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Abstract
Micro-organisms inhabiting animal guts benefit from a protected and nutrient-rich environ-

ment while assisting the host with digestion and nutrition. In this study we compare, for the

first time, the bacterial and fungal gut communities of two species of the small desert dung

beetle genus Pachysoma feeding on different diets: the detritivorous P. endroedyi and the

dry-dung-feeding P. striatum. Whole-gut microbial communities from 5 individuals of each

species were assessed using 454 pyrosequencing of the bacterial 16S rRNA gene and fun-

gal ITS gene regions. The two bacterial communities were significantly different, with only

3.7% of operational taxonomic units shared, and displayed intra-specific variation. The

number of bacterial phyla present within the guts of P. endroedyi and P. striatum individuals

ranged from 6–11 and 4–7, respectively. Fungal phylotypes could only be detected within

the gut of P. striatum. Although the role of host phylogeny in Pachysomamicrobiome

assembly remains unknown, evidence presented in this study suggests that host diet may

be a deterministic factor.

Introduction
The microbial gut communities of a wide range of insect species have been investigated (for
reviews see [1–6]). The gut environment is considered to be an unstable system, as microorgan-
isms face secretion of digestive enzymes, physical disturbance, habitat shedding during insect
moults and other physiochemical conditions that are typically unfavourable for colonisation
[1, 2, 6]. However, there are significant benefits to gut colonisation, including high nutrient
availability and protection from external environmental stressors [2, 7].

The relationships between host and gut microbiota range across the full spectrum of interac-
tions; i.e., from pathogenic to obligate mutualism [1]. When beneficial to their host, insect-
associated microbial communities may participate in a number of activities including
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degradation of recalcitrant materials such as lignocellulose [8–12], the production of nutrients
and vitamins [2, 8, 12], the production of components of cohesion pheromones [13], nitrogen
fixation and utilisation of nitrogenous waste products [2, 8, 12, 14], protection against parasites
[2, 15], change in body colouration [16] and sterol synthesis [8, 12].

Insect gut microbiomes are known to differ between insect species, driven by variations in
the gut structure, different host lifecycles, host phylogeny and diet [2, 6, 17]. The gut micro-
biome is also influenced within the individual insect or species, varying according to host life-
stage [18–22], and/or diet [21, 23–26]. Host diet influences gut microbial communities as
they adapt to dietary changes through the induction of enzymes and changes in community
structure [23, 27, 28]. However, a core community may persist through major dietary changes
[24, 29].

Studies on insect-microbial associations have mainly focused on termites [4, 30–34], but
also on agriculturally important species such as honeybees [35, 36], and medically important
insects such as mosquitoes [21, 37–40]. Little attention has been given to dung beetles, which
are common and abundant insects in virtually all terrestrial environments and which facilitate
nutrient cycling and bioturbation [41]. The desert dung beetle genus PachysomaMacLeay,
from the Scarabaeini tribe, of which the quintessential scarab genus, Scarabaeus is also a mem-
ber, consists of 13 species endemic to the south-west African coast [42, 43]. Members of Pachy-
soma exhibit atypical feeding behaviour. While most adult dung beetles feed, by filtration, on
minute particulate fragments in wet dung [44, 45], adult Pachysoma feed on various and vary-
ing dry food sources: plant detritus, dung pellets or both. These substrates are collected on the
soil surface and masticated with specially-adapted mouthparts (Fig 1; [42, 43, 45, 46]).

Given that insect gut microorganisms are known to be involved in the degradation of recal-
citrant materials such as lignocellulosic compounds [2, 6, 8, 9]), it follows that the gut micro-
biomes of desert insects may play a significant role in carbon-turnover in desert ecosystems. By
studying the gut microbiome diversity of Pachysoma spp. feeding on different plentiful and
readily-available substrates, it is possible to consider the effects of host diet and/or host phylog-
eny on gut microbiome assembly processes. This study was designed to characterise the gut
microbial (bacterial and fungal) assemblages of coprophagous (P. striatum) [43] and detritivor-
ous (P. endroedyi; pers. comm. C. Scholtz) members of the same genus from the same location
and to potentially determine whether host diet and/or host phylogeny could be deterministic
factors in Pachysoma gut microbial community assembly.

