature
indicate that wetland-breeding amphibians require anywhere from 300-750 m of upland habi-
tat around breeding sites to carry out necessary life-history processes [31, 38—41]. Thus, we
examined 51 wetlands along a rural-urban gradient in the Piedmont of South Carolina to
assess anuran assemblages and compare wetlands and their surrounding upland habitat. Wet-
lands were assigned to one of three landscape categories: Low Urbanization, High Urbaniza-
tion, and Urban Open Space. The first two categories were defined by the amount of
development within a 750 m buffer. The third category was assigned to any wetland within an
urban open space as defined above. Our objective was to evaluate anuran species richness and
community composition as a function of within-wetland habitat features and the amount of
urbanization within the surrounding landscape. We predicted that species richness would be
highest at the “Low Urbanization” sites and that anuran assemblages at “Urban Open Space”
sites would more closely resemble that of “Low Urbanization” sites given that urban open
spaces may provide a buffer zone from urban influence.

Methods and materials
Ethics statement

The Institutional Animal Care and Use Committee (IACUC) within the Office of Research
Compliance at Clemson University reviewed the study protocol and approved the research.
Approval number: IACUC AUP2018-007.

Tadpoles were gently captured by long handled dip-net and immediately moved to a disin-
fected plastic bowl containing water from the same wetland. A small subset of tadpoles that
were not able to be identified in the field were euthanized using MS-222 and taken to the lab
for identification (1-2 tadpoles per unidentifiable species). We limited the number of animals
to be euthanized to 50 per year. Adult and juvenile frogs/toads were gently captured by hand
or long handled dip-net, identified to species, and immediately released.

Study area and landscape characteristics

We used Google Earth to identify 73 wetland sites in Anderson, Oconee, and Pickens Counties
in South Carolina for potential inclusion in our study. Throughout the late spring and summer
0f 2017, we assessed these sites for accessibility and differences in the amount of urbanized
space surrounding each wetland and selected 51 finalist sites to include in our study (Fig 1).
These wetlands are situated along a gradient ranging from rural to high urbanization (> 80%
impervious surface surrounding the wetland). To address our study objectives, we placed each
wetland site into one of three landscape categories: Low Urbanization, High Urbanization, or
Urban Open Space, which included golf courses, parks, and gardens.

Wetland categorization was based on (1) whether the site was in an urban open space, and
(2) if not, how much impervious surface surrounded the wetland within a 750-m buffer. Each
wetland was delineated as a unique polygon in ArcMap (ESRI, Redlands, CA) using a satellite
imagery base map combined with knowledge of the actual wetland boundaries determined by
ground truthing. Two buffers were added around each wetland, one at 300 m based on a previ-
ous study that defined core habitat buffers around a wetland [38], and one at 750 m to encom-
pass mean upland migration range as estimated by a review of anuran migration distances
[41]. We labelled wetlands with impervious surface > 30% within the 750-m buffer “High
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Fig 1. Map of the study area including sample sites. Red circles = High Urbanization; blue hexagons = Low
Urbanization; green squares = Urban Open Space sites. The study area was within the South Carolina Piedmont
Ecoregion and the focal counties are show on the inset. All layers used to build the image came from publicly available
data. http://www.gis.sc.gov/data.html.

https://doi.org/10.1371/journal.pone.0244932.9001

Urbanization”, whereas wetlands with < 30% impervious surface received the label “Low
Urbanization.” We selected 30% impervious surface as a threshold because previous research
has demonstrated amphibian declines within wetlands at or beyond this level of watershed
development [37]. We used the 750-m buffer as our focal scale because it was inclusive of pre-
sumed maximum anuran movements around the wetland; within an anuran population, a
buffer of 703 m was shown to include the 95% of localities for 262 individuals of 9 anuran spe-
cies departing from breeding wetlands [41]. We gave the wetlands located in urban open
spaces (as defined in the Introduction) the label “Urban Open Space.” Percentage of impervi-
ous surface surrounding wetlands in urban open spaces was not used to categorize these wet-
lands; nevertheless, the Urban Open Space category was primarily composed of sites with
impervious surface coverage > 30% (only a single wetland was below this threshold with 25%
impervious surface coverage). Urban Open Space wetlands encompassed several different
management strategies. Most of the wetlands included in the Urban Open Space category were
within golf courses (58%). These wetlands tended to be manicured ponds that were
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incorporated into the course as water hazards and received relatively constant management.
The area around these ponds was mowed on a regular basis and the wetlands themselves were
subjected to fertilizer and pesticide runoff. Among the golf course ponds, a few had natural
edges along a portion of their banks. The remainder of the wetlands in the Urban Open Space
category were within public parks and gardens (42%). These wetlands differed in the amount
of management they received, both within and among parks. Some persisted in a nearly
unmanaged state, whereas others had surrounding terrestrial vegetation routinely mowed.
Our categorization scheme resulted in an allocation of 16 Low Urbanization, 16 High Urbani-
zation, and 19 Urban Open Space wetlands.

We gathered developed land, impervious surface, and road map data layers at an image res-
olution of 30 m* from the South Carolina Department of Transportation (SCDOT), and we
calculated the amount of each within both buffer radii. The impervious surface layer included
surfaces such as buildings, roads, and parking lots. Developed land and impervious surface
were calculated as percent coverage within the buffer, while total road length was calculated as
the sum of all road-length segments contained within a buffer. We examined the Pearson cor-
relation coefficient for each pair of the above-mentioned landscape variables (percent devel-
oped land, percent impervious surface, and total length of road segments within a buffer). We
removed percent developed land from all future analyses as it was highly correlated with
impervious surface at both the 750 m and 300 m scale (0.92 and 0.85, respectively). We also
removed impervious surface and road length at the 300-m scale from our analysis of species
richness (see below) because the measures at this scale were highly correlated with the same
measure at the larger (750 m) scale.

We also determined the distance from each of our study wetlands to the nearest body of
water so we could model the effects of connectivity on the anuran assemblages therein. To do
this, we obtained a layer of wetlands from the National Wetlands Inventory (NWI) that
included all wetlands in South Carolina. We divided the polygons within the NWI shapefile
into two separate categories within our analysis (riverine bodies and freshwater wetlands
[freshwater emergent, forested/shrub, and ponds]) because we assumed these two wetland
types may provide habitat to different assemblages of anurans. We calculated the straight-line
distances from the edge of each of our study wetlands to the closest edge of each of the wet-
lands in these two categories. The distance between study sites was also measured to account
for the possibility that study sites may be each other’s closest neighbor.

