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Abstract

The tumultuous inception of an epidemic is usually accompanied by difficulty in determining

how to respond best. In developing nations, this can be compounded by logistical chal-

lenges, such as vaccine shortages and poor road infrastructure. To provide guidance

towards improved epidemic response, various resource allocation models, in conjunction

with a network-based SEIRVD epidemic model, are proposed in this article. Further, the fea-

sibility of using drones for vaccine delivery is evaluated, and assorted relevant parameters

are discussed. For the sake of generality, these results are presented for multiple network

structures, representing interconnected populations—upon which repeated epidemic simu-

lations are performed. The resource allocation models formulated maximise expected pre-

vented exposures on each day of a simulated epidemic, by allocating response teams and

vaccine deliveries according to the solutions of two respective integer programming prob-

lems—thereby influencing the simulated epidemic through the SEIRVD model. These mod-

els, when compared with a range of alternative resource allocation strategies, were found to

reduce both the number of cases per epidemic, and the number of vaccines required. Con-

sequently, the recommendation is made that such models be used as decision support tools

in epidemic response. In the absence thereof, prioritizing locations for vaccinations accord-

ing to susceptible population, rather than total population or number of infections, is most

effective for the majority of network types. In other results, fixed-wing drones are demon-

strated to be a viable delivery method for vaccines in the context of an epidemic, if sufficient

drones can be promptly procured; the detrimental effect of intervention delay was discov-

ered to be significant. In addition, the importance of well-documented routine vaccination

activities is highlighted, due to the benefits of increased pre-epidemic immunity rates, and

targeted vaccination.
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Introduction

The COVID-19 pandemic proved a stark reminder of the health risks inherent in our increas-

ingly interconnected and fast-paced world. As international travel increases, so does the spread

of microorganisms; including those causing life threatening diseases. Despite routine vaccina-

tion campaigns making significant inroads into attaining worldwide herd immunity for many

infectious diseases, the risk of epidemics remains—particularly for previously unknown dis-

eases. It is essential that governments and humanitarian aid organisations respond to out-

breaks with maximal efficiency, to reduce the loss of life. When such responses to epidemics

involve the administration of vaccines, response teams and vaccines need to be allocated to

affected areas in a sensible manner. This allocation should take into account the impact of pro-

posed vaccinations in each area on the spread of the epidemic, as well as the opportunity cost

of not allocating resources to other affected areas.

Another challenge faced in epidemic response is poor road infrastructure, particularly in

developing nations. The recent advent of drone technology has promising applications in this

regard, since it enables faster vaccine delivery, and deliveries to areas unreachable by land.

Drone deliveries can also possibly curb the spread of an epidemic by reducing human interac-

tion. Since approximately only one quarter of roads in Sub-Saharan Africa are paved [1], and

many can be impassable in rainy seasons, drones are a particularly attractive prospect for vac-

cine deliveries to these hard-to-reach areas, which often have low vaccination rates.

There is existing research into resource allocation in the context of epidemics; Hethcote

and Waltman [2] used dynamic programming to find an optimal, lowest-cost solution to a

deterministic SIR model, with the cost function assumed to include “money, equipment, per-

sonnel, supplies, the disruption of health care elsewhere, etc.” A general linear programming

model for healthcare resource allocation was formulated by Feldstein et al., with resource

availability constraints and various objective functions discussed [3]. In a similar vein, Vitor-

iano et al. [4] created a goal programming formulation of the problem of humanitarian aid

resource distribution, accounting for objectives including cost and response time. Zaric and

Brandeau [5] presented a dynamic investment allocation model with heuristics, with the objec-

tive of maximising certain health benefits. In previous related work, Zaric and Brandeau [6]

also developed an investment allocation model, in conjunction with a compartmental epi-

demic model, to maximise “life years gained or the number of new infections averted. Duijzer

et al. [7] attempted to maximise the same metric; namely, the “total number of people who

escape infection,” by allocating a constrained vaccine stockpile between multiple regions,

according to what they term a “dose-optimal vaccination fraction.” This fraction, determined

for each region, maximises the total number of averted infections per vaccine dose assigned.

Mbah and Gilligan [8] also focused on resource allocation between multiple regions, and pro-

posed candidate allocation strategies for optimality, based upon necessary conditions derived

using the Pontryagin maximum principle.

As Duijzer et al. noted [7], multiple previous studies [9–12] show that “the optimal alloca-

tion [of vaccines] depends on the moment of vaccination,” rendering many static resource

allocation strategies sub-optimal. In groundbreaking work which accommodates for this, Tey-

telman and Larson [13] presented a “telescope-to-the-future switching heuristic”, where the

resource allocation strategy is dynamically adjusted as new information about an epidemic

becomes available over time. This heuristic determines the best vaccine allocations in a net-

work of locations, for each day in the future until a predetermined point, maximising the total

number of averted infections by switching batches of vaccine doses between regions. Addition-

ally, they discussed a “greedy heuristic,” where vaccines are allocated to locations according to

the largest marginal benefit arising per vaccine, where the benefit is averted infections.
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Coupled with the aforementioned research into epidemic resource allocation, the recent

emergence of drone technology has caused a flurry of research into the possibility of drone

delivery for medical purposes, although none regarding delivery allocation during an epi-

demic. Murray and Chu considered the case of drones being launched from delivery vehicles,

naming this problem the ‘flying sidekick travelling salesman problem (FSTSP)’ [14]. Poikonen

et al. named this same type of delivery network a ‘vehicle routing problem with drones

(VRPD)’ [15]. Murray and Chu also formulated a ‘parallel drone scheduling TSP (PDSTSP)’,

to model an alternative drone delivery scenario; where vehicle deliveries are performed along a

TSP route, and supplementary drone deliveries are made directly to demand nodes from a dis-

tribution centre [14]. Finally, Scott and Scott modelled a different delivery network, consisting

of vehicle deliveries to ‘drone nests’, and drones used for ‘last-mile’ delivery, with the objective

of minimizing total delivery time [16].

Future work proposed by Mbah and Gilligan in the field of resource allocation during an

epidemic includes the “allowance of heterogeneity in the size of sub-populations,” and investi-

gation into the robustness of resource allocation strategies to changes in epidemiological

parameters [8]. These, along with addressing the World Health Organisation’s need for “opti-

mal strategies for reaching hard-to-reach populations [for vaccination]” [17], are among the

objectives of this article. The allocation of vaccination teams and vaccine deliveries, to sub-

populations in multiple generic population distribution structures, is discussed. An expected

prevented exposures (EPE) strategy is proposed for the allocation of each of these resources,

and is compared with certain other allocation strategies commonly considered in literature.

The feasibility of using drones for vaccine delivery is evaluated, and a range of parameters

influencing the spread of an epidemic are discussed.

Methodology

A network-based SEIRVD epidemic model is formulated, to simulate the spread of an epi-

demic through a network of interconnected populations. This model consists of distinct sys-

tems of difference equations, with one for each population. On each daily time step, a small

proportion of each population migrates to other populations in the network, to simulate the

spatial spread of the epidemic. The epidemic intervention is incorporated into this simulation

through daily vaccinations by response teams, for each population in the network. Various

resource allocation strategies are then proposed, with the objective of ensuring that these vacci-

nations are performed at locations such that the greatest overall health benefit is achieved.

Among these are the two EPE strategies, for both team and vaccine delivery allocation, which

are expounded in this section.

