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Abstract: Traumatic brain injury (TBI) is the leading cause of death in young individuals, and is a
major health concern that often leads to long-lasting complications. However, the electrophysiological
events that occur immediately after traumatic brain injury, and may underlie impact outcomes, have
not been fully elucidated. To investigate the electrophysiological events that immediately follow
traumatic brain injury, a weight-drop model of traumatic brain injury was used in rats pre-implanted
with epidural and intracerebral electrodes. Electrophysiological (near-direct current) recordings and
simultaneous alternating current recordings of brain activity were started within seconds following
impact. Cortical spreading depolarization (SD) and SD-induced spreading depression occurred in
approximately 50% of mild and severe impacts. SD was recorded within three minutes after injury
in either one or both brain hemispheres. Electrographic seizures were rare. While both TBI- and
electrically induced SDs resulted in elevated oxidative stress, TBI-exposed brains showed a reduced
antioxidant defense. In severe TBI, brainstem SD could be recorded in addition to cortical SD, but
this did not lead to the death of the animals. Severe impact, however, led to immediate death in 24%
of animals, and was electrocorticographically characterized by non-spreading depression (NSD) of
activity followed by terminal SD in both cortex and brainstem.

Keywords: cortical spreading depolarization; electrocorticography; traumatic brain injury; brainstem;
oxidative stress

1. Introduction

Traumatic brain injury (TBI) is a major global health burden that has been estimated
to affect over 40 million people annually [1–3]. In most cases of mild TBI—also known
as concussion—structural imaging reveals no pathology [4], and transient functional
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disturbances are thought to underlie the symptoms [4,5]. In contrast, structural brain
damages such as intracranial hematomas [6] or diffuse axonal injury [7] are common in
moderate-to-severe TBI, with a significant risk of death [8]. In addition, TBI—particularly
when severe or repetitive—has been linked to a higher risk of delayed neuropsychiatric
complications, including depression [9], epilepsy [10,11], and neurodegenerative diseases
such as chronic traumatic encephalopathy [12], Parkinson’s disease [13], and Alzheimer’s
disease [14].

Despite the high prevalence and potentially devastating consequences of TBI, the
neural network changes underlying the continuum of symptoms from mild to severe TBI
are only partially understood [15]. The two main neural network functional disturbances
linked with acute brain dysfunction after TBI are epileptic seizures [16,17] and spreading
depolarization (SD) [18–20]. While both phenomena relate to a sustained depolarization
in a large set of neuronal populations, and both potentially propagate along the injured
cortex, there are critical differences between the two. During epileptic seizures, sustained
depolarization is associated with repetitive firing of action potentials, the transmembrane
ion concentration gradients are largely preserved, and the recorded negative direct current
(DC) shift is relatively small [21]. In contrast, during SD, neurons depolarize to a level
beyond the inactivation threshold of the action-potential-generating channels. The negative
DC shift of SD results from the extracellular loss of cations—such as Na+ and Ca2+ ions—
which is not fully compensated by an extracellular gain of K+ ions. At the same time, the
negative DC shift is an excellent marker of neuronal water influx (cytotoxic edema), because
the net cation influx entrains water influx from the extracellular into the intracellular
space [21–23]. As a consequence of SD-induced depolarization block [24], SD is often
associated with a decrease in spontaneous brain activity (spreading depression), which is
observed in the alternating current (AC) range of the electrocorticograph (ECoG) above
~0.5 Hz [25] as a rapidly developing reduction in the amplitudes of spontaneous activity,
which spreads together with SD between adjacent recording sites. However, in the presence
of a severe deficiency of oxidative substrates due to focal or global ischemia [26], SD can
occur in the complete absence of any spontaneous brain activity [27]. In such cases, in
which activity depression precedes SD, activity depression typically occurs simultaneously
at different points in the neural network, and is therefore referred to as non-spreading
depression (NSD) of activity. From the initial phase of NSD to the onset of SD, neurons
are hyperpolarized, in stark contrast to SD-induced spreading depression, during which
neurons are depolarized.

In sedated human patients, SDs were recorded more frequently compared to seizures
(usually hours to days) after severe brain insults—including TBI [20,28], subarachnoid
hemorrhage [20,29–31], and malignant stroke [32,33]—and were found to be associated
with worse clinical outcomes [30,34]. In these clinical conditions, seizures and, to an
even greater extent, SDs can induce inverse neurovascular responses in terms of severe
vasoconstriction, causing secondary deficiency of oxidative substrates and increasing the
risk of developing neuronal damage [32,35–37]. SDs occur not only in the cortex, but also
in many gray matter structures, including the brainstem [38–40]. In mice with epilepsy,
they were recorded in the brainstem in the context of sudden unexpected death [41].

Two previous studies suggested the occurrence of seizures and SDs in models of
mild TBI in mice, based on blood flow measurements [42] and electrophysiological record-
ings [43]. In the present study, we recorded electrophysiological changes from the cortical
surface within seconds following mild and severe TBI in rats. We show that SDs are the
earliest and most common electrophysiological events following mild and severe TBI, and
that seizures are rare. Since oxidative stress is a well-known mediator of injury, we tested
the effect of SDs on reactive oxygen species (ROS) formation and antioxidant defense.
Repetitive mild TBI resulted in a compromised antioxidant status, leading to impaired
defense against ROS and increased ROS in brain tissue following TBI or SDs.