Wetland site characteristics

At each site, we recorded habitat data (Table 1) during each daytime dip-net survey performed
from March-July 2018 (additional information appears below under “Anuran Dip-net Sur-
veys”). These data were collected to evaluate whether within-habitat features differed among
the three wetland categories defined for this study. We measured wetland depth (m) at what
we believed to be the deepest point in each of our study wetlands using a meter stick; wetlands
deeper than the 1.2-m limit of the depth stick were given a depth of > 1.2 m. We obtained
average organic layer depth by measuring the depth (cm) of the submerged organic layer at
each dip-net stop and then averaging them together for each wetland. After leaf emergence
(July), we measured canopy cover at each wetland by taking photos at each cardinal location
using an iPhone 7 (Apple, Cupertino, CA) with a fisheye lens attachment (Amir, Shenzhen,
Guangdong, China). For wetlands small enough (<0.01 ha) where multiple photos were not
necessary to obtain canopy cover, we only took one photo at the center of each wetland. Con-
versely, at wetlands too large to obtain an accurate canopy reading with just four photos, we
took a photo at every other dip-net site, which were selected at random to avoid biased

PLOS ONE | https://doi.org/10.1371/journal.pone.0244932  January 22, 2021 5/19


https://doi.org/10.1371/journal.pone.0244932

PLOS ONE Urban ecosystems and anurans

Table 1. Site and landscape characteristics collected for the 51 wetlands across three land use categories surveyed for anuran assemblage composition within the
Piedmont of South Carolina.

Method (unit) High Low Urban Open
Space
Site characteristics
Area ArcMap delineation (ha) 0.28 (£0.53) 0.75 (£1.18) 0.48 (£0.96)
Wetland depth Deepest point in wetland (m) 0.86 (+£0.44) 1.03 (+0.31) 1.02 (+0.33)
Organic layer Mean depth across all dip-net localities (cm) 4.2 (£2.7) 5.61 (£3.9) 5.15 (+3.7)
Canopy cover Photo with fisheye lens (% cover) 24 (£21) 51 (£21) 26 (£25)
Aquatic vegetation Visual estimate of emerged and submerged vegetation cover at dip-net localities 2.3 (£1.2) 2.2 (£1.1) 1.6 (£1.3)
(1=0-25%, 2 =26-50%, 3 = 51-75%, 4 = 76-100%)
Vegetation border Assessed within 1-m of wetland boundary (present or absence) 75.0% with 93.7% with 53% with
border border border
Fish Visual assessment during dip-netting (presence/absence) 63% had fish | 68.8% had fish | 79% had fish
Hydroperiod Visual assessment across surveys (permanent or temporary) 69% 81% 95% permanent
permanent permanent

pH Oaktron PCTSTestr 6.9 (+0.5) 6.8 (+0.4) 6.9 (+0.5)
Conductivity Oaktron PCTSTestr (uS/m) 59.21 (+36.69) | 55.78 (+37.30) | 75.17 (+35.81)
Landscape
characteristics
Distance to nearest Straight-line distance to feature calculated in ArcMap (m) 181.2 (£231.3) | 108.4 (£166.1) | 106.3 (+140.4)
river
Distance to nearest Straight-line distance to feature calculated in ArcMap (m) 141.3 (£198.0) | 167.3 (+185.7) 84.0 (+£89.5)
wetland

Significant figures reflect the resolution of measurement taken in the field or through GIS. For continuous variables, measures are presented as mean (+SD); binary
variables are presented as percent of wetlands meeting a criterion. Impervious surface and road length are represented in Figs 2 and 3 respectively, so values for those

variables are not presented here.

https://doi.org/10.1371/journal.pone.0244932.t001

sampling. Photos were taken from just above the water surface or the top of aquatic vegetation
at each location. We then used the Gap Light Analyzer (Cary Institute of Ecosystem Studies,
Millbrook, NY) to attain a percentage of canopy cover for each photo. We averaged the canopy
cover across all photos for a wetland to produce its canopy cover estimate.

We surveyed vegetation cover within and around each wetland. We characterized aquatic
vegetation cover by making visual estimates of the amount of emergent and submerged aquatic
vegetation at each of our dip-net sampling points, and placing these estimates into categories
(1=0-25%, 2 =26-50%, 3 = 51-75%, 4 = 76-100%). A wetland was assigned the average value
calculated across all sample locations. We noted the presence or absence of a border of herba-
ceous terrestrial vegetation within a 1-m buffer around wetlands. We assigned such a border
as present if vegetation was at least 1 m in width and present around at least half of the wetland
edge. Parris [39] and Puglis and Boone [36] suggest that terrestrial vegetation buffer zones
around golf course wetlands may provide a more suitable habitat structure for anurans, pro-
viding shelter for metamorphs and adults as well as acting as sites for calling and amplexus.
These buffer zones may also help mitigate the effects of applied chemicals [36].

Fish presence was assessed visually and via dip-net surveys. Wetlands where fish were not
observed were assumed to not contain fish. We noted the presence or absence of water during
all dip-net and call surveys to determine hydroperiod of each wetland during the sampling
period (February-July). Wetlands that held water throughout the course of the study were
given a value = 1 (permanent), and those that were dry at any point during the study were
given a value = 0 (temporary). We measured pH, conductivity, and water temperature using
an Oakton PCTSTestr ™ (Cole Parmer, Vernon Hills, IL) during each dip-net visit.
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Anuran dip-net surveys

Each wetland was surveyed three times from March-July, with the exception of five wetlands
that only received two dip-net surveys due to weather and time constraints. Dip-net surveys
lasted for a minimum of 20 minutes at each site [42]. Samples were taken across the entire wet-
land when possible, and were conducted at randomly chosen locations for lager wetlands. As
there was a large variation in wetland size (size range = 0.002-8.71 ha), we increased maximum
survey time by 10 minutes as wetlands doubled in size, up to a survey time limit of one hour.
Therefore, small wetlands (size range = 0.002-0.12 ha), medium wetlands (size range = 0.13-
0.24 ha), large wetlands (size range = 0.26-0.60 ha), and extra-large wetlands (size

range = 0.64-8.71 ha) were surveyed for 20, 30, 40, and 60 minutes, respectively. As traversing
many of those extra-large wetlands was not possible in a 60-minute time frame, we employed
a sub-sampling technique. Specifically, we dip-netted within the wetland for 60 minutes, at 20
random points along the perimeter (selected within ArcGIS) for 3 minutes each. During this
time we used a long handled, D-frame dip net to survey the shallow edge of wetlands and any
vegetation present within these edges for larval anurans. Tadpoles were identified to species as
closely as possible in the field and a small subset of those tadpoles that were unidentifiable
were brought to the lab for further identification (IACUC AUP2018-007). We also recorded
any visual encounters of adult/juvenile/and metamorphs, and egg masses (as they were identi-
fiable) in order to assess species richness and diversity.

Anuran call surveys

We conducted call surveys once per month from February-June for a total of five call surveys
per wetland. These took place during the evenings beginning approximately 30 minutes after
sundown and ending no later than 0100 the following morning. Surveys were conducted when
temperatures were between 5.6°C and 30°C in order to maximize detection probability [43,
44]. In keeping with the protocol set forth by the North American Amphibian Monitoring
Program (NAAMP), we conducted surveys when wind speed was less than or equal to a level 3
(8-12 mph) and did not conduct them during times of heavy rainfall as this could affect hear-
ing ability. We spent five minutes actively listening at each site and recorded calls as an index
of abundance as per NAAMP protocol (i.e. 1 = individuals can be counted; space between
calls, 2 = calls of individuals can be distinguished but there is some overlap of calls, 3 = full cho-
rus, calls are constant, continuous and overlapping). We used the Massachusetts noise index
in order to account for ambient noise surrounding each wetland where (0 = no effect on sam-
pling, 1 = slight effect on sampling, 2 = moderate effect on sampling, 3 = serious effect on sam-
pling, 4 = profound effect on sampling) [43].