For the purpose of demonstration, measles epidemics are simulated, although the model is

general and can easily be applied to other similar diseases. Fixed-wing drones similar to those

used by Zipline are assumed to be used for vaccine deliveries, since these drones can usually fly

considerably further than quadcopters before requiring a recharge. For simplicity, deliveries

are assumed to only originate from a single distribution centre (DC). The temperature at

which the vaccines are transported and stored is not considered, and the entire network of

populations is assumed to be closed, with no migration into or out of the network. Other inter-

vention strategies such as travel restrictions, quarantine orders, and educational campaigns to

increase turnout for vaccination, can also reduce the spread of an epidemic, but are outside of

the scope of this article. The vaccination intervention is assumed to be the only one occurring,

with no other healthcare activities considered.

PLOS ONE Allocating teams and vaccine deliveries by drone in epidemics, according to expected prevented exposures

PLOS ONE | https://doi.org/10.1371/journal.pone.0248053 March 5, 2021 3 / 29

https://doi.org/10.1371/journal.pone.0248053


Epidemic model

The spread of the epidemic through the network of populations is governed by a set of differ-

ence equations for each population, as aforementioned. Let Ni,t denote the population size at

location i 2 {1, . . ., n} on day t 2 f1; . . . ; T g. Similarly, let Si,t, Ei,t, Ii,t, Ri,t, Vi,t, and Di,t, denote

the number of susceptible, exposed, infectious, recovered, vaccinated and deceased individuals

in the population of location i 2 {1, . . ., n} on day t 2 f1; . . . ; T g, respectively. Then, for each

location i 2 {1, . . ., n} and day t 2 f1; . . . ; T g, the progression of the epidemic is modelled by

Si;tþ1 ¼ Si;t �
bSi;tIi;t
Ni;t

� vi;t y
S
i;t lS þ

Xn

j¼1;j6¼i

ðmj;iSj;t � mi;jSi;tÞ; ð1Þ

Ei;tþ1 ¼ Ei;t þ
bSi;tIi;t
Ni;t

� sEi;t � vi;t y
E72

i;t lE þ
Xn

j¼1;j6¼i

ðmj;iEj;t � mi;jEi;tÞ; ð2Þ

Ii;tþ1 ¼ Ii;t þ sEi;t � gIi;t � mIi;t þ
Xn

j¼1;j6¼i

ðmj;iIj;t � mi;jIi;tÞ; ð3Þ

Ri;tþ1 ¼ Ri;t þ gIi;t � vi;t y
R
i;t þ

Xn

j¼1;j6¼i

ðmj;iRj;t � mi;jRi;tÞ; ð4Þ

Vi;tþ1 ¼ Vi;t þ vi;t ðy
S
i;t lS þ y

E72

i;t lE þ y
R
i;tÞ þ

Xn

j¼1;j6¼i

ðmj;iVj;t � mi;jVi;tÞ; ð5Þ

Di;tþ1 ¼ Di;t þ mIi;t: ð6Þ

In Eqs (1)–(6), β denotes the transmission rate of the disease, which is defined as the basic

reproductive number R0, divided by the number of days of infection before recovery. The

reciprocal of this duration of infection is used as the daily proportion of infectious individuals

who recover, γ. The parameter σ denotes the proportion of exposed individuals becoming

infectious on any given day—which, similarly, is the reciprocal of the duration of the latent

period between initial exposure and the onset of symptoms (and contagiousness). Finally, the

daily death rate (the proportion of infectious people who die each day) is denoted by μ, and is

calculated as the case fatality rate, divided by the duration of infection. The values of these

parameters are estimated such that the properties of the disease under consideration are accu-

rately replicated in the model.

The movement of individuals between populations is modelled in Eqs (1)–(6) using a

migration proportion, mi,j, to denote the proportion of the population at location i moving to

location j daily. This proportion is defined for each pair of locations i, j 2 {1, . . ., n}, and is

assumed to be constant for the duration of each simulation. Each value of mi,j is calculated

using the gravity model of migration presented by Kraemer et. al [18]—which considers move-

ment between locations to be directly proportional to the sizes of their populations, Ni and Nj,

and inversely proportional to the distance between them, Δi,j. Then, where Ti,j denotes the
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number of people moving from population i to j each day,

Ti;j ¼ km

ffiffiffiffiffiffiffiffiffi
NiNj

p

D
2

i;j

:

The parameter km is a multiplier which can be adjusted to model the effect of increased or

reduced migration on the epidemic. Given the above formulation, the proportion of popula-

tion i migrating to population j daily, is calculated as

mi;j ¼
Ti;j

Ni
:

Importantly, note that the above formulation is most accurate for geographic areas no

larger than a few hundred kilometres in diameter. In order to better model international

migration, more sophisticated migration models can be utilised.

Another important parameter in Eqs (1)–(6) is vi,t, the number of vaccinations performed

at location i on day t. This parameter is calculated as the minimum between the number of

vaccinations which teams can possibly perform, and vaccine stock available:

vi;t ¼ minfcZi;t; ni;tg:

In the above, the number of daily vaccinations per team is denoted by ψ, and the number of

vaccination teams allocated to location i on day t is ηi,t. The number of vaccines in stock is

denoted by νi,t. Note that the latter two parameters, ηi,t and νi,t, are the easiest for decision mak-

ers to control, through resource allocation strategies for teams and vaccine deliveries, respec-

tively. Turnout for vaccination is not considered to be a limiting factor on the number of

vaccinations, and it is assumed that only asymptomatic members of the population are vacci-

nated, with infected and deceased individuals excluded. More specifically, only individuals in

the S, E, and R categories are given vaccinations.

Untargeted vaccination, which is the practice of performing vaccinations while disregard-

ing potential previous vaccinations received, is sometimes used in outbreak response where

there is a high risk of the epidemic spreading [19]. As a result, it is used by default in this arti-

cle, except where otherwise stated. In Eqs (1)–(6), this is modelled by initially placing individu-

als who have been previously vaccinated into the R category; thereby making them a part of

the subpopulation to be vaccinated. On the other hand, if targeted vaccination is employed,

these individuals are initially considered part of the V category, and remain there for the dura-

tion of the simulation, excluded from the subpopulation to be vaccinated.

The final undiscussed parameters used in Eqs (1)–(6) are those relating to vaccine efficacy.

The susceptible proportion of the remaining unvaccinated (and asymptomatic) population is

calculated as

y
S
i;t ¼

Si;t
Si;t þ Ei;t þ Ri;t

:

This is essentially the probability that any individual arriving to be vaccinated is susceptible,

and neither exposed nor recovered. Likewise, the ratio of recently-exposed individuals

(exposed within 72 hours prior to vaccination) to the remaining unvaccinated and
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asymptomatic population, at location i on day t, is:

y
E72

i;t ¼

Pt
k¼t� 3

bSi;kIi;k
Ni;k

Si;t þ Ei;t þ Ri;t
:

These recently-exposed individuals can be successfully immunized against measles, with

the success rate thereof denoted by λE. The success rate of vaccinations given to susceptible

individuals is denoted by λS. As stated above, each day’s vaccines, aside from those given to

susceptible and exposed individuals, are administered to individuals in the R category. Thus,

similarly to the previous two ratios, the proportion of vaccines given to recovered individuals

is:

y
R
i;t ¼

Ri;t

Si;t þ Ei;t þ Ri;t
:

Naturally, all vaccinations given to already-immune individuals can be considered success-

ful, so the efficacy of vaccinations given to these recovered individuals is assumed to be 100%,

and all of them are moved from the R category to the V category.