Results and Discussion

The desert beetle genus Pachysoma
The distribution of the Pachysoma species is restricted to the arid coastal regions of south-west-
ern Africa, principally because of the flightless nature of the genus [43]. The genus Pachysoma
forms three distinct lineages, supporting six (lineage 1), four (lineage 2) and three (lineage 3)
species, respectively [42]. Pachysoma endroedyi is located in lineage 1 and P. striatum in lineage
2 (Fig 1). The driving forces behind the formation of these three lineages are currently
unknown. However, it has been noted that all members of lineage 3 have a uniform diet (Fig 1)
and originate from desert areas with a consistent aridity index [42, 43], whereas both the aridity
index of the desert locations from which lineage 1 and 2 members originate, and their diets,
fluctuate (Fig 1).

The diet of P. striatum consists predominantly of the dry dung pellets [43, 46] of various
small native mammalian herbivores and sheep. Despite observations from a decade ago stating
that P. endroedyi was a polyphagous feeder [43], numerous and wide-scale recent observations
suggest that P. endroedyi is a detrivore (Prof C. Scholtz, pers. comm.), the classification adopted
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Fig 1. Cytochrome oxidase I gene Parsimony tree phylogeny of 13 Pachysoma spp. Branch colours indicate
the diet of the Pachysoma spp.: dung (brown), plant detritus (green), polyphagous (blue) and unknown (no colour).
This phylogentic tree was adapted, with permission, from [42] and the dietary information taken from both [43] and
personal observations by Prof C. Scholtz. Two species of Scarabaeus, (S. proboscideus and S. rugosus) which is
the sister-genus to Pachysoma and a typical wet-dung-feeder, were used as outgroups. Numbers to the right of the
tree indicate the three Pachysoma lineages. The two species considered in this study, P. endroedyi and P.
striatum, are indicated with stars (Adapted from C. Sole [42]).

doi:10.1371/journal.pone.0161118.g001
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in this study. Pachysoma species have specialised anatomical and physiological features for
mastication and digestion of fragments from plant detritus and dry dung [44, 45].

The linkage between host and gut microbiome is believed to be bidirectional, in that gut
microorganisms can provide nutritional assistance to the insect host [12, 47] while the host
diet influences the gut microbiome assembly [21, 23–26]. However, host phylogeny may also
impact gut microbiome composition [17, 48], irrespective of the diet.

Sequencing outputs and diversity indices of the bacterial 16S rRNA
gene and fungal ITS region of the Pachysoma gut microbiome
The gut microbiomes of five detritivorous P. endroedyi and five coprophagous P. striatum indi-
viduals were determined by 16S rRNA gene amplicon sequencing. After removal of chimeras
and singletons, 39050 bacterial and 1492 fungal reads remained, with mean read lengths of
238bp and 100bp, respectively. Only 462 bacterial reads were obtained for P. endroedyi individ-
ual 3 (Table 1), which was therefore removed from further analysis. Considerable variation in
the number of bacterial sequence reads was noted between individuals, ranging from 1718 to
2817 and 3911 to 10106 for P. endroedyi and P. striatum, respectively. However, Good’s cover-
age (>0.97 for all samples), rarefaction and chao1 diversity indices suggested that the coverage
of Pachysoma bacterial gut communities (S1A and S1B Fig) were sufficient for a valid compari-
son between individuals. The fungal ITS gene region could not be amplified in samples from
the detritivorous species P. endroedyi, despite repeated attempts. The absence of fungi in the
insect gut has previously been noted for individuals of various insect groups including Neurop-
tera and Coleoptera (using culture-dependent techniques: [49]). In the fungal ITS sequence
datasets for P. striatum, diversity indices and rarefaction curves showed low coverage for all
but P. striatum individual 2, suggesting that the fungal diversity was generally underestimated
(Table 1; S1C Fig).

A total of 1009 bacterial and 294 fungal OTUs were detected at an identity threshold of 97%
(Table 1). Numbers ranged from 213 to 317 and 119 to 172 in the P. endroedyi and P. striatum
gut samples, respectively (Table 1). These values are comparable with results obtained for ter-
mite and cockroach gut microbiomes [50]. It should be noted that the fungal ITS sequence

Table 1. Values for sequence reads, Operational Taxonomic Units (OTUs), phyla and diversity indices for bacterial and fungal gut communities of
P. endroedyi and P. striatum individuals.