Treefrog retreats

In order to account for adult treefrogs present at wetlands during dip-net surveys, we deployed
white polyvinyl chloride (PVC) pipe retreats around wetlands. Each wetland received at least
two retreats and we scaled up the number of retreats similar to the way we scaled up the time
spent dip-net surveying at a wetland. Wetlands surveyed for 20 minutes received two, 30 min-
ute wetlands received three, 40 minute wetlands received four, and the large wetlands actively
surveyed for 60 minutes received five retreats for a total of 133 PVC retreats across all sites.
Retreats were constructed similar to Boughton et al. [45]. All retreats measured 61-cm long
and were 3.81-cm inside diameter. Each was fitted with a cap on the bottom to allow water to
remain inside the retreat. A hole was drilled 25.4 cm from the bottom of the retreat to allow
for excess water from rain events to drain out. We hung the retreats approximately 2 m above
the ground in hardwood trees near the wetland edge using a small carabiner clip attached to a
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length of paracord that was tied around the trunk or limb of the tree. At wetlands where there
were no suitable trees on which to hang retreats, they were secured to metal garden stakes at
the ground level near the wetland edge. We deployed PVC retreats after the first round of dip-
net surveys had been conducted (March) so retreats were only checked twice at each wetland
during subsequent dip-net surveys. Each time retreats were checked, we identified any treefrog
(s) within, cleaned out any debris, and replaced or added water as necessary.

Data analysis

To evaluate the separation in landscape structure among the assigned land use categories, we
used two separate one-way Analysis of Variance (ANOVA) tests followed by Tukey HSD pair-
wise comparison to assess differences in the amount of impervious surface and total road
length surrounding wetlands by type (Low, High, and Urban Open Space) at both 750 m and
300 m. We conducted a Multivariate Analysis of Variance (MANOVA) followed by Tukey
HSD pairwise comparison to evaluate differences in habitat variables and wetland category.
Habitat variables included pH, conductivity, wetland depth, organic layer depth, canopy cover,
area, and distances to the nearest river, and freshwater wetland (Table 1). We used a contin-
gency table analysis followed by Pearson’s chi-squared test to account for differences in cate-
gorical environmental variables among wetland categories.

We also assessed whether development around our study wetlands had an influence on esti-
mates of species richness at those sites. We estimated anuran species richness using the Chao
index for incidence data on species detected during all survey types [46]. The Chao index esti-
mates richness based on the number of rare species detected (i.e., species that were only
detected once or twice during sampling). To test the hypothesis that anuran species richness is
influenced by the amount of development, regardless of the assigned land use category, we per-
formed linear regression on observed species richness against the percentage of impervious
surface and total road length at the 750 m scale. We only examined one scale (750 m) because
species richness was highly correlated between the two scales and the 750 m scale was our pri-
mary scale (see Methods, Study Area and Landscape Characteristics). We estimated B-diversity
between wetlands using the Bray-Curtis distance metric on all anuran species detected. This
metric ranges from 0 (identical species composition) to 1 (no shared species between sites). -
diversity estimates were subjected to an ANOVA followed by Tukey HSD pairwise comparison
to assess differences among wetland categories.

We used Redundancy Analysis (RDA) to test for changes in community composition across
wetland categories. RDA is a direct gradient analysis which summarizes linear relationships
between components of response variables that are explained by a set of explanatory variables.
Species data were summed across all dip—net visits and standardized on a scale of 0-10 with
the maximum count of each species across all sites given a value of 10. Species with abundance
estimates less than the maximum were assigned a standardized score (along the 0-10 scale) as
a function of the highest abundance recorded for that species. For example, the site with the
most individuals of Species A would be assigned a value of 10 for that species, and a site with
half as many individuals of Species A would be assigned a 5. The RDA was constrained by wet-
land type to understand the percent of variation in species composition that could be explained
by wetland category. We used Indicator Species Analysis on species detected during dip-net
surveys to determine species associated with human land use as a function of wetland category.
The indicator value index defines sets of species that distinguish predefined habitats [47]. Call
survey data were not incorporated into either the RDA or the Indicator Species Analysis, since
it was not possible to estimate abundance from the call surveys. All statistical analysis were per-
formed in Program R Version 3.4.1 [48].
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Results
Environmental and landscape variation among wetland categories

Landscape measures revealed the greatest distinction among wetland categories. There were
significant differences among values of percent impervious surface surrounding wetlands
within each category at both the 750 m (F, 45 = 27.67, P< 0.0008; Fig 2A) and 300 m scale
(Fp48 = 19.08, P < 0.0001; Fig 2B). At the 750 m scale, percent impervious surface was signifi-
cantly higher in High Urbanization sites relative to Low Urbanization wetlands (mean = 57.06
and 15.75, respectively; P < 0.00001) and in Urban Open Space wetlands relative to Low
Urbanization sites (mean = 45.63 and 15.75, respectively; P < 0.00001). There was no signifi-
cant difference in impervious surface between High Urbanization and Urban Open Space wet-
lands at the 750 m scale (Mean = 57.06 and 45.63, respectively; P = 0.11). At the 300 m core-
habitat scale, the percentage of impervious surface was significantly higher at High Urbaniza-
tion wetlands relative to both Urban Open Space (mean = 57.56 and 34.79, respectively;
P =0.002) and Low Urbanization wetlands (mean = 16.94; P < 0.001). Impervious surface was
also significantly higher around Urban Open Space wetlands at the 300 m core-habitat scale
relative to Low Urbanization wetlands (Mean = 34.79 and 16.94, respectively; P = 0.02).
Difference in road length surrounding all wetland types was also significantly different at
both the 750 m scale (F, 45 = 40.88, P < 0.00001; Fig 3A) and the 300 m scale (F, 45 = 28.27,
P < 0.00001; Fig 3B). At the 750 m scale, total road lengths were significantly higher at Urban
Open Space sites relative to both High Urbanization sites (mean = 25,091 m/1.54 km” and
14,460 m/1.54 km?, respectively; P < 0.001) and Low Urbanization sites (Mean = 25,091 m/
1.54 km” and 8,197 m/1.54 km?, respectively; P <0.001). Total road lengths at the 750 m scale
were also significantly higher at High Urbanization wetlands than Low Urbanization sites
(mean = 14,460 m/1.54 km” and 8,197 m/1.54 km?, respectively; P = 0.008). Total road length
at the 300 m core-habitat scale was higher around Urban Open Space wetlands than both
High (Mean = 5,336 m/0.28 km” and 2,429 m/0.28 km?, respectively; P < 0.001) and Low
Urbanization wetlands (Mean = 1,665; P < 0.001). There was no significant difference in total
road length between High and Low Urbanization wetlands at the 300 m scale (Mean = 2,429
m/0.28 km? and 1,665 m/0.28 km?, respectively; P = 0.34).
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Fig 2. Box and whisker plots of percent of impervious surface within (a) a 750 m and (b) 300 m buffer of land
surrounding wetlands in the South Carolina Piedmont ecoregion. Wetlands were divided into one of three
categories (Low Urbanization, High Urbanization, and Urban Open Space) based first upon whether they occurred
with an urban open space, and second, for those that were outside of such spaces, upon the percentage of impervious
surface at the 750 m scale (sensu [41]). Dark bars represent median value, boxes represent the lower (25%) and upper
(75%) quartiles, and whiskers represent the lowest and highest observed values up to 1.5 times the inter-quartile range.
Values > 1.5 times the inter-quartile range are represented by open circles. Letters within boxes indicate pairwise
significant differences determined through Tukey HSD test.