EPE strategy for team allocation

The number of response teams at each location, ηi,t, is one of the primary decision variables

with a direct impact on vi,t, in the epidemic model formulated. In this section, a resource allo-

cation model is presented, for response team allocation between multiple subpopulations

within a network. An integer programming problem is solved on each simulated day, to maxi-

mise expected prevented exposures (EPE) for the following day, by assigning teams to loca-

tions according to the highest marginal benefit arising from each assignment. This allows the

allocation of teams to be dynamically adjusted as the epidemic progresses, ensuring that the

allocation remains effective. This dynamic approach, and the objective of minimising total

cases by considering the marginal benefit of allocations, is similar to that of Teytelman and

Larson’s telescope-to-the-future and greedy heuristics for vaccine allocation [13]. However, in

this article, response teams and drone deliveries (under the constraint of limited delivery time)

are allocated, instead of vaccines (under the constraint of a limited vaccine stockpile and

uncertainty about future stock). Allocating deliveries, instead of simply vaccine stock, takes

time into account—which ensures that delivery time is most effectively used in the critical first

few days and weeks of an epidemic intervention. Another difference of note is that these allo-

cations are performed in multiple generic network structures with heterogeneous population

distributions. Their approaches can be seen as higher-level vaccine allocation strategies, per-

haps to regions within a country, whereas the strategies in this article are more focused

towards the actual delivery of vaccines to allocated response teams at points of dispensing.

Assuming that there are N vaccination teams in the network, a number ηi,t of teams needs to

be allocated to each location i 2 {1, . . ., n} on day t, such that
Pn

i¼1
Zi;t ¼ N ; 8t 2 f1; . . . ; T g.

Recall that ψ denotes the number of possible vaccinations per team, per day. In order to remove

the dependency between team allocation and vaccine allocation, the number of vaccines in

stock at each location is assumed to be unlimited in the calculation of EPE. With this assump-

tion, and if ηi,t teams are assigned to location i, the number of vaccinations possible at location

i is:

vZi;t ;i;t ¼ cZi;t:
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Given this assignment, the number of susceptible individuals remaining, after vaccination

at location i on day t, is

S0i;t ¼ Si;t � vZi;t ;i;t y
S
i;t lS:

Then, with new exposures, progression into the Infectious category, and vaccines adminis-

tered taken into account, the expected exposures at location i on day t + 1 is

E0
Zi;t ;i;tþ1

¼ Ei;t þ
bS0i;tIi;t
Ni;t

� sEi;t � vZi;t ;i;t y
E72

i;t lE:

Now, for each location i 2 {1, . . ., n}, and each number of teams Zi;t 2 f1; . . . N g that could

possibly be assigned to location i, the EPE resulting from that team assignment is calculated as:

E�
Zi;t ;i;tþ1

¼ E0
0;i;tþ1

� E0
Zi;t ;i;tþ1

:

Given the above values of EPE, for each possible team assignment at each location i 2 {1,

. . ., n}, a knapsack problem is formulated, with the objective of maximising total EPE in the

network, by allocating teams for day t + 1. The problem is to

maximise
Xn

i¼1

E�
Zi;t ;i;tþ1 ð7Þ

s:t:
Xn

i¼1

Zi;t � N ; ð8Þ

Z1;t; Z2;t; . . . ; Zn;t integer: ð9Þ

On each simulated day t 2 f1; . . . ; T g, this knapsack problem is solved by iteratively

assigning teams to the locations with the highest increase in EPE resulting from each newly-

added team. This way, the greatest ratio of payoff (EPE) to cost (using one of the available

teams) is repeatedly selected, until there are no teams remaining. If Eqs (7)–(9) is reformulated

as a 0/1 knapsack problem, as any integer knapsack problem can be [20, p. 524], this greedy

solution procedure is akin to the branch and bound method proposed by Kolesar [21], which

produces an optimal solution for 0/1 knapsack problems when the constraint is binding [22].

Therefore, the proposed solution procedure results in an optimal team allocation each day, in

terms of maximised EPE for the whole network.

The exact formulation of the solution procedure follows. Initially, ηi,t = 0, 8i 2 {1, . . ., n}.

Then, the first team is allocated to the location

i0 ¼ maxi
E�
ðZi;t þ 1Þ;i;tþ1

ðZi;t þ 1Þ
; i 2 f1; . . . ; ng

( )

:

Once this team is allocated, ηi0, t is incremented. Each subsequent team is allocated in the

same manner, until there are no unassigned teams remaining.

EPE strategy for vaccine delivery allocation

Once response teams have been allocated to locations in the network affected by the epidemic,

it is imperative to provide these teams with an immediate and uninterrupted supply of vac-

cines. The use of drones to do so can be significantly faster than vehicles, especially for remote
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areas with poor or non-existent transport infrastructure. The problem of allocating vaccine

resources to locations in the affected area is similar to that of team assignment, except that,

with a limited number of drones, the constraint is the amount of delivery time available each

day, rather than the number of teams. Given this, a similar formulation of EPE is presented; in

this case, EPE is calculated as the number of expected prevented exposures resulting from each

drone delivery to each location. Then, another knapsack problem is presented, to maximise

total EPE in the network by allocating drone deliveries under the constraint of limited daily

delivery time. These deliveries increase νi,t, the quantity of vaccine stock available at each loca-

tion delivered to. This, in turn, may increase vi,t, the number of vaccinations performed at that

location, and can thereby curb the spread of the epidemic.

Vaccine deliveries to locations are dependent on the number of teams allocated there, ηi,t,
the quantity of vaccines already in stock, νi,t, and the number of days for which those vaccines

will remain potent outside of the cold chain before expiry—which is 3 days in the case of mea-

sles vaccines [23]. The exact number of vaccines to be used for the following 3 days at each

location can naturally not be foreknown, but is estimated according to the number of unvacci-

nated people remaining in that location, and the vaccination capacity per response team, ψ.

More formally, the (non-negative) number of vaccines still required—that is, likely to be used

but not yet in stock—on day t at location i, is

v0i;t ¼ maxfminfSi;t þ Ei;t þ Ri;t; 3cZi;tg � ni;t; 0g:

For simplicity, let xi denote the number of vaccines delivered to location i on the day con-

sidered, t. Given this quantity, the number of vaccinations possible on day t is the minimum

between the assigned teams’ total vaccination capacity, and vaccine stock:

vxi;i;t ¼ minfcZi;t; ni;t þ xig:

The number of expected exposures is calculated using S0i;t, defined as the number of remain-

ing susceptible individuals after these vxi, i, t vaccinations have been performed on day t, but

before migration and epidemic progression for day t + 1 are accounted for:

S0i;t ¼ Si;t � vxi ;i;t y
S
i;t lS:

Taking S0i;t into account, the expected exposures on day t + 1 at location i, after the xi vac-

cines were delivered on day t, is

E0xi ;i;tþ1
¼ Ei;t þ

bS0i;tIi;t
Ni;t

� sEi;t � vxi ;i;t y
E72

i;t lE:

Given that E0xi;i;tþ1
exposures are expected after the vaccine deliveries (and resulting vaccina-

tions) have happened on day t, the expected prevented exposures (EPE) caused by the delivery

of xi vaccines is

E�xi ;i;tþ1
¼ E0

0;i;tþ1
� E0xi ;i;tþ1

; 8i 2 f1; . . . ; ng:

Let di denote the number of drone deliveries to location i on the day considered, and let c
denote the number of vaccines which can be delivered per flight. Then, the total number of

vaccines delivered to location i on the day considered is xi = cdi. Further, let δi denote the

return flight time in minutes, for a drone flight from the DC to location i and back. Across all

locations, the total number of daily deliveries is constrained by the total available minutes of

delivery time per day, H. Subject to this constraint, the allocation of deliveries to locations,

which maximises the total number of expected prevented exposures in the network, may then
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be found by solving

maximise
Xn

i¼1

E�xi ;i;tþ1
; ð10Þ

s:t:
Xn

i¼1

di di � H; ð11Þ

xi � v0i;t þ c � 1; 8i 2 f1; . . . ; ngnfi�g; ð12Þ

d1; d2; . . . ; dn integer: ð13Þ

The daily time available for drone deliveries, H, is the primary constraint on this problem.