Individual Number of reads Number of OTUs Phyla Singletons Chao Invsimpson Shannon Coverage

Bacterial 16S rRNA gene P. endroedyi 1 2120 213 10 105 244.61 19.01 3.88 0.97

Bacterial 16S rRNA gene P. endroedyi 2 1718 258 11 133 282.34 81.00 4.91 0.97

Bacterial 16S rRNA gene P. endroedyi 3 462 97 11 42 112.62 21.47 3.82 0.94

Bacterial 16S rRNA gene P. endroedyi 4 2175 271 6 177 287.59 62.44 4.80 0.98

Bacterial 16S rRNA gene P. endroedyi 5 2817 317 9 193 335.83 60.13 4.83 0.98

Bacterial 16S rRNA gene P. striatum 1 10106 157 4 84 174.53 8.77 2.82 1.00

Bacterial 16S rRNA gene P. striatum 2 4901 158 4 87 194.96 16.64 3.38 0.99

Bacterial 16S rRNA gene P. striatum 3 4208 140 6 51 183.05 8.36 2.88 0.99

Bacterial 16S rRNA gene P. striatum 4 3911 119 4 71 125.84 8.12 2.93 1.00

Bacterial 16S rRNA gene P. striatum 5 6620 172 5 100 201.29 13.36 3.32 0.99

Fungal ITS gene region P. striatum 1 136 88 1 156 179.50 96.63 4.29 0.55

Fungal ITS gene region P. striatum 2 939 202 2 602 222.81 51.93 4.56 0.94

Fungal ITS gene region P. striatum 3 199 106 2 223 248.38 88.35 4.40 0.66

Fungal ITS gene region P. striatum 4 107 70 2 153 157.50 65.94 4.04 0.53

Fungal ITS gene region P. striatum 5 111 63 2 146 134.75 52.18 3.88 0.62

doi:10.1371/journal.pone.0161118.t001
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read lengths were short (only 100bp), which could explain the poor phylogenetic resolution of
P. striatum fungal gut communities [51].

In both Pachysoma spp., the number of bacterial 16S rRNA sequence reads was inversely
proportional to the number of bacterial OTUs; i.e., P. striatum gut samples had a higher aver-
age number of bacterial reads (5949 ± 2550) but a lower average number of bacterial OTUs
(149 ± 20) when compared to P. endroedyi (2208 ± 455 reads and 265 ± 43 OTUs, respectively).
Those data suggest that the gut bacterial communities of P. striatum are composed of a rela-
tively low number of dominant phylotypes at high abundance [25, 52, 53]. Contrastingly, the
P. endroedyi gut bacterial community may include a higher bacterial diversity [25, 54]. This
inverse relationship, and the higher Shannon diversity index of the P. endroedyi gut bacterial
community (4.6 ± 0.5) compared with the P. striatum gut community (3.1 ± 0.3; Table 1), sug-
gests that competition is greater in the P. striatum gut than in P. endroedyi. This difference
may be a reflection of the different diets, as insects feeding on simple diets (e.g., the copropha-
gous diet of P. striatum) commonly have a lower gut bacterial diversity than those feeding on
more complex diets (e.g., the detritivorous diet of P. endroedyi [17, 48]).

Interspecific variations in bacterial and fungal Pachysoma gut
communities
The gut bacterial communities of P. endroedyi and P. striatum were significantly different,
sharing only 3.7% of bacterial OTUs (Fig 2; ANOSIM [R = 1.00, p<0.008]). Both host phylog-
eny and host diet could be driving forces for the observed differences [17, 55]. For example, the

Fig 2. nMDS ordination plot based on Bray-Curtis distance matrices of bacterial 16S rRNA gene pyrosequencing data for
P. endroedyi and P. striatum individuals. A stress value of less than 0.1 represents a high quality ordination. Pachysoma
endroedyi and P. striatum are represented by green and inverted brown triangles, respectively.

doi:10.1371/journal.pone.0161118.g002
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Hymenopteran gut microbiome has previously been shown to be influenced by host phylogeny,
while the gut microbiomes of detritivorous insects (e.g., certain termites, Coleoptera and Dip-
tera) are dictated by diet [17]. Gut bacterial communities of Drosophila spp. also appear to be
impacted by host diet rather than host phylogeny [55]. In Coleoptera (the order in which
Pachysoma is placed), gut bacterial communities are significantly different to those of other
insect groups [17], indicating that host phylogeny is a significant driving force for gut micro-
biome assembly. However, within Coleoptera, significant similarities in bacterial assemblages
of certain beetles with similar diets (e.g., those feeding on live arboreal tissue) have also been
noted [17], which suggests that diet may also be a deterministic factor. It should, however, be
noted that no coprophagous insects were included in this study [17], making a direct compari-
son with Pachysoma speculative.