https://doi.org/10.1371/journal.pone.0244932.9002
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Fig 3. Box and whisker plots of total road length in meters within (a) a 750 m and (b) 300 m buffer of land
surrounding wetlands in the South Carolina Piedmont ecoregion. Dark bars represent median value, boxes represent
the lower (25%) and upper (75%) quartiles, and whiskers represent the lowest and highest observed values up to 1.5
times the inter-quartile range. Values > 1.5 times the inter-quartile range are represented by open circles. Letters
within and outside boxes indicate pairwise significant differences determined through Tukey HSD test.

https://doi.org/10.1371/journal.pone.0244932.9003

Within-wetland measures of habitat were not statistically different among wetland catego-
ries (p > 0.05), except for canopy cover and terrestrial buffer immediately surrounding the
wetland. Canopy cover was significantly different among the three wetland categories (F, 45 =
7.09, P = 0.002). Low Urbanization wetlands had the highest mean canopy cover (51.1%),
which was significantly higher than High Urbanization wetlands and Urban Open Space wet-
lands (F; 30 = 12.97, P = 0.001 and F, 33 = 9.83, P = 0.003, respectively). Urban Open Space wet-
lands had a mean canopy cover of 26%, which was not significantly different from High
Urbanization wetlands (24.3%; F, 33 = 0.04, P = 0.83). Contingency table analysis and Pearson’s
chi-squared test revealed that the probability of a 1-m border of terrestrial vegetation around a
wetland was not independent of wetland class. Specifically, Urban Open Space wetlands were
less likely to have a terrestrial buffer zone (x° = 7.44, P = 0.02). A 2x2 Chi-squared test on just
the Low and High Urbanization wetland categories failed to reject the null hypothesis of inde-
pendence between wetland category and the presence or absence of a terrestrial vegetation
buffer zone (x” = 0.94, P = 0.33).

Anuran richness and diversity

During the 5-month sampling period at 51 wetland sites, we detected 12 anuran species. Of
these 12 species, 3 are listed under the South Carolina Department of Natural Resources Wild-
life Action Plan as species of priority [Pickerel Frogs (Lithobates palustris), Northern Cricket
Frogs (Acris crepitans), and Upland Chorus Frogs (Pseudacris feriarum)] (South Carolina
Department of Natural Resources, 2015). Green Frogs (L. clamitans) were the most common
anuran, occurring at 84% of sites. An additional 5 species were also found at > 50% of sites
[Fowler’s Toads (Anaxyrus fowleri) 57%, Gray Treefrogs (Dryophytes versicolor) 65%, Ameri-
can Bullfrogs (L. catesbeianus) 71%, Southern Leopard Frogs (L. sphenocephalus) 78%, and
Spring Peepers (P. crucifer) 59%]. Three species were found to be present at over 50% of
Urban Open Space wetlands: American Bullfrogs (63%), Southern Leopard Frogs (74%), and
Green Frogs (79%; Table 2).

Observed species richness ranged from 0-10 species/site and was greatest in Low and High
Urbanization sites (Fig 4); the Chao estimates of richness within categories varied little (< 1
species) from observed values. All 12 species were detected in Low Urbanization and High
Urbanization wetlands, and 10 species were detected in Urban Open Space wetlands (Table 2).
As the percentage of impervious surface within 750 m of the wetlands increased, species
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Table 2. Proportion of wetland categories occupied by anuran species during surveys (February-July 2018) in the South Carolina Piedmont ecoregion.

Taxon Common Name Wetland Type®

L H Uos
Acris crepitans Northern Cricket Frog 0.69 0.44 0.37
Anaxyrus americana American Toad 0.56 0.25 0.16
Anaxyrus fowleri Fowler’s Toad 0.75 0.50 0.47
Gastrophryne carolinensis Eastern Narrow-mouthed Toad 0.19 0.38 0.21
Dryophytes cinerea Green Treefrog 0.50 0.56 0.32
Dryophytes versicolor Gray Treefrog 0.81 0.81 0.37
Lithobates catesbeianus American Bullfrog 0.75 0.75 0.63
Lithobates clamitans Green Frog 0.88 0.88 0.79
Lithobates palustris Pickerel Frog 0.19 0.06 0.00
Lithobates sphenocephalus Southern Leopard Frog 0.81 0.81 0.74
Pseudacris crucifer Spring Peeper 0.88 0.63 0.32
Pseudacris feriarum Upland Chorus Frog 0.13 0.13 0.00

L = Low Urbanization; H = High Urbanization; UOS = Urban Open Space
Wetlands were divided into one of three categories based on percentage of impervious surface at the 750 m scale (sensu [37] or their presence within an urban open

space as defined by the study). Data presented here include detections from all survey types.

https://doi.org/10.1371/journal.pone.0244932.t002

richness was unchanged (8 = -0.27 + 0.40, P = 0.50). As total road length within 750 m of a
wetland increased, species richness decreased (8 = -1.18 + 0.40, p = 0.005; Fig 5). Analysis of B-
diversity among wetlands within each class showed that Urban Open Space wetlands tend to
be more variable from one another than either Low or High Urbanization wetlands (Fig 6).
Indicator species analysis on species captured during dip net surveys revealed Spring Peepers
(P < 0.001), American Toads (P = 0.002), and Northern Cricket Frogs (P = 0.01) were signifi-
cantly associated with Low Urbanization wetlands. Indicator value is derived from two compo-
nents that are each calculated between 0-1: specificity, which is highest when a species is only
present at sites within a specific category and fidelity, which is highest when a species is present
at all sites within a category. Fidelity values for Spring Peepers and Northern Cricket Frogs

~ <2} (o]

ESTIMATED ANURAN RICHNESS
[N}

High Low Urban Open Space
WETLAND TYPE

Fig 4. Chao estimated anuran species richness across three wetland types in the South Carolina Piedmont
ecoregion.

https://doi.org/10.1371/journal.pone.0244932.9004
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of land surrounding wetlands in the South Carolina Piedmont ecoregion.
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were relatively high (0.87 and 0.68, respectively) compared to that of American Toads (0.56).
Specificity values were at least 0.60 for all three species but were particularly high for American
Toads (0.79). No species were significant indicators for High Urbanization or Urban Open
Space wetlands. The ordination of the entire species assemblage through RDA revealed that
very little variation in structure (0.10) can be explained based on the three wetland land use
categories.
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Fig 6. Box and whisker plot showing measurements of B-diversity (as measured by Bray-Curtis distance) among
wetlands types in the South Carolina Piedmont ecoregion. Dark bars represent median value, boxes represent the
lower (25%) and upper (75%) quartiles, and whiskers represent the lowest and highest estimate of B-diversity.

https://doi.org/10.1371/journal.pone.0244932.9006
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Discussion

Urban Open Space wetlands (wetlands within the urban matrix but immediately surrounded
by greenspace) had lower species richness than wetlands in either High or Low Urbanization
areas. While the lower amount of impervious surface surrounding an Urban Open Space wet-
land (as compared to a High Urbanization wetland) at the 300-m core habitat level is presum-
ably beneficial to anurans, the presence of a higher total road length at this level may
counteract such benefits by limiting dispersal and effectively favoring only a small subset of
the available anuran community that is most tolerant of roads and fragmentation.