As aforementioned, this is in contrast to Teytelman and Larson’s greedy heuristic and other lit-

erature, where vaccine stock is the primary constraint; here instead, the focus is on allocating

the limited amount of daily delivery time best. The other constraint, (12), ensures that no

drone deliveries will occur to locations for which the amount of vaccines still needed there, v0i;t,
is already exceeded. Furthermore, since the distribution centre, location i�, is assumed to have

unlimited vaccine stock, it is excluded from the delivery network and the problem formulated

above.

This integer program can be solved by iteratively assigning deliveries to locations—incre-

menting one di value and adding c to the vaccine stock there, νi,t—where the location to be

delivered to each time has the highest resultant EPE per minute of delivery time, of all loca-

tions. More explicitly, this location is

i0 ¼ maxi
E�c;i;tþ1

di
; i 2 f1; . . . ; ng

� �

:

Once a delivery is allocated and stock levels are updated accordingly, the EPE value is recal-

culated for that location (to become the EPE resulting from another delivery), and the next

best location is selected to receive the next delivery. As in the team allocation problem’s solu-

tion procedure, the highest payoff (EPE) per unit of cost (time) is repeatedly selected—

although due to the second constraint (12), and the fact that (11) may not always be a binding

constraint, the solutions are not necessarily optimal.

Alternate dynamic resource allocation methods

In order to compare the effectiveness of the two presented EPE resource allocation strategies

with other dynamic allocation methods, alternate strategies are presented; for both team allo-

cation, and vaccine delivery allocation. In both cases, the strategies essentially either prioritize

total population, susceptible population, or infected population—with varying implementa-

tions according to the resources being allocated. Teams are allocated to locations proportion-

ally to the considered population size at each, and vaccines are delivered to locations in an

order of priority set by these population sizes. The strategy of proportional allocation accord-

ing to total population size is commonly known as the “pro-rata” strategy, and since it is gener-

ally considered equitable it is often used in practice, and is frequently discussed in literature [7,

8, 13]. The strategies presented here which prioritize susceptible population and infected pop-

ulation are similar to those proposed by Mbah and Gilligan [8]. The alternate methods consid-

ered for the allocation of the N available teams in the network, with non-integer values

stochastically rounded up or down, are:
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• Team allocation proportional to total population:

Zi;t ’ N �
Ni;tPn
j¼1

Nj;t
:

• Team allocation proportional to susceptible population:

Zi;t ’ N �
Si;tPn
j¼1

Sj;t
:

• Team allocation proportional to infected population:

Zi;t ’ N �
Ii;tPn
j¼1

Ij;t
:

• Team allocation proportional to each location’s ratio of infections to total population:

Zi;t ’ N �
Ii;t
Ni;t

Pn
j¼1

Ij;t
Nj;t

:

• An even distribution of teams, where the N available teams are evenly spread across the n
locations using stochastic rounding, with random allocation of leftover teams thereafter:

Zi;t ’
N
n
:

As aforementioned, similar strategies are considered for vaccine delivery allocation also. In

each of these methods, drone deliveries (of c vaccines per delivery) are repeatedly performed

to the selected location i0, by incrementing di0, until no more vaccines are required there (i.e.,

when v0i0;t ¼ 0). Thereafter, the second-best location is selected to receive deliveries until it no

longer requires any more vaccines, and so on. Therefore, the delivery strategies essentially

define varying lists of locations in descending order of priority. The considered strategies are:

• Delivery allocation in descending order of total population, where the location i0 selected to

receive the first delivery is:

i0 ¼ maxifNi;t; i 2 f1; . . . ; ngg:

• Delivery allocation in descending order of susceptible population, with:

i0 ¼ maxifSi;t; i 2 f1; . . . ; ngg:
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• Delivery allocation in descending order of infected population, with:

i0 ¼ maxifIi;t; i 2 f1; . . . ; ngg:

• Delivery allocation in descending order of total population, per minute of delivery time. The

division by delivery time is performed to ensure that this method also takes it into account

when selecting a location. This division is also performed for the EPE delivery strategy. The

location i0 selected to receive the first delivery is

i0 ¼ maxi
Ni;t

di
; i 2 f1; . . . ; ng

� �

:

• Delivery allocation in descending order of susceptible population, per minute of delivery

time, with:

i0 ¼ maxi
Si;t
di
; i 2 f1; . . . ; ng

� �

:

• Delivery allocation in descending order of infected population, per minute of delivery time,

with:

i0 ¼ maxi
Ii;t
di
; i 2 f1; . . . ; ng

� �

:

Parameters

The SEIRVD model presented in Eqs (1)–(6) is sufficiently general such that it can validly sim-

ulate the progression of any communicable disease comprising the categories S, E, I, R, V, and

D. More specifically, such a disease is exclusively transmitted through interpersonal contact,

has a latent period prior to contagiousness, and results in either death or permanent immunity

upon recovery. The parameters appearing in Eqs (1)–(6), such as the daily transmission rate,

death rate, and daily proportion of infectious individuals recovering, govern the progression of

the disease. For all results in this article, except where otherwise stated, the values used for

these parameters are set to simulate the spread of measles—and are listed in Table 1, along

with other default parameter values. In order to simulate another disease, alternate values for

these parameters must be estimated from literature, or from data about the progression of epi-

demics of that disease. The default team allocation strategy is pro-rata allocation proportional

to total population, and the default vaccine delivery strategy prioritizes locations in order of

descending population size. Untargeted vaccination and the monocentric network type are

both used by default, unless otherwise stated.

The epidemic model requires an input dataset containing information about a physical net-

work of locations in a hypothetically affected area. This dataset contains Cartesian x- and y-

coordinates and population sizes for each location in the network, as well as the number of

(exposed, and infectious) index cases at the start of the simulation. The coordinates of each

location are programmatically scaled such that the maximum distance between any two loca-

tions equals an adjustable parameter D, the diameter of the network. Euclidean distances
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between each pair of locations are calculated based on these coordinates. These distances are

used to select the distribution centre (DC) in the manner described below, and to calculate the

drone delivery times, from the DC to each location. The maximum flight range of a single

drone is 160km [31]. Therefore, under the assumption that drones only deliver to a single loca-

tion per flight, the single DC must be placed less than 80km away from all locations, if

possible.

The total initial population, Ni,0, at each location i, is partitioned into the categories Si,0 and

Ri,0, or Vi,0, depending on the vaccination rate in each area, and on whether or not targeted

vaccination is used. The quantity of vaccine stock νi,0, and the number of response teams at

each location i 2 {1, . . ., n}, are initially set to zero.

The input required is sufficiently general such that any geographical network of locations

can be used as the affected area in the simulated epidemics. For the purposes of this article,

four generic network structures are considered that are comparable to real-world population

distribution structures: a dense city network with high, homogeneous population density, a

sparse rural network with low, homogeneous population density, a monocentric urban net-

work with decreasing density as distance from the centre increases, and a polycentric urban

network with multiple centres from which the density reduces as distance from each centre

Table 1. Initial set of parameters used in epidemic and intervention simulations.