It is not possible to compare the gut fungal communities of the two insect species studied,
given that despite numerous attempts we were unable to PCR-amplify fungal ITS sequences
from the detritivorous P. endroedyi. While we think it unlikely that fungal species are
completely absent from the gut microbiome of this species, this negative result suggests that
they may represent a relatively minor fraction of the total gut microbial diversity. To fully con-
firm this, the sample size should be increased and P. endroedyi individuals from multiple
breeding populations should be investigated.

We would expect host diet to be a contributing factor in the presence (or absence) of fungi
in the Pachysoma gut. For example, true yeasts (Saccharomycetes) are typically observed in the
guts of litter-, plant- and wood-feeding insects [56–58], but not in those of predacious insects
[49, 59].

Intraspecific variation of Pachysoma gut microbial communities
Large intraspecific differences in Pachysoma gut communities were noted, with the majority of
OTUs being unique to each Pachysoma individual (Fig 3A and 3B, Fig 4A) and only 11 (1.1%)
and 17 (3.3%) bacterial OTUs being shared between individuals of P. endroedyi and P. stria-
tum, respectively. Furthermore, only two non-abundant fungal OTUs (ranging from 1.6–1.7%
of the community) were shared among the five P. striatum individuals (Fig 4A). Such intraspe-
cific differences, relating to the relative abundances and diversity of bacterial members of gut
communities, are not uncommon, as has been observed for honeybees (Apis cerana and A.mel-
lifera [52]), mosquitoes (Aedes spp., Culex spp., Anopheles spp.,Mansonia spp.; [37, 38]) and
the red palm weevils Rhynchophorus ferrugineus and R. vulneratus [25], among others. A
recent study on the gut microbiomes of 218 different insect species from 21 orders [48] indi-
cated that 46% of the total number of bacterial OTUs detected (n = 9301) were only observed
in single individuals. The large intraspecific variation noted in Pachysoma could be influenced
by the stochastic, and transient, process of microorganisms entering the gut with the food
source [2] and, for P. striatum, the different amounts of feeding material contained in the guts
of each individual [1]. Furthermore, it cannot be excluded that the ‘time of feeding’ prior to
sampling may also have had an influence on intraspecific gut microbiome variability [1].

Of the shared bacterial OTUs, only one (assigned to the phylum Bacteroidetes) and eight (4
Firmicutes, 2 Actinobacteria, 1 Bacteroidetes and 1 Proteobacteria) were abundant (i.e., repre-
sented>2% reads) in the P. endroedyi and P. striatum gut samples, respectively. This distribu-
tion is strongly suggestive that the Pachysoma gut core community is very small, as has been
proposed for the “minimal core”model [60]. Other studies have noted the presence of consis-
tent core microbial communities within individuals of the same insect species (e.g., the bed bug
Cimex lectularius; [61] and bumble bee Bombus terrestris [62, 63]), or across taxonomic levels
(e.g., across the ant tribe Cephalotini; [64]). In the termite Reticulitermes flavipes, a substantial
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Fig 3. Venn diagrams showing distribution of bacterial OTUs between (a) P. endroedyi and (b) P. striatum
individuals based on the 16S rRNA gene pyrosequencing analysis. Shared OTUs are shown in bold. Numerical labels
are shown for each individual.

doi:10.1371/journal.pone.0161118.g003
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core bacterial microbiome (65% shared OTUs) was noted, regardless of the artificial feeding
diet, suggesting that host phylogeny may play a more important role than host diet in the
assembly of the gut microbiome [24]. Similar results have been noted in cockroaches [65].
However, with a minimal core microbiome in both Pachysoma spp., phylogeny appears less
important than diet. Furthermore, a minimal core gut microbiome may result from negative
interactions between gut microorganisms, such as antagonism or amensalism, or indicate, as
for Drosophila [66], the establishment of ‘non-gut-specific’microorganisms.