Development (measured by percent impervious surface coverage) surrounding Urban
Open Space wetlands in our study area was statistically indistinguishable from High Urbaniza-
tion wetlands at larger spatial scales; however, Urban Open Space wetlands were surrounded
by levels of development intermediate between Low and High Urbanization sites at scales
closer to the core habitat used by anurans (300 m). The total length of road segments sur-
rounding Urban Open Space wetlands are higher at both the 300-m core habitat and average
maximum migration scales than at either scale for Low and High Urbanization wetlands. This
likely results from the networks of smaller roads that are abundant in areas supporting urban
open spaces. Whereas the High Urbanization wetlands in our study may have more impervi-
ous surface surrounding them, less of that impervious surface was made up of roads relative to
Urban Open Space wetlands. Urban open spaces are generally located in areas containing
larger networks of smaller roads, and usually have grids of these small roads running through
the open space themselves (walking and driving paths, cart paths, entrances and exits to the
open space, etc.). While Urban Open Space wetlands may harbor less impervious surface in
the surrounding upland habitat at the core level, this larger network of small roads can further
fragment the landscape and act as a large barrier to dispersal of small-bodied animals [49, 50].
The negative relationship between road length and species richness further highlights the
importance of roads in shaping anuran assemblages as opposed to an a priori site
categorization.

High and Low Urbanization sites had similar total road lengths at the core habitat scale. On
average most Low Urbanization wetlands were larger than High Urbanization wetlands and
therefore contained a larger area within the 300 m buffer surrounding the wetland and, as
such, had more land area within which roads could occur. Because buffers were measured
from the edge of wetlands, not a centroid, larger wetlands at low urbanization sites simply had
more surrounding area for roads to cross through, however road density would presumably
remain lower than for High Urbanization wetlands and may be a helpful parameter to examine
in future studies. The use of road length as the only metric of assessing road impacts may have
limited our findings as all roads are assumed to be the same. Evaluating road densities, widths,
total area, and traffic densities could help further explain the effects that networks of roads sur-
rounding wetlands within and outside of urban open spaces have on anuran communities.
Our impervious surface layer did, however, include roads in two dimensions (length and
width) and ultimately may provide the most accurate view into the reality of road impacts.

Our Urban Open Space wetlands represented a diversity of open space types and manage-
ment strategies, which may have contributed to some of the unexpected findings in our study.
The majority of wetlands within golf courses received near constant management. These were
mostly wetlands that contained less canopy cover than wetlands in parks and gardens and
were manicured for ease of play along the course. Oftentimes the wetlands contained little
aquatic or surrounding terrestrial vegetation and, as such, were unlikely to support diverse
anuran assemblages. For example, we only observed an average of 4 anurans across the Urban
Open Space wetlands within golf courses (n = 11), but a slightly higher average in Urban Open
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Space wetlands outside of golf courses (mean = 4.4). Given the small sample size, it is difficult
to understand the low variation between these two wetland types, but our findings provide a
good foundation for future study.

Wetlands within parks were managed on a continuum from heavily managed zones with
little to no aquatic vegetation and virtually no surrounding terrestrial vegetation to sites with
no management intervention within the wetland buffer. A difference in management strategies
may also help explain the greater species richness observed at High Urbanization sites as com-
pared to Urban Open Space sites. Overall, wetlands within the High Urbanization category
tended to be relatively natural wetlands or storm water drainages that received very little man-
agement. A few sites in this category received regular management to minimize surrounding
terrestrial vegetation, but many were left unmanaged. This lack of management may lead to a
more suitable habitat for anurans within urban matrices, potentially driving a higher species
richness than some more heavily managed wetlands. While the influence of a border of herba-
ceous vegetation around the wetland was not an explicit a priori hypothesis, our data do sug-
gest the presence of such vegetation is associated with sites where more species were detected.
Sites with and without a vegetated border had a mean species richness of 6.3 (SE = 0.4) and 4.5
(SE = 0.6), respectively. Based on this data, the planting and/or maintaining of a vegetated bor-
der around wetlands may aid in bolstering a sites ability to support a diverse anuran popula-
tion. The ability of wetlands in highly urbanized areas to support relatively high anuran species
richness should not be overlooked as many such wetlands may be important for anuran con-
servation [51].

While we did not explicitly test the relative influence of within-wetland vs. landscape-scale
variables on anuran communities, both factors varied among our three habitat types and may
have contributed to the resulting assemblage composition. Fragmentation of upland habitats
by urban development is known to negatively influence some anuran species [4, 52]. Neverthe-
less, it is reasonable to assume that not all forms of impervious surface are equivalent in terms
of the effects on anuran population response. Large retail or industrial buildings that are
accompanied by expansive parking lots presumably have stronger negative effects on popula-
tion growth relative to low-density residential development. Our analysis did not tease out
these differences, and more work remains to be done on this front. Lower levels of amphibian
richness have been described in other settings with fragmented landscapes; these findings else-
where may have relevance and applicability to the low levels of anuran species richness found
in conjunction with road length in this study [11, 23, 28]. Those findings, along with ours,
underscore the likelihood that amphibian assemblage trends are probably better understood in
a gradient context rather than categorically.