Parameter Symbol Value Reference

Daily proportion of exposed individuals becoming infectious σ 1

10
[24]

Basic reproductive number R0 15 [25]

Daily transmission rate β 15

8
[25, 26]

Daily proportion of infectious individuals recovering γ 1

8
[26]

Migration multiplier km 1 -

Daily proportion of infectious individuals dying μ 0:0329

8
[26, 27]

Vaccine efficacy in susceptible individuals λS 95% [28]

Vaccine efficacy in recently-exposed individuals λE 83% [29]

Number of response teams in network N 15 -

Working minutes per day, for deliveries and vaccinations H 660 [30]

Number of vaccines administered per team per day ψ 2000 [30]

Number of vaccines delivered per drone flight c 60 [28, 31]

Maximum drone flight range, in kilometres - 160 [31]

Days of measles vaccine potency before expiry - 3 [23]

Proportion of a location’s population to be infected before epidemic declaration - 0.9% -

Working days per week, for deliveries and vaccinations - 7 -

Delay in days between the declaration of an epidemic and intervention starting - 15 [32]

Duration of intervention - Unlimited -

Number of delivery drones - 5 -

Average drone flight speed, in kilometres per hour - 100 [31]

Time taken to launch each drone, in minutes - 10 [33]

Scaled diameter of monocentric network, in kilometres - 40 -

Scaled diameter of polycentric network, in kilometres - 100 -

Scaled diameter of city network, in kilometres - 20 -

Scaled diameter of rural network, in kilometres - 150 -

Population vaccination rate - 66% -

Targeted or untargeted vaccination - Untargeted -

https://doi.org/10.1371/journal.pone.0248053.t001

PLOS ONE Allocating teams and vaccine deliveries by drone in epidemics, according to expected prevented exposures

PLOS ONE | https://doi.org/10.1371/journal.pone.0248053 March 5, 2021 12 / 29

https://doi.org/10.1371/journal.pone.0248053.t001
https://doi.org/10.1371/journal.pone.0248053


increases. The input data for each of these four generic networks are supplied in S1–S4 Tables,

and the networks are depicted in S4 Fig.

Drone deliveries in each network are assumed to originate from a single DC, with an

unlimited supply of vaccines available. This DC is selected from the locations defined in the

network, using a minimax facility location problem. This problem is to choose a location i�,
such that the maximum distance from i� to any other location j 6¼ i�, is minimized. This facility

location method is selected, so that as many locations as possible lie within the aforementioned

delivery range of drones originating from the selected location. More formally, the DC is

placed at

i� ¼ mini maxfDi;j; i; j 2 f1; . . . ; ng; i 6¼ jg:

Using an average flight speed of 100km/h [31], and a fixed launch time of 10 minutes per

flight [33], along with the direct distance Δi,j between each pair of locations i and j as the flight

distance, the return flight time (in minutes), from the DC to each location i and back, is calcu-

lated to be

di ¼ 10þ
2Di;i�

100
� 60; 8i 2 f1; . . . ; ng:

Results

Prior to the presentation of simulation results, a description of the process of validation under-

taken, to establish the reliability of the simulation model, is outlaid. Thereafter, simulation

results are presented in three sections; firstly, benchmark results using the base set of parame-

ters are outlaid, followed by a comparison of the effectiveness of the resource allocation strate-

gies presented, and a sensitivity analysis of relevant epidemic-related parameters.

Validation

The validation for the model outlined in this article is performed on a measles outbreak in Nia-

mey, Niger, which lasted from November 2003 until midway through 2004. All parameters

and data used for this validation are derived from those used by Grais et al. in their presenta-

tion of a simulation model on the same epidemic [34], where possible.

Niamey has an approximately monocentric population distribution, and as such the mono-

centric network structure defined previously is used. In the actual intervention undertaken,

children aged 6-59 months were targeted, as they are the most susceptible to measles. There-

fore, the population values specified in the input dataset provided in S5 Table refer only to this

age group, for which a vaccination rate of 70% is assumed—a total population of 160 000. Dis-

tances between locations are scaled such that the diameter of the network is 20km, and an ini-

tial 10 index cases are specified in the centre of the network to start the epidemic. In

accordance with the proportion estimated by the World Health Organization [35], and the

work done by Grais et al. [34], only 50% of actual simulated cases are considered ‘detected’ in

the simulations, and are reported on in the validation results.

The simulation of this Niamey outbreak is set to run for 40 weeks, with vaccination being

performed for 10 days, as was the case in the actual intervention. In the simulation, an unlim-

ited quantity of vaccine stock is available to the 33 response teams distributed throughout the

network, and teams are allocated proportionally to the total population in each location; the

common pro-rata strategy described previously. In order to match the total number per-

formed in actuality, 256 vaccinations are performed by each team per day, without regard for
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potential previous vaccinations (i.e. untargeted vaccination is performed). After performing a

grid search with repeated simulations with a step size of 0.05, a value of R0 = 7.00 was found to

provide the best fit to the reported epidemic curve—and is thus used in the validation simula-

tions. In the same grid search, the ratio of infections to population at the epicentre, when the

epidemic is declared, was estimated to be 9 cases in 1000. As a result, this value is used as the

epidemic detection threshold for other simulations in this article also.

The best simulated match to the actual epidemic’s progression is depicted in Fig 1. Over

100 such simulations, the average number of reported cases per epidemic is 10 857 (with a

sample standard deviation of just 0.049)—which is very close to the 10 880 actual recorded

cases in Niamey. This was accomplished with exactly 84 480 vaccinations per simulation, near

to the 84 563 actually performed. Since the number of teams and daily vaccinations per team

are constant values, this number of vaccinations per simulation is also. Given these results, it is

clear that the SEIRVD model presented in this article, together with the resource allocation

methods used, is able to successfully simulate an actual epidemic.

Base simulation results

Using the base set of parameters listed in the previous section, simulations were performed

using each of the four generic network structures. In order to ensure that results are accurate

and that randomness is not an influencing factor, 100 simulations were performed for each

network type. Each set of 100 observations, from which the result metrics are calculated, have

sufficiently low variance such that the following formula, for the required number of

Fig 1. Comparison between actual and simulated weekly reported cases for Niamey epidemic.

https://doi.org/10.1371/journal.pone.0248053.g001
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simulations, equates to less than 100 for all results and metrics:

Nsims ¼ ð
Zð1� a=2Þ Sx

� x
Þ

2
:

In this formula, where xi is the ith simulation’s value for metric x, �x ¼ 1

100

P100

i¼1
xi is the sam-

ple mean of the metric, and Sx ¼ 1

100� 1

P100

i¼1
ðxi � �xÞ2 is the sample standard deviation. The

confidence level is 1 − α = 0.95, and the error level is � = 0.05.

The aggregated results of these simulations for each network are contained in Table 2, and

the figures in S5 Fig depict example epidemic progression curves, for a single simulation in

each network. It is clear in Table 2 that interventions employing targeted vaccination are more

cost efficient (they require fewer vaccinations and drone deliveries), and more effective at

reducing the number of cases and subsequent deaths—particularly in less densely populated

networks with slower epidemic progression.

Resource allocation strategy selection

The selected prioritization of certain locations in resource allocation decisions has significant

ramifications for the livelihoods of people there. Ethical arguments can be made regarding the

fairness of resource allocation to locations with differing socio-economic contexts, but for the

purposes of this article, the assumption is made that the target of an epidemic intervention is

the reduction of total cases. Therefore, for these resource allocation models and strategies, the

minimisation of cases is of first priority, followed by the minimisation of vaccines used. Con-

sidering that vaccines are often expensive and in short supply, using the same amount of vac-

cines more effectively to reduce cases is preferable.

Comparison of strategy pairs. Since the team allocation strategies and delivery allocation

strategies must be used in conjunction with one another, pairs of strategies are compared; in

terms of cases and vaccinations. The figures below contain scatter plots, where each point rep-

resents a strategy pair, and is positioned according to the average number of cases and vaccina-

tions occurring in repeated simulations using that strategy pair. The colour of each point

represents its team allocation strategy, and the symbol represents its delivery allocation strat-

egy, as represented by the figure legends.