Fig 4. a) Venn diagram comparing the distribution of fungal OTUs between P. striatum individuals
based on the ITS gene region pyrosequencing analysis and (b) relative abundance of fungal phyla in
five P. striatum individuals based on ITS rRNA gene region pyrosequencing analysis at a 97% identity
threshold. Shared OTUs in the Venn diagram are shown in bold with numerical labels given for each
individual.

doi:10.1371/journal.pone.0161118.g004
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It has been suggested that a ‘functional’ rather than a ‘phylogenetic’ core microbiome may
be more informative in determining the assembly of gut microbiomes [67]. In studies on
humans, which typically follow the minimal core model, functional gene diversity appears to
be broadly similar across individuals [67, 68]. Therefore, there may be a functional core com-
munity in each Pachysoma spp. studied, displaying shared metabolic capacities [68]; i.e., exhib-
iting functional redundancy. As such, it has been suggested that a comparison of functional
properties of hosts feeding on different diets can guide an understanding of the functional roles
of different gut microbiomes [67].

Phylogenetic diversity of bacterial and fungal Pachysoma gut
communities
The gut bacterial diversity of P. endroedyi was higher (6–11 phyla; Fig 5) than that of P. stria-
tum (4–7 phyla; Fig 5). The P. endroedyi gut samples were dominated by Bacteroidetes (18.0–
54.8%), Firmicutes (10.0–34.6%), Proteobacteria (8.7–18.1%) and Planctomycetes (2.5–25.7%),
while Actinobacteria (0.1–22.5%), Elusimocrobia (0–9.3%) and Synergistetes (0–7.3%) showed
highly variable abundances (Fig 5). The remaining 7 phyla each represented less than 2% of the
community and were often detected in single insects. In P. striatum, Bacteroidetes (3.0–57.1%),
Firmicutes (18.9–56.2%), Proteobacteria (6.4–32.1%) and Actinobacteria (5.2–21.0%) were
also dominant phyla although the relative abundances varied between individuals (Fig 5).
Three minor phyla (<2% abundance) were only detected in two P. striatum individuals,
namely Deferribacteres, Planctomycetes and Synergistetes (Fig 5). All the identified bacterial

Fig 5. Comparison of interspecific differences in relative abundance of bacterial phyla in the gut of two Pachysoma spp., P. endroedyi
and P. striatum, based on 16S rRNA gene pyrosequencing analysis.

doi:10.1371/journal.pone.0161118.g005
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phyla have previously been reported in insect microbiomes, with the phyla Firmicutes, Proteo-
bacteria, Bacteroidetes and Actinobacteria commonly abundant in insect gut samples [48, 69].

The presence of specific bacterial phyla and/or their relative abundances in insect gut sam-
ples may be linked to host diet. For example, certain insects with simpler diets (e.g., feeding on
pollen and nectar [52], fruit [22, 70], or sap [71]), contain gut bacterial communities which are
typically dominated by heterotrophic Proteobacteria and/or Firmicutes. In contrast, Bacteroi-
detes (along with other phyla) were highly abundant in the gut microbiomes of insects feeding
on plant materials such as wood and leaves [25, 54, 65, 72, 73]. The P. striatum gut bacterial
communities did not display these patterns, suggesting that coprophagous diets may structure
insect gut communities differently.

Fifteen and 11 bacterial genera were abundant (>2% relative abundance of reads) within
the guts of P. endroedyi and P. striatum, respectively (Table 2). Only two of these genera were
abundant in both species (Dysgonomonas and unclassified Enterobacteriaceae; Table 2). Dysgo-
nomonas was less abundant in P. endroedyi gut samples (2.8% ± 0) than in P. striatum (26.3%
± 0.2), in which it was the most abundant genus. Dysgonomonas have been reported to be
present at high abundance in the gut system of the fungus-growing termite (Macrotermes
annandalei) and red palm weevil larvae (Rhynchophorus ferrugineus) [74, 75]. Two species of
Dysgonomonas have previously been characterised from the gut of termites [76, 77]. Both

Table 2. Phylogenetic classification of the most abundant bacterial genera in the gut samples of P. endroedyi and P. striatum: i.e., representing
>2% reads.