Since brainstem SDs were reported to be associated with sudden unexpected death [41],
we measured cortical and brainstem activity immediately after severe TBI, in which im-
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mediate mortality is high. We found that brainstem SDs were rare, but the few detected
brainstem SDs were not lethal. However, we recorded cortical and brainstem activity
consistent with global ischemia, characterized by NSD of activity followed by terminal
SD [26], which has been previously been associated with respiratory arrest and severe fall
in systemic blood pressure, leading to early death in rats [44].

2. Results
2.1. Spreading Depolarization Is Common Following Mild and Severe TBI

We first recorded changes in cortical electrocorticography before and immediately
after TBI. Following TBI (Figure 1a), the near-direct current recordings showed the charac-
teristic large slow potential change of SD [45], whereas AC recordings showed the rapidly
evolving reduction in amplitudes of spontaneous activity that spread along with SD be-
tween adjacent recording sites, which is characteristic of spreading depression of activity
(Figure 1b–d) [25,34,43,46]. After mild TBI, SDs were observed after 53% of impacts (n = 37
out of 71, Figure 1d), and were recorded within 3 min (124 ± 48 s). A late SD was recorded
43 min after impact in one animal; seizures were rare (n = 3; 4%, Figure 1c,d). In sham
controls (n = 10), cortical activity was characterized by increased amplitude compared
to pre-anesthesia baseline, and returned to baseline within less than 5 min (Figure 1e).
Neither SDs nor seizures were ever recorded in sham controls. Similar to mild TBI, SDs
were detected within minutes (149 ± 43s) after 46% of severe TBI impacts (n = 17 out
of 37); seizures were uncommon (n = 2; 5%). To confirm the propagating pattern of the
recorded SDs, changes in cortical surface intrinsic optical signaling (IOS) were measured in
parallel with the electrocortical recordings in a subgroup of animals (n = 18), using an open
cranial window. A slowly propagating change in IOS was measured during spreading
depolarization, likely reflecting cytotoxic edema [22,47] and the hemodynamic response to
SD [48], confirming the propagating nature of the observed voltage deflection (Figure 1f
and Video S1) [49–51].

2.2. Oxidative Stress Defense Is Compromised by TBI

SD and the initial, still reversible phase of neuronal cytotoxic edema in the cerebral
gray matter are two modalities of the same process [22], but many details of under which
circumstances and through which subcellular mechanisms cell damage arises from this
in principle reversible process are still unclear, as is the question of whether the same
process might also have beneficial effects under certain circumstances [27]. Therefore, we
electrically stimulated the frontal cortical surface to elicit SDs [52,53], compared the charac-
teristics of these triggered SDs with TBI-induced SDs, and observed the effects of SD on the
brain. Similar to TBI-induced SDs, electrically triggered SDs were detected within three
minutes (104 ± 85 s) after stimulation (Figure 2a). The amplitude of electrically triggered
SDs (0.26 ± 0.13 mV) was smaller than that of TBI-induced SDs (1.5 ± 0.9 mV; Figure 2b),
likely due to the prolonged anesthesia (> 1 h vs. ~5 min), with no difference in duration
(Figure 2c). Assuming SD initiation immediately upon stimulation and in proximity to
the stimulation site, SD propagation velocity of 4 ± 1 mm/min was measured. No gross
structural damage was caused by mild TBI or electrically triggered SDs (Figure 2d–f).
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Figure 1. Spreading depolarization is the earliest and most common electrophysiological event after TBI. The upper two 
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45 Hz) activity. Recordings from both the right (black) and left (green) hemispheres are shown. The 5th and 6th traces 
(red) show the squared activity (power near DC-ECoG). (a) Schematic representation of the general experimental setup. 
(b) Recording showing TBI-induced SDs recorded from both hemispheres. (c) Recording showing TBI-induced spreading 

Figure 1. Spreading depolarization is the earliest and most common electrophysiological event after TBI. The upper two
traces in each panel show raw ECoG recordings (band-pass: 0.02–100 Hz). The 3rd and 4th traces show band-passed
(0.5–45 Hz) activity. Recordings from both the right (black) and left (green) hemispheres are shown. The 5th and 6th
traces (red) show the squared activity (power near DC-ECoG). (a) Schematic representation of the general experimental
setup. (b) Recording showing TBI-induced SDs recorded from both hemispheres. (c) Recording showing TBI-induced
spreading depolarization with seizure activity immediately before and after SD; post-SD seizure is shown with expanded
timescale. (d) Occurrence rates of SDs and seizures following mild and severe TBI. (e) Recording from a non-injured control;
recovery from anesthesia is associated with a high-amplitude activity, which returns to pre-impact activity after regain of
locomotion (dotted line). (f) Intravital microscopy showing changes in intrinsic optical signals during SD; changes in IOS
are superimposed onto brain images; SDs propagated medially toward the midline; the dotted line represents the SD fronts.
A: anterior; P: posterior; L: lateral; M: medial.
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Figure 2. Changes in reactive oxygen species and antioxidant capacity after TBI or spreading depolarizations. (a) Recordings
from both the right (black) and left (green) hemispheres, and power near DC-ECoG (red) of both hemispheres after electrical
stimulation; SDs are triggered in