Fig 2 depicts such a scatter plot, for the monocentric network with untargeted vaccination.

It is clear that, for this network, the results are somewhat clustered by team allocation strategy,

Table 2. Simulation results for various network structures with and without vaccination.

Network type Intervention type Cases Deaths Vaccinations Deliveries

City None 395459 12596 0 0

City Untargeted 376483 11992 1257301 17055

City Targeted 337983 10766 600630 8356

Rural None 60773 1936 0 0

Rural Untargeted 34469 1098 225070 3182

Rural Targeted 9338 298 101482 1390

Monocentric None 202797 6459 0 0

Monocentric Untargeted 178297 5679 724251 8782

Monocentric Targeted 148102 4718 462797 5798

Polycentric None 293785 9357 0 0

Polycentric Untargeted 278093 8858 824228 11830

Polycentric Targeted 255099 8126 379448 5736

https://doi.org/10.1371/journal.pone.0248053.t002
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represented by each of the six colours. Evidently, the team allocation strategies resulting in the

fewest cases (regardless of vaccine usage) are allocation proportional to total population, sus-

ceptible population, and infections. The EPE team allocation strategy performs poorly for this

untargeted intervention in the monocentric network, although the number of vaccines given is

minimised. In contrast, for the city and rural network types, the EPE team strategy is the best

overall, for both targeted and untargeted interventions—highlighting the need for consider-

ation of population distributions when making resource allocation decisions.

Notably, for every team allocation strategy in this network besides EPE, the best delivery

allocation strategy is EPE. This is followed by both delivery allocation strategies which priori-

tise locations by susceptible population. The worst-performing delivery allocation strategies in

this network are those prioritising locations according to total population and number of

infections. This is aligned with the findings of Mbah and Gilligan [8], Teytelman and Larson

[13], and Duijzer et al. [7], who all found the pro-rata population strategy to be inferior to

other, perhaps less equitable, strategies. A likely hypothesis for the poor performance of the

EPE team strategy, considering the superiority of the EPE delivery strategy, is the fact that the

primary constraint on vaccinations when using the default parameter set is the amount of

available delivery time, rather than the number of teams. Therefore, the selection of an appro-

priate delivery strategy is more important than that of a team strategy—especially when ineffi-

cient untargeted vaccination is employed.

Fig 2. Comparison of strategy pairs for untargeted vaccination on monocentric network.

https://doi.org/10.1371/journal.pone.0248053.g002
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Fig 3 contains a scatter plot depicting the results for all strategy pairs, for a targeted inter-

vention on the monocentric network. Once again, the results are largely clustered by team allo-

cation strategy, and the results are similar to the untargeted intervention—with the best

strategies being team allocation proportional to population, or infections. If the minimisation

of vaccinations is a factor, however, then team allocation according to either EPE, or suscepti-

ble population, is superior, since approximately 50 000 fewer vaccines are used, for a margin-

ally higher number of cases. As in the untargeted intervention, prioritising total population

and the number of infections for delivery allocation results in an increase in cases, as well as an

increase in cost. Note again that the best vaccine delivery strategy, for reducing both cases and

vaccinations required, is EPE—for all team allocation strategies, by a significant margin.

Identical scatter plots are also presented for each of the three other network structures

considered, in S1–S3 Figs. Each of the other networks have similar results to the monocentric

one—the EPE vaccine delivery strategy, for all team allocation strategies, usually results in the

fewest number of cases and vaccinations. This superiority of the EPE delivery strategy is more

prominent when interventions are targeted. It is clear that prioritising total population for vac-

cine deliveries to locations is a poor strategy, in comparison with all others presented.

Comparison of team allocation strategies. When the base parameter set is used, the pri-

mary constraint on vaccinations at locations is vaccine stock availability, due to the limited

delivery time available. To prevent this, and the delivery allocation strategies, from influencing

Fig 3. Comparison of strategy pairs for targeted vaccination on monocentric network.

https://doi.org/10.1371/journal.pone.0248053.g003
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the comparison of team allocation strategies, each location is assumed to have unlimited vac-

cine stock. Then, repeated simulations are performed for each team strategy and network type,

with the mean number of cases and vaccinations recorded for each pair. These are compared

with the overall mean values for cases and vaccinations for each network type, such that per-

centage deviations from the network’s means for each metric are calculated. These percentage

deviations are used as the coordinates of each point in the scatter plots depicted in Fig 4—rep-

resenting untargeted and targeted interventions, respectively. These scatter plots thus show an

aggregate view of which team strategy performs best for each network type, when vaccine

availability is not a constraint.

It is evident that the polycentric and rural networks have the largest difference between

team allocation strategies, for both targeted and untargeted interventions. With targeted vacci-

nation, the EPE strategy results in the minimum number of cases for all network types—and

this is accomplished with the minimum vaccine usage in all networks besides the monocentric

one. Results are similar for the untargeted intervention also, although slightly less prominent.

Therefore, particularly where targeted vaccination is used, and sufficient vaccine stock is avail-

able, the EPE team allocation strategy is superior to the other strategies considered; minimis-

ing both the number of cases, and vaccinations. Aside from the EPE strategy, it is clear that

proportional team allocation according to susceptible population is most effective—particu-

larly for reducing vaccine usage, while resulting in a similar, or lower, number of cases than

other strategies. Allocating teams proportionally to total population also performs reasonably

well, although results in more vaccines being used. Finally, allocating teams proportionally to

the number of infections at each location appears to be a costly strategy, and is often less effec-

tive in reducing cases. It seems that the effectiveness of certain strategies depends on the net-

work type, and as a result it is useful to consider the spatial population distribution of an area

when allocating response teams in an epidemic intervention.

Comparison of delivery allocation strategies. A similar comparison to the above is per-

formed for the delivery allocation strategies also. The previously presented base simulation

results, using each combination of team and delivery allocation strategies, are used; the results

are grouped by delivery strategy and network type, and are aggregated over the team allocation

strategies used. Fig 5 depicts similar scatter plots to those previously presented—where, in this

case, each point represents the results of repeated simulations using a particular delivery

Fig 4. Comparison of team allocation strategies for differing network types, with unlimited vaccine availability—For untargeted (left), and

targeted interventions (right).

https://doi.org/10.1371/journal.pone.0248053.g004
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strategy and network type. In these figures, the x- and y- axes represent the deviations of each

point’s results from the mean number of vaccinations and cases for that network, respectively.

This allows the delivery strategies to be more easily compared, in a similar fashion to the team

strategies.

As in the team strategy comparison, there is a larger difference between delivery strategies

for the polycentric and rural networks than the others. For the rural network, there is a signifi-

cant outlier; the strategy where vaccine deliveries are performed according to total population.

In fact, in all four networks, prioritising either population, or population per minute of deliv-

ery time, is an ineffective delivery strategy. In comparison with others, when these strategies

are used, vaccine usage is almost always higher, and the number of cases is usually higher also.

This is also the case for the two strategies prioritising infected population, albeit to a lesser

extent, and with the exception of the rural network type. This is unfortunate since the alloca-

tion of vaccines according to population size is seen as an intuitively fair strategy by many

decision makers. These results, along with those of Mbah and Gilligan [8], Teytelman and Lar-

son [13], and Duijzer et al. [7], indicate that, while apparently equitable and politically accept-

able, strategies prioritizing total population are often inferior to others.