Generally, more species were found in the Low or High Urbanization wetlands. These
results may be due, in part, to the inclusion of species-deficient golf-course wetlands in the
Urban Open Space category. Measures of B-diversity among wetland types also showed that
wetlands located in urban open spaces tend to be more variable in species composition from
one another than those in Low or High Urbanization areas. The variability within Urban
Open Space wetlands may result from variation in habitat features at these sites (such as the
presence or absence of a vegetated buffer zone). Reviews of the literature show that the isola-
tion of urban open space from other natural areas can lead to a shift in species assemblage as
generalist species (urban adapters) continue to colonize whereas sensitive and specialist species
disappear [14]. Studies have also shown that an increase in the amount of human recreation in
an area can have negative effects, directly and indirectly on reptile and amphibian species [53,
54]. Nevertheless, research has shown that in the presence of key habitat features, for example,
a 1-meter vegetated border as assessed in this study, certain amphibians will persist even in
urban environments (4, 32, 55, 56].
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Body size and dispersal ability may also drive the species of anurans present at some Urban
Open Space sites. Those species that inhabit higher proportions of Urban Open Space wetlands
tend to have larger overall body sizes and they exhibit post-metamorphic life stages that are
primarily associated with aquatic habitats such as Green Frogs, American Bullfrogs, and
Southern Leopard Frogs, though this is not always the rule [4, 57]. Though some of these
larger-bodied species may be particularly vagile among anurans, alterations to wetlands and
surrounding habitat (such as a reduction in ground vegetation) as well as human disturbances
may limit their movement and dispersal ability [58]. The three ranids also tend to hibernate
under water or enter into dormancy near water during cold months, allowing them to persist
within or closely nearby a wetland throughout their life [59, 60]. The extensive use of upland
habitats by species such as Gray Treefrogs, Spring Peepers, and American Toads may be hin-
dered by the higher presence of roads surrounding their breeding wetlands and may eventually
drive them out of a wetland altogether [4, 39]. The reduction of suitable upland habitats sur-
rounding wetlands may also negatively affect these species [4]. A reduction in successful
migration rates of juveniles and adults between ponds or to upland habitats can, over time,
lead to a decline in the numbers of anuran species present within these environments.

Conclusion

We did not detect significant differences in community structure among wetland types (Low
Urbanization, High Urbanization, and Urban Open Space), though we did see lower species
richness within Urban Open Space wetlands and with increasing levels of total road length sur-
rounding wetlands. The negative relationship between species richness and road length (Fig 4)
reflects the findings of others. Such declines likely are a result of landscape alterations,
decreased wetland/upland connectivity, and decreased wetland availability [4, 11, 39, 61]. The
percentage of impervious surface surrounding the wetlands within the study provided the
basis for their assignments into either the Low or High Urbanization categories; the assigning
of wetlands into the Urban Open Space category was subject to their inclusion within a prede-
fined urban open space. The fact that we found a negative relationship between species rich-
ness with increasing road length, but no discernable trend among wetland categories, may
indicate that responses to development are continuous rather than threshold-like. Further, our
post hoc assessment of sites with and without a terrestrial buffer suggests the presence of vege-
tation around the wetland may facilitate the presence of more species regardless of the sur-
rounding land use.

If anuran diversity is to be maximized and maintained, better understanding of key factors
that drive anuran populations within urban environments is imperative. Management strate-
gies may consider prioritizing wetlands that are already situated in areas with few roads in the
surrounding landscape. Minimizing the density of roads surrounding urban open spaces may
serve to benefit anurans as they move within and between open spaces and the surrounding
landscape. Installing underpasses at strategic road locations may also aid in improving connec-
tivity in Urban Open Spaces and increasing successful anuran dispersal and migration. Addi-
tionally, understanding how the utilization of differing management strategies within urban
open spaces affects anurans may further enhance the conservation potential for these spaces.
Higher observed species richness within High Urbanization wetlands may be attributed to the
lack of management observed at the majority of these sites throughout the course of the study
compared to Urban Open Space sites, however further empirical study is required to test this
hypothesis. Regardless of the underlying mechanisms, we documented that developed areas
can support an anuran assemblage that is similar to less developed regions. This finding dem-
onstrates the potential conservation value of all wetlands; however, many questions regarding
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long-term population status of the species within these urban assemblages remain to be
addressed.

Supporting information

S1 Dataset. Sites x species data.
(CSV)

S2 Dataset. Sites x environmental data.
(CSV)

$3 Dataset. Sites x species occurrence data.
(CSV)

Acknowledgments

A special thank you goes to all of the private landowners as well as superintendents and man-
agers of the South Carolina Botanical Gardens, the Walker Course at Clemson University, and
Boscobel Golf Course for allowing us access to their property. This project would not have
been possible without the efforts of field technicians and volunteers Addie Carter, Andrew
Corbett, Billy Fox, Emily Miller, Hailey Malone, Jelsie Kerr, Katie Jordan, Kaylee Wooten,
Kirsten Brown, Mollye MacNaughton, Patrick Christ, Richard Coen, Sarah Bowers, and Shel-
don Davis. Finally, thank you to Dr. Robert Baldwin and the Margaret H. Lloyd-SmartState
Endowment for providing logistical support and to Dr. Cathy Jachowski for her contributions
to the design of the project and helping improve an earlier draft of the manuscript. This manu-
script was improved significantly thanks to Katie Holzer and an anonymous reviewer who pro-
vided comments on earlier drafts.

Author Contributions
Conceptualization: David Hutto, Jr., Kyle Barrett.
Data curation: David Hutto, Jr.

Formal analysis: David Hutto, Jr., Kyle Barrett.
Funding acquisition: David Hutto, Jr., Kyle Barrett.
Investigation: David Hutto, Jr.

Methodology: David Hutto, Jr., Kyle Barrett.
Project administration: David Hutto, Jr.
Resources: David Hutto, Jr., Kyle Barrett.
Software: David Hutto, Jr., Kyle Barrett.
Supervision: David Hutto, Jr., Kyle Barrett.
Validation: David Hutto, Jr., Kyle Barrett.
Visualization: David Hutto, Jr., Kyle Barrett.
Writing - original draft: David Hutto, Jr.

Writing - review & editing: Kyle Barrett.

PLOS ONE | https://doi.org/10.1371/journal.pone.0244932  January 22, 2021 16/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244932.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244932.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244932.s003
https://doi.org/10.1371/journal.pone.0244932

PLOS ONE

Urban ecosystems and anurans

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

McDonnell MJ, Pickett STA. Ecosystem Structure and Function along Urban-Rural Gradients: an Unex-
ploited Opportunity for Ecology. Ecology. 1990; 71(4):1232—-1237.

Hamer AJ, McDonnell MJ. The response of herpetofauna to urbanization: Inferring patterns of persis-
tence from wildlife databases. Austral Ecology. 2010; 35:568-580.

Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PA, et al. Effects of exurban development
on biodiversity: patterns, mechanisms, and research needs. Ecological Applications. 2005; 15(6):1893—
1905.

Rubbo MJ, Kiesecker JM. Amphibian Breeding Distribution in an Urbanized Landscape. Conservation
Biology. 2005; 19(2):504-511.

Pope SE, Fahrig L, Merriam HG. Landscape complementation and metapopulation effects on leopard
frog populations. Ecology. 2000; 81:2498—-2508.

McKinney ML. Urbanization, biodiversity, and conservation: The impacts of urbanization on native spe-
cies are poorly studied, but educating a highly urbanized human population about these impacts can
greatly improve species conservation in all ecosystems. BioScience. 2002; 52(10):883-890.

Germaine SS, Rosenstock SS, Schweinsburg RE, Richardson WS. Relationships among breeding
birds, habitat, and residential development in greater Tucson, Arizona. Ecological Applications. 1998;
8:680-691.