Phylum Family Genus P. endroedyi (%) P. striatum (%)

Actinobacteria Propionibacteriaceae Proponiobacterium 1 8.2 ±0.1 0.1 ± 0

Actinobacteria Propionibacteriaceae Tessaracoccus 0 7.6 ± 0

Actinobacteria unclassified unclassified 0.1 ± 0 5.2 ± 0

Bacteroidetes Bacteroidaceae Bacteroides 7.6 ± 0 0

Bacteroidetes Marinilabiaceae Uncultured 1 2.7 ± 0 0

Bacteroidetes Porphyromonadaceae 1 Dysgonomonas 2.8 ± 0 26.3 ± 0.2

Bacteroidetes Porphyromonadaceae 4 Proteiniphilum 0.2 ± 0 3.5 ± 0

Bacteroidetes Rikenellaceae Alisitpes IV 6.5 ± 0 0

Bacteroidetes Rikenellaceae unclassified 3.2 ± 0 0

Bacteroidetes unclassified unclassified 5.3 ± 0 0.1 ± 0

Elusimicrobia Endomicrobiaceae Endomicrobium 3.0 ± 0 0

Firmicutes Enterococcaceae Vagococcus 0.3 ± 0 4.9 ± 0

Firmicutes Family XI Incertae Sedis unclassified 0 10.9 ± 0.1

Firmicutes Lachnospiraceae Uncultured 13 0.9 ± 0 2.9 ± 0

Firmicutes Lachnospiraceae unclassified 3.3 ± 0 0.7 ± 0

Firmicutes Ruminococcaceae Termite cockroach cluster 5.3 ± 0.1 0.1 ± 0

Firmicutes Ruminococcaceae unclassified 3.3 ± 0 1.4 ± 0

Firmicutes Veillonellaceae Anaeroarcus-Anaeromusa 0 11.5 ± 0.1

Planctomycetes unclassified unclassified 11.3 ± 0.1 0

Proteobacteria unclassified unclassified 0 3.1 ± 0

Proteobacteria Insect cluster unclassified 2.2 ± 0 0

Proteobacteria Enterobacteriaceae unclassified 4.2 ± 0.1 7.4 ± 0.1

Proteobacteria Enterobacteriaceae 1 unclassified 0 2.5 ± 0.1

Synergistetes Synergistaceae Candidatus Tammella 2.8 ± 0 0

Percentages are the average read relative abundances in each species (P. endroedyi: n = 4; P. striatum: n = 5). Colours depict the species in which the

bacterial genus is abundant: P. endroedyi (green), P. striatum (brown) or both (blue). The most abundant genus of each species is shown in bold.

doi:10.1371/journal.pone.0161118.t002
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species have been found to ferment glucose and xylan as a sole carbon source and to produce
acetic acid as the major end-product [76, 77], suggesting roles in both the lignocellulosic bio-
mass degradation pathway and in providing readily metabolisable substrates for ingestion by
the host. The large difference in the abundance of this phylotype in the two Pachysoma species
suggests a key nutritional role in P. striatum but not in P. endroedyi.

An unclassified Planctomycetes dominated the gut samples of P. endroedyi (11.3% ± 0.1 rel-
ative abundance of reads). To the best of our knowledge this is the first report of an insect gut
microbiome dominated by Planctomycetes. Planctomycetes were only detected in a single P.
striatum individual at very low abundance (0.01%). Planctomycetes have previously been
detected in the guts of the termites Syntermes wheeleri and Nasutitermes spp. [58, 72], the cock-
roach Shelfordella lateralis [65], adult and larval beetles (Cryptocephalus spp., Prionoplus reticu-
laris and Pachnoda spp.; [78–80]), the tree wetaHemideina thoracica [73] and the mosquito
Aedes albopictus [81], but only in low abundances (<1–5% relative abundance).

Ascomycota was the most abundant fungal phylum (42.3–75.7%) in all P. striatum gut sam-
ples, which is typical for insect gut microbiomes [57, 58, 82, 83]. Basidiomycota were not ubiq-
uitously detected, and were observed only in the gut samples of four of the five P. striatum
individuals (1.8–15.2%; Fig 4B). A substantial proportion of fungal ITS sequence reads could
not be classified, even at the phylum level (9.1–55.9%; Fig 4B). Unfortunately, relatively little is
known about insect gut fungal diversity (compared to bacterial diversity [84]), with the major-
ity of published studies being based on culture-dependent methods which are typically biased
when compared with culture-independent methods [84, 85].

Conclusion
This is the first study to investigate the gut microbiomes of any dung beetle feeding on dry
food sources and to compare those of closely related adult dung beetle species with very differ-
ent diets but from the same locality. Pachysoma spp. are ecologically important in arid environ-
ments where they undoubtedly participate in nutrient cycling and bioturbation [41]. We have
demonstrated that, as predicted, the gut microbiomes differed significantly between two species
which feed on different substrates. However, both populations showed large intraspecific varia-
tions. Thus, to further characterise the gut microbiomes of these Pachysoma species, the num-
ber of individuals studied should be increased and populations from different sites
investigated. Such experiments would make it possible to evaluate whether interspecific varia-
tion was higher than intraspecific variation within a single Pachysoma species.