In contrast to this, the two delivery strategies prioritising susceptible population usually

result in consistently low cases and vaccine usage, for all network types. Selecting locations for

deliveries based on susceptible population, per minute of delivery time, is a particularly effec-

tive strategy—for many networks, resulting in the minimum number of cases, if the EPE strat-

egy is disregarded. However, if it is possible to implement an EPE vaccine delivery strategy in a

targeted epidemic intervention, simulations indicate that it minimises both cost and the num-

ber of cases, compared to all other strategies. In untargeted interventions, the EPE strategy is

not as clearly superior, but still minimises both cost and cases in three of the four network

types considered.

Sensitivity analysis

A brief sensitivity analysis was performed on certain parameters, to evaluate the effect that

changes in their default values have on the simulation results. Each parameter is varied indi-

vidually, with the remaining parameters constant; for 100 simulations per parameter value.

The metrics of most interest that are reported on in this analysis are the number of simulated

Fig 5. Comparison of delivery allocation strategies for differing network types, aggregated over team allocation strategies—For untargeted (left)

and targeted interventions (right).

https://doi.org/10.1371/journal.pone.0248053.g005
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cases, and the number of vaccines administered—which is directly proportional to the cost of

the intervention.

Epidemic parameters. Four epidemic-related parameters are considered for sensitivity

analysis; the average number of days between initial exposure and becoming infectious, the

average number of days being infectious before recovery, the basic reproductive number R0,

and the morbidity rate. The effects of changes in these parameters on the average number of

cases and vaccines administered are depicted in Fig 6. As both the number of days exposed

and infectious increase, the number of cases reduce slightly; likely due to the epidemic pro-

gressing more slowly, allowing the intervention to be more timely and effective. As R0

increases, the average number of cases also increases, as expected—albeit increasing at a reduc-

ing rate as R0 rises. The final notable result is the apparent near-exponential growth in the

number of vaccines administered as the average number of days exposed rises. This is most

likely the consequence of vaccines being ineffective on most asymptomatic, exposed individu-

als; the longer the duration of exposure, the more vaccines are wasted on exposed individuals.

Intervention parameters. The second set of parameters investigated are those relating to

the intervention itself; the number of working hours for deliveries and vaccinations per day,

the number of daily vaccinations per response team, the delay before an epidemic is declared,

and the delay between epidemic declaration and the start of the intervention. The sensitivities

of both cases and vaccinations to changes in these parameters are plotted in Fig 7.

The modelled effect of an increase in working hours is a proportional increase in daily vac-

cinations per team, as well as allowing more daily drone deliveries to be possible. Therefore,

when either the daily working hours or the daily vaccinations per team is increased, the resul-

tant near-identical slight reduction in cases is expected. The two most notable results for this

parameter set are the respective impacts of epidemic detection delay, and intervention delay,

on the number of cases. If the epidemic is detected earlier, there is a large reduction in the

number of cases. The same applies for intervention delay after epidemic detection; the sooner

the intervention, the fewer cases occur on average. Epidemic detection delay is near-impossible

for decision-makers in an epidemic intervention to influence, and can only be reduced by

more effective routine epidemic monitoring in healthcare systems. On the contrary, while dif-

ficult to reduce, the intervention delay is somewhat under the control of decision-makers. The

effect of the intervention delay on the number of cases is so pronounced that, for each further

day of delay (in the monocentric network), the number of cases in the epidemic increases by

Fig 6. Sensitivity of average cases (left) and vaccinations (right) to changes in epidemic parameters.

https://doi.org/10.1371/journal.pone.0248053.g006
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1.5%, for the range considered. For the polycentric, city, and rural networks modelled, this

daily increase in total cases is 0.4%, 0.6%, and 2.7%, respectively. These values were obtained as

the respective slopes of least-squares linear regression approximations of each network’s sensi-

tivity plot for intervention delay, as depicted in Fig 8. It is clear that reducing the intervention

delay, by even a single day, can make a large difference in the number of total cases and deaths

in an epidemic. As this difference is most significant for rural networks, the use of drones to

perform prompt deliveries to hard-to-reach locations is an even more attractive prospect.

The effects of changes in the number of response teams are depicted separately to the

remainder of the parameter set, in Fig 9—since the results merit further discussion, and are

presented for both an untargeted and a targeted intervention. As expected, as the number of

response teams increases, there are fewer cases—with a decreasing marginal benefit as more

teams are added. This reduction in marginal benefit, which is most pronounced for targeted

interventions, indicates that the benefit of using an additional team in an intervention should

be weighed against the marginal cost thereof. The effect of changes in the number of teams on

vaccinations is, however, less intuitive. As expected, the addition of more teams results in

slightly more vaccinations being possible, for both vaccination types. However, as the number

of teams reduces, there is a sharp increase in the number of vaccines required for the untar-

geted intervention, while the targeted intervention’s vaccinations continue to decrease. A likely

hypothesis for this is that the reduction in teams, and ineffective untargeted vaccination,

results in a failure to timeously control the epidemic. This perhaps-surprising result indicates

that a failure to effectively control an epidemic initially may result in an increase in cost

required to eventually do so. Furthermore, as previously discussed, this highlights the superi-

ority of targeted vaccination to untargeted vaccination.

Network parameters. The sensitivities of the result metrics to changes in three network-

related parameters are depicted in Fig 10. As the amount of migration (i.e. the migration mul-

tiplier km) is increased, there is a small increase in the average number of cases, and a small

decrease in the number of vaccinations. This result is expected, since increased migration

spreads the epidemic more quickly. Further investigation into the impact of reduced migra-

tion, perhaps using a more accurate migration model or agent-based simulation, may be

insightful. As the diameter of the monocentric network increases, there is a slight decrease in

the number of cases (since there is less migration between locations), and an even slighter

Fig 7. Sensitivity of average cases (left) and vaccinations (right) to changes in intervention parameters.

https://doi.org/10.1371/journal.pone.0248053.g007
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Fig 9. Sensitivity of average cases (left) and vaccinations (right) to changes in number of response teams.

https://doi.org/10.1371/journal.pone.0248053.g009

Fig 8. Effect of intervention delay on cases, for various network structures.

https://doi.org/10.1371/journal.pone.0248053.g008
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reduction in the number of vaccinations. The larger the network, the longer drone deliveries

take; which results in marginally lower vaccine stock levels. Naturally, increases in the total

population of the network cause a proportional increase in the number of cases and vaccina-

tions—although, the former increases comparatively more than the latter.

An additional network-related parameter, the population vaccination rate at the start of an

epidemic, obviously plays a significant role in the progression thereof. In simulations, it was

found that, for each percentage point increase in the vaccination rate within the range consid-

ered, the number of cases reduces by 3.32%, and the number of vaccinations by 0.27%. That is,

if the epidemic even occurs at all—the higher the vaccination rate, the less likely an epidemic,

and its resultant cost, becomes. Consequently, it is imperative that routine vaccination activi-

ties achieve higher population vaccination rates.

Drone parameters. A range of drone-related parameters were tested, to determine the

sensitivity of results to changes in their values. The results found were fairly intuitive; as either

the drone capacity or average speed increases, the number of possible vaccinations increases—

and subsequently, the number of cases decreases. Conversely, as the launch time per flight

increases, the number of vaccinations reduces, and the number of cases increases. Although

these results are expected, the extent to which these seemingly unimportant parameters affect

the number of cases is notable. This is the case because, with a limited number of drones, every

hour of delivery time is valuable. A 50% decrease of the flight launch time (from 10 minutes, to

5 minutes) results in more than a 5% increase in the number of vaccinations, and a reduction

in total cases by over 2%. If the average speed per flight is reduced from 100km/h to 50km/h,

the mean total number of cases per simulation increases by 2.4%. Similarly, if the number of

vaccines delivered per flight is reduced from 60 to 30, the number of cases increases by 3.5%.