Denys C, Schmidt H. Insect communities on experimental mugwort (Atemesia vulgaris L.) plots along
an urban gradient. Oecologia. 1998; 113:269-277. https://doi.org/10.1007/s004420050378 PMID:
28308207

Miyashita T, Shinaki A, Chida T. The effects of forest fragmentation on web spider communities in
urban areas. Biological Conservation. 1998; 86:357-364.

Bock CE, Vierling KT, Haire SL, Boone JD, Williams WW. Patterns of rodent abundances on open
space grasslands in relation to suburban edges. Conservation Biology. 2002; 16:1653—1658.

Lehtinen RM, Galatowitsch SM, Tester JR. Consequences of habitat loss and fragmentation for wetland
amphibian assemblages. Wetlands. 1999; 9:1—-12.

Donnelly R. Design of habitat reserves and settlements for bird conservation in the Seattle metropolitan
area [dissertation]. University of Washington; 2002.

Goddard MA, Dougill AJ, Benton TG. Scaling up from gardens: biodiversity conservation in urban envi-
ronments. Trends in Ecology and Evolution. 2009; 25(2)90-98. https://doi.org/10.1016/j.tree.2009.07.
016 PMID: 19758724

Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK. Species richness in urban parks
and its drivers: A review of empirical evidence. Urban Ecosystems. 2014; 17:305-327.

Jim CY, Chen SS. Comprehensive greenspace planning based on landscape ecology principles in com-
pact Nanjing city, China. Lanscape Urban Planning. 2003; 65:95-116.

Kong F, Yin H, Nakagoshi N, Zong Y. Urban green space network development for biodiversity conser-
vation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning.
2010; 95:16-27.

United States Environmental Protection Agency [Internet]. Region 1: EPA New England. What is Open
Space/Green Space? [Cited 2018 Nov 20]. Available from: https://www3.epa.gov/regioni/eco/uep/
openspace.html

Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ. Psychological benefits of greenspace
increase with biodiversity. Biology Letters. 2007; 3:390-394. https://doi.org/10.1098/rsbl.2007.0149
PMID: 17504734

Ambrey C, Fleming C. Public Greenspace and Life Satisfaction in Urban Australia. Urban Studies.
2014; 51(6):1290-1321.

Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of
amphibians. Proceedings from the National Academy of Sciences of the United States of America.
2008; 105:11466—11473. https://doi.org/10.1073/pnas.0801921105 PMID: 18695221

Hamer AJ, McDonnell MJ. Amphibian ecology and conservation in the urbanizing world: A review. Bio-
logical Conservation. 2008; 141:2432—2449.

Baillie JEM, Hilton-Taylor C, Stuart SN. 2004 IUCN Red List of threatened species: a global species
assessment. IUCN, Gland, Switzerland and Cambridge, UK. 2004.

Villasefior NR, Driscoll DA, Gibbons P, Calhoun AJK, Lindenmayer DB. The relative importance of
aquatic and terrestrial variables for frogs in an urbanizing landscape: Key insights for sustainable urban
development. Landscape and Urban Planning. 2017; 157:26-35.

PLOS ONE | https://doi.org/10.1371/journal.pone.0244932  January 22, 2021 17/19


https://doi.org/10.1007/s004420050378
http://www.ncbi.nlm.nih.gov/pubmed/28308207
https://doi.org/10.1016/j.tree.2009.07.016
https://doi.org/10.1016/j.tree.2009.07.016
http://www.ncbi.nlm.nih.gov/pubmed/19758724
https://www3.epa.gov/region1/eco/uep/openspace.html
https://www3.epa.gov/region1/eco/uep/openspace.html
https://doi.org/10.1098/rsbl.2007.0149
http://www.ncbi.nlm.nih.gov/pubmed/17504734
https://doi.org/10.1073/pnas.0801921105
http://www.ncbi.nlm.nih.gov/pubmed/18695221
https://doi.org/10.1371/journal.pone.0244932

PLOS ONE

Urban ecosystems and anurans

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, et al. Status and Trends of
Amphibian Declines and Extinctions Worldwide. Science. 2004; 306:1783—-1785. https://doi.org/10.
1126/science.1103538 PMID: 15486254

Miller DAW, Grant EHC, Muths E, Amburgey SM, Adams MJ, Joseph MB, et al. Quantifying climate
sensitivity and climate-driven change in North American amphibian communities. Nature Communica-
tions. 2018; 9(3926). https://doi.org/10.1038/s41467-018-06157-6 PMID: 30254220

Scheffers BR, Paszkowski CA. The effects of urbanization on North American amphibian species: Iden-
tifying new directions for urban conservation. Urban Ecosyst. 2012; 15:133-147.

Sievers M, Hale R, Swearer SE, Parris KM. Frog occupancy of polluted wetlands in urban landscapes.
Conservation Biology. 2018; 33(2):389—-402. https://doi.org/10.1111/cobi.13210 PMID: 30151963

Knutson MG, Sauer JR, Olsen DA, Mossman MJ, Hemesath LM, Lannoo MJ. Effects of Landscape
Composition and Wetland Fragmentation on Frog and Toad Abundance and Species Richness in lowa
and Wisconson, U.S.A. Conservation Biology. 1999;13(6)1437—-1446.

Smallbone LT, Luck GW, and Wassens S. Anuran species in urban landscapes: Relationships with bio-
physical, built environment, and socio-economic factors. Landscape and Urban Planning. 2011;
101:43-51.

Rytwinski T, Fahrig L. The impacts of roads and traffic on terrestrial animal populations. In: van der Ree
R, Smith DJ, Grilo C, editors. Handbook of road ecology. John Wiley and Sons, Ltd., USA; 2015. p.
237-246. https://doi.org/10.1016/j.jenvman.2015.01.048 PMID: 25704749

Semlitsch RD. Principles for Management of Aquatic-Breeding Amphibians. The Journal of Wildlife
Management. 2000; 64(3):615-631.

Hamer AJ, Parris KM. Local and landscape determinants of amphibian communities in urban ponds.
Ecological Applications. 2011; 21(2):378-390. https://doi.org/10.1890/10-0390.1 PMID: 21563570

Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF. Effect of Road Traffic on Amphibian Density. Bio-
logical Conservation. 1995; 73:177-182.

Marsh DM, Cosentino BJ, Jones KS, Apodaca JJ, Beard KH, Bell JM, et al. Effects of roads and land
use on frog distributions across spatial scales and regions in the Eastern and Central United States.
Diversity and Distribution. 2017; 23:158-170.

Buchanan BW. Effects of enhanced lighting on the behaviour of nocturnal frogs. Animal Behavior.
1993; 43:893-899.

Puglis HJ, Boone MD. Effects of terrestrial buffer zones on amphibians on golf courses. PLoS ONE.
2012; 7(6). https://doi.org/10.1371/journal.pone.0039590 PMID: 22761833

Calhoun AJK, Miller NA, Klemens MW. Conserving pool-breeding amphibians in human dominated
landscapes through local implementation of Best Development Practices. Wetlands Ecology and Man-
agement. 2005; 13:291-304.

Semlitsch RD, Bodie JR. Biological Criteria for Buffer Zones around Wetlands and Riparian Habitats for
Amphibians and Reptiles. Conservation Biology. 2003; 17(5):1219-1228.