We are unable to fully assess whether host phylogeny or the host diet is the dominant driver
of the Pachysoma gut microbiomes. Nevertheless, we provide evidence that diet probably plays
a significant role, particularly noting the fact that the gut microbiomes of the detritivorous P.
endroedyi (feeding on complex food sources) have higher bacterial diversities than those of the
coprophagous species (feeding on relatively simple food sources) [17, 48]. Functional gene
analysis of the microbiomes of P. endroedyi and P. striatum could potentially assist in confirm-
ing the role that host diet plays in Pachysoma gut microbiome assembly [11].

Experimental procedures

Collection and storage of Pachysoma spp
Five adult individuals of P. endroedyi and of P. striatum (S2 Fig) from single breeding popula-
tions, feeding on plant detritus and dung respectively, were collected by the Scarab Research
Group in September and October 2014 from coastal sandveld near Kommandokraal, Nama-
qualand, South Africa (S31°29'58.4" E18°12'29.2") under the Cape Nature permit number
0056-AAA008-00041. Ethical clearance is not necessary for work carried out on insects. Beetles
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were identified at the site. Due to their size, 99% ethanol was injected into their abdomens
using sterile syringes for gut preservation [25]. Insects were then stored in 99% ethanol at
-80°C, until dissection.

Gut dissection
Gut dissections were performed under a Zeiss Stemi 2000-C dissection microscope (Zeiss,
Oberkochen, Germany) as previously described [86] with minor modifications. All equipment
was sterilised before use with 10% bleach and 70% EtOH. The average body length of P. endreo-
dyi ranges from 20.7–26.4mm, and the one of P. striatum ~19 mm [43]. The insects were
placed in a wax-lined glass Petri dish with quarter strength autoclaved Ringer solution (0.12 g/
L CaCl2, 0.105 g/L KCl, 0.05 g/L NaHCO3, 2.25 g/L NaCl; Sigma-Aldrich). The thorax and
abdominal integument were removed using scissors before pinning the specimen to the wax
layer in the Petri dish. Forceps were used to remove the membranes covering the internal
organs. The rectum was pulled downwards, moving the gut gently out of the body cavity. The
five P. endroedyi guts appeared full of diet material while the P. striatum ones were empty
(n = 1), half-full (n = 1) or full (n = 3). Hindgut and midgut samples were separated and stored
in 1.5ml eppendorf tubes at -20°C until DNA extraction.

Metagenomic DNA extraction
Gut-section metagenomic DNA extractions were performed using a modified version of the
protocols previously described by [87, 88]. Whole-guts were weighed and crushed in liquid
nitrogen using sterile mortars and pestles. For 10mg of gut, 100μl of a preheated (60°C) 2%
CTAB solution (0.1M Tris HCl [pH8.0], 1.4M NaCl, 0.02M EDTA [pH8.0]) was added. The
mixtures were incubated for 30min at 60°C before centrifugation for 5min at 10000rpm. The
supernatant was transferred to a clean collection tube and enzymatic digestion of the gut sam-
ples was carried out with the addition of 2μl lysozyme (5mg/ml) per 100μl CTAB solution for
30min at 37°C under continuous shaking (120 rpm). 0.5μl Proteinase K (20mg/ml) per 100μl
CTAB was then added [89], followed by an overnight incubation at 55°C with continuous
shaking. One volume phenol:chloroform:isoamyl alcohol (25:24:1) solution was added. Tubes
were inverted and centrifuged at 13000rpm at 4°C for 4min. One volume chloroform:isoamyl
alcohol (24:1) solution was added to the top aqueous phase and the mixtures were inverted
before centrifugation at 13000rpm at 4°C for 15min. This step was repeated until no protein
contamination was observed [89]. DNA was precipitated with 3M NH4Ac [90] and ice cold
99.9% EtOH followed by overnight incubation at -20°C. Mixtures were centrifuged for 60min
at 14000rpm at 4°C. The DNA pellet was washed twice with ice cold 70% EtOH and allowed to
dry completely for 2 hours. The DNA pellet was resuspended in 50μl filter-sterilized nanopure
H2O overnight at 4°C [90], and stored at -20°C for downstream analysis.