These results indicate that, due to their increased speed, fixed-wing drones are more effective

than quadcopter drones for prompt vaccine delivery—particularly for larger networks. It

seems also that a sense of urgency must be maintained when performing deliveries, as every

minute wasted can have an impact on the number of cases. These results do not, however, take

into account response teams’ potential need for travel time between locations, particularly in

rural networks with hard-to-reach populations where team availability may be a constraint,

instead of vaccine stock.

An additional parameter relating to drones was also investigated; the number of drones

available for deliveries. This is a parameter of such importance in an intervention using drone

Fig 10. Sensitivity of average cases (left) and vaccinations (right) to changes in network parameters.

https://doi.org/10.1371/journal.pone.0248053.g010
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delivery that results are presented separately, for a variety of population levels in the mono-

centric network, in Fig 11. This allows the impact of increased population size on the number

of required drones to be seen clearly. As expected, as the number of drones is increased from

the default value of 5, the number of cases decreases—albeit with a much-reduced marginal

benefit as more and more drones are added. It is also clear that the benefit of adding more

drones is greater for networks with a smaller population, which is expected; the addition of a

drone for a network with triple the population naturally affects proportionately fewer mem-

bers of that network’s population. The number of cases for most population levels appears to

reach an equilibrium of sorts when 15 or more drones are used, although providing a general

recommendation would be misleading, since the number of drones required is strongly depen-

dent upon the population level and diameter of a network.

Conclusion

This article introduced some of the logistical challenges faced in epidemic interventions, and

the possibility of using drones for the delivery of vaccines and other medical supplies, in the

context of an epidemic. A network-based SEIRVD epidemic model was formulated, to investi-

gate the feasibility of drone delivery, and the effect of certain resource allocation strategies and

parameters of interest on an epidemic. Repeated simulations were performed using this

Fig 11. Impact of number of drones on cases, for various population levels.

https://doi.org/10.1371/journal.pone.0248053.g011
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model, with four generic network structures as input; representing common population distri-

butions. This allowed the results to be more general than if specific case studies had been

considered.

Two resource allocation models were formulated and integrated with this simulation

model. These models maximise expected prevented exposures (EPE), by optimising daily

resource allocation decisions during each simulation. In order to evaluate the effectiveness of

these models, they were compared with a variety of alternative resource allocation strategies,

on the basis of cases and vaccines used.

The simulation model was validated on a 2003-04 measles epidemic in Niger, and proved to

replicate the actual epidemic’s propagation accurately. Initial simulations with each of the four

network structures indicated that using targeted vaccination reduces cases significantly, and

requires approximately 50% fewer vaccinations to do so—a result which highlights the impor-

tance of documenting the vaccination history of individuals well.

Both EPE resource allocation models formulated in this article were shown to be highly

effective in reducing epidemic cases, as well as vaccine usage—particularly for targeted inter-

ventions. This is the case for all network types, although to varying extents; the efficiencies of

the strategies considered appear somewhat inconsistent across network types. In the compari-

son of team allocation strategies, under the assumption of unlimited vaccine availability, the

EPE team strategy performed above-average for all networks, for both targeted and untargeted

interventions. In fact, for the former, the EPE strategy resulted in the minimum number of

cases for all network types. Besides this, team allocation proportionally to total population and

susceptible population were shown to be fairly effective strategies. Conversely, allocating teams

uniformly, or proportionally to the number of infections per location, is ineffective, and results

in an increased number of cases and vaccines required. When the vaccine delivery strategies

were compared by aggregating results over the team strategies, the EPE delivery strategy was

again found to be superior to the alternatives. With the exception of the rural network with

untargeted vaccination, the EPE delivery strategy resulted in the minimum number of cases

and vaccinations, for all networks and for both targeted and untargeted vaccination. Both

delivery strategies prioritising locations according to susceptible population performed consis-

tently well, whereas, in accordance with existing literature, the strategies prioritising total pop-

ulation and infections performed poorly, usually resulting in higher costs and more cases. It is

important to note, though, that since the effectiveness of the strategies varies according to net-

work type, it is important to consider a network’s population distribution when making

resource allocation decisions.

Simulations performed for sensitivity analysis revealed the devastating impact which each

day of delay before epidemic intervention causes. Increases in both epidemic detection delay,

and intervention delay, result in a notable increase in epidemic cases. For the latter, a single

further day of delay was shown to increase cases by between 0.4% and 2.7%, depending on the

network structure. The urgency of epidemic intervention is already well known, and this result

confirms that notion. The impact of a failure to promptly control an epidemic, with insuffi-

cient response teams, was also demonstrated; with fewer teams, there are inevitably more

cases, and an increase in cost when vaccination is untargeted. In addition to these conclusions,

the importance of routine vaccination activities was highlighted by the result that, for each per-

centage point increase in the pre-epidemic vaccination rate within the range tested, there’s a

3.32% decrease in the average number of epidemic cases.

Sensitivity analysis on four drone-related parameters revealed that, due to their superior

speed and range, fixed-wing drones are more appropriate for epidemic response than quad-

copters, for the network types considered; a reduction of the average drone speed from

100km/h to 50km/h caused a 2.4% increase in the average simulated number of cases. It is
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difficult to provide a general recommendation for how many drones should be used in an epi-

demic response, since this depends on the population, network type and drone capacity. For

the fixed-wing drones and networks considered though, 15 drones appear to suffice for most

population levels; although the more, the better.

Potential avenues for future work and extension upon this article include: the use of agent-

based simulation to model migration and interpersonal disease propagation more accurately;

forecasting EPE to an arbitrary future date instead of one day ahead; random, parameterized

generation of network structures, instead of only considering four specific ones; and constrain-

ing vaccine availability at the DC.

To reiterate the conclusions drawn, and provide a recommendation for improved epidemic

response thereon; the EPE models presented were the most effective resource allocation strate-

gies for reducing cases, as well as cost. They are thus recommended for implementation in epi-

demic interventions. In the absence of such models, resource allocation according to

susceptible population, rather than infections or total population, is best. Further, since tar-

geted vaccination is superior to untargeted vaccination, and each day of intervention delay

notably affects an epidemic’s spread, a targeted intervention with minimal delay is advisable.

Finally, fixed-wing drones are a viable option for vaccine delivery in an epidemic intervention,

if a sufficient number of them are used—and may be tremendously helpful in areas with poor

road infrastructure.

Supporting information

S1 Fig. Resource allocation strategy comparisons for the polycentric network structure.

Results for the untargeted intervention are depicted on the left, and results for the targeted

intervention are on the right.

(TIF)

S2 Fig. Resource allocation strategy comparisons for the city network structure. Results for

the untargeted intervention are depicted on the left, and results for the targeted intervention

are on the right.

(TIF)

S3 Fig. Resource allocation strategy comparisons for the rural network structure. Results

for the untargeted intervention are depicted on the left, and results for the targeted interven-

tion are on the right.

(TIF)

S4 Fig. Generic network structure maps. The population size at each network location is rep-

resented by the radius of the dot, and the epicentre is marked in red. The monocentric network

is top left, the polycentric network is top right, the city-type network is bottom left, and the

rural-type network is bottom right.

(TIF)

S5 Fig. Base simulation progression plots. The below plots depict the progression of a single

simulated measles epidemic, in each of the four network types considered. Each of the four

simulations were performed with the default set of parameters, and untargeted vaccination.

The plots each give an indication of how the total network population progresses between the

S, E, I, R, V, and D categories in that network. The monocentric network is top left, the poly-

centric network is top right, the city-type network is bottom left, and the rural-type network is

bottom right.

(TIF)
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(PDF)
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