Parris KM. Urban amphibian assemblages as metacommunities. Journal of Animal Ecology. 2006;
75:757-764. https://doi.org/10.1111/1.1365-2656.2006.01096.x PMID: 16689958

Birx-Raybuck DA, Price SJ, Dorcas ME. Pond age and riparian zone proximity influence anuran occu-
pancy of urban retention ponds. Urban Ecosyst. 2009; 13:181-190.

Rittenhouse TAG, Semlitsch RD. Distribution of amphibians in terrestrial habitat surrounding wetlands.
Wetlands. 2007; 27(1):153—-161.

Kruger DJD, Hamer AJ, Du Perez LH. Urbanization affects frog communities at multiple scales in a rap-
idly developing African city. Urban Ecosystems. 2015; 18:1333—-1352.

Wier LA, Mossman MJ. North American Amphibian Monitoring Program (NAAMP). United States
Department of the Interior. United States Geological Survey. 2005.

Steelman CK, Dorcas ME. Anuran Calling Survey Optimization: Developing and Testing Predictive
Models of Anuran Calling Activity. Journal of Herpetology. 2010; 44(1):61-68.

Boughton RG, Staiger J, Franz R. Use of PVC Pipe Refugia as a Sampling Technique for Hylid Tree-
frogs. Am. Midl. Nat. 2000; 144:168-177.

Chao A, Chazdon RL, Colwell RK, Shen T. A new statistical approach for assessing similarity of species
composition with incidence and abundance data. Ecology Letters. 2005; 8:148—159.

Dufréne M, Legendre P. Species Assemblages and Indicator Species: The Need for a Flexible Asym-
metrical Approach. Ecological Monographs. 1997; 67(3):345-366.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. 2017. https://www.R-project.org.

PLOS ONE | https://doi.org/10.1371/journal.pone.0244932  January 22, 2021 18/19


https://doi.org/10.1126/science.1103538
https://doi.org/10.1126/science.1103538
http://www.ncbi.nlm.nih.gov/pubmed/15486254
https://doi.org/10.1038/s41467-018-06157-6
http://www.ncbi.nlm.nih.gov/pubmed/30254220
https://doi.org/10.1111/cobi.13210
http://www.ncbi.nlm.nih.gov/pubmed/30151963
https://doi.org/10.1016/j.jenvman.2015.01.048
http://www.ncbi.nlm.nih.gov/pubmed/25704749
https://doi.org/10.1890/10-0390.1
http://www.ncbi.nlm.nih.gov/pubmed/21563570
https://doi.org/10.1371/journal.pone.0039590
http://www.ncbi.nlm.nih.gov/pubmed/22761833
https://doi.org/10.1111/j.1365-2656.2006.01096.x
http://www.ncbi.nlm.nih.gov/pubmed/16689958
https://www.R-project.org
https://doi.org/10.1371/journal.pone.0244932

PLOS ONE

Urban ecosystems and anurans

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Findlay CS, Lenton J, Zheng L. Land-use correlates of anuran community richness and composition in
southeastern Ontario wetlands. Ecoscience. 2001; 8:336—343.

Eigenbrod F, Hecnar SJ, Fahrig L. Accessible habitat: an improved measure of the effects of habitat
loss and roads on wildlife populations. Landscape Ecology. 2008; 23(2):159-168.

Brand AB, Snodgrass JW. Value of Atrtificial Habitats for Amphibian Reproduction in Altered Land-
scapes. Conservation Biology. 2009; 24(1):295-301. https://doi.org/10.1111/.1523-1739.2009.01301.
x PMID: 19681986

Pillsbury FC, Miller JR. Habitat and Landscape Characteristics Underlying Anuran Community Structure
Along an Urban-Rural Gradient. Ecological Applications. 2008; 18(5):1107—1118. https://doi.org/10.
1890/07-1899.1 PMID: 18686575

Larson CL, Reed SE, Merenlender AM, Crooks KR. Effects of recreation on animals revealed as wide-
spread through a global systematic review. PloS ONE. 2016; 11(12). https://doi.org/10.1371/journal.
pone.0167259 PMID: 27930730

Larson CL, Reed SE, Merenlender AM, Crooks KR. Accessibility drives species exposure to recreation
in a fragmented urban reserve network. Landscape and Urban Planning. 2018; 175:62—71.

Barrett K, Price SJ. Urbanization and stream salamanders: a review, conservation options, and
research needs. Freshwater Science. 2014; 33(3):927-940.

Hamer AJ, Smith PJ, McDonnell MJ. The importance of habitat design and aquatic connectivity in
amphibian use of urban stormwater retention ponds. Urban Ecosyst. 2012; 15:451-571.

Hecnar SJ, M’Closkey RT. Species richness patterns of amphibians in southwestern Ontario ponds.
Journal of Biogeography. 1998; 25:763-772.

Matich P, Schalk CM. Move it or lose it: interspecific variation in risk response of pond-breeding
anurans. Peerd. 2019; 7:¢6957. Available from: https://link-gale-com.libproxy.clemson.edu/apps/doc/
A587980605/AONE ?u=clemsonu_main&sid=AONE&xid=61ab446e https://doi.org/10.7717/peerj.6957
PMID: 31179176

Jackson DC, Ultsch GR. Physiology of Hibernation Under the Ice by Turtles and Frogs. Journal of
Experimental Zoology. 2010; 303A(6):311-327. https://doi.org/10.1002/jez.603 PMID: 20535765

Dorcas M, Gibbons W. Frogs and Toads of the Southeast. 15! ed. Athens, Georgia: University of Geor-
gia Press; 2008.

Gagne SA, Fahrig L. Effects of time since urbanization on anuran community composition in remnant
urban ponds. Environmental Conservation. 2010; 37(2):128—135

PLOS ONE | https://doi.org/10.1371/journal.pone.0244932  January 22, 2021 19/19


https://doi.org/10.1111/j.1523-1739.2009.01301.x
https://doi.org/10.1111/j.1523-1739.2009.01301.x
http://www.ncbi.nlm.nih.gov/pubmed/19681986
https://doi.org/10.1890/07-1899.1
https://doi.org/10.1890/07-1899.1
http://www.ncbi.nlm.nih.gov/pubmed/18686575
https://doi.org/10.1371/journal.pone.0167259
https://doi.org/10.1371/journal.pone.0167259
http://www.ncbi.nlm.nih.gov/pubmed/27930730
https://link-gale-com.libproxy.clemson.edu/apps/doc/A587980605/AONE?u=clemsonu_main&sid=AONE&xid=61ab446e
https://link-gale-com.libproxy.clemson.edu/apps/doc/A587980605/AONE?u=clemsonu_main&sid=AONE&xid=61ab446e
https://doi.org/10.7717/peerj.6957
http://www.ncbi.nlm.nih.gov/pubmed/31179176
https://doi.org/10.1002/jez.603
http://www.ncbi.nlm.nih.gov/pubmed/20535765
https://doi.org/10.1371/journal.pone.0244932