454 pyrosequencing of the bacterial 16S rRNA gene and fungal ITS
gene region
The gut metagenomic DNA of five individuals (equal concentrations of combined hindgut and
midgut-derived DNA) from each Pachysoma spp. was sent to Molecular Research (www.
mrdnalab.com) for 16S rRNA gene and ITS gene region pyrosequencing using the Roche 454
GS FLX titanium platform. The primers 27F (AGRGTTTGATCMTGGCTCAG; [91]) and
338R (AGTGCTGCCTCCCGTAGGAGT; [92] were used to amplify the 16S rRNA gene
region as they have a low eukaryotic coverage (27F: 0%; 338R: [93]). Fungal specific fITS9
(GAACGCAGCRAAIIGYGA; [94]) and ITS4 (TCCTCCGCTTATTGATATGC; [95]) primers
were used for the amplification of the ITS gene region.
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Data analysis
Raw pyrosequencing reads were filtered and analysed using MOTHUR version 1.35.1
(Accessed May 2015- January 2016; [96, 97]. In short, fasta, quality and flow files were
extracted from the sff files using the sff.info command. For the bacterial 16S rRNA gene pyro-
sequencing reads, filtering of poor quality reads was done using the shhh.flows command
allowing for reads to have one or two mismatches between the barcodes and primers respec-
tively. Remaining sequences were quality filtered with the trim.seqs command to maximum
homopolymers of 8bp and a minimum sequence length of 100bp. Sequences were aligned to
the SILVA reference database (http://www.arbsilva.de/download/arb-files/) using the align.
seqs command. The screen.seqs and filter.seqs commands were used to retain only overlapping
sequences. Chimeras were identified and removed using the chimera.uchime command.
Sequences were classified against five databases, namely the Ribosomal Database Project
(RDP), SILVA, NCBI, The Dictyoptera gut microbiota reference Database (DictDb; data
shown) and GreenGenes with a confidence threshold of 80%. OTUs were clustered for each
individual beetle before removal of singletons using the remove.rare command. Samples were
subsampled 1718 reads, i.e., the lowest number of reads across all samples.

ITS reads were analysed similarly to that of the 16S reads with minor differences as outlined
previously [98]. Filtering of poor quality reads was done using the trim.seqs command allowing
for reads to have one or four mismatches between the barcodes and primers respectively.
Sequences were trimmed to 200bp using the chop.seqs command to ensure all sequences were
the same length. Sequences were classified against the UNITE database (Version 6) with a con-
fidence threshold of 50% and subsampled to the lowest number of OTUs across all samples
(107) for statistical analyses.

Phylogenetic comparisons, of both the bacterial and fungal datasets, were done using the
relative abundance of all reads in the dataset so as to ensure inclusion of rare taxa. Relative
abundances (%) were calculated from the number of reads of the microbial organism(s) in
question divided by the total number of reads for the particular Pachysoma individual.

Nucleotide sequences for both the bacterial and fungal datasets have been uploaded to
NCBI (http://www.ncbi.nlm.nih.gov/) Short Read Archive (SRA) under the accession number
SRP071915.

Statistical Analysis
Two-dimensional Non-Metric Multi-Dimensional Scaling (nMDS) plots were constructed in
Primer 6 software (version 6.1.5.81 (Primer E Ltd, Plymyth, UK)) after applying square-root
pre-treatment and using the Bray-Curtis coefficient [99] to build a dissimilarity matrix. Krus-
kal’s stress value was used to determine the efficiency of sample placement in both two- and
three-dimensional nMDS plots. Significant differences in bacterial gut communities were
determined using one-way global Analysis of Similarities (ANOSIM) in Primer 6 software ver-
sion 6.1.5.81 (Primer E Ltd, Plymyth, UK) using 10 000 permutations [100]. A Venn plot was
created using R (2.15.1) (www.rproject.org) to differentiate between unique and shared OTUs
dependent on feeding strategy. Diversity indices and rarefaction curves were generated in
Mothur [97]. Singletons were removed prior to analyses.

Supporting Information
S1 Fig. Rarefactions curves showing gut microbial community richness of all Pachysoma indi-
viduals for bacterial 16S rRNA gene amplicon data of: a) P. endroedyi, b) P. striatum; and c)
fungal ITS gene region amplicon data of P. striatum.
(TIF)
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S2 Fig. Photographs of P. endroedyi (a) and P. striatum (b) in their natural environment
before collection (courtesy of Hennie de Klerk).
(TIF)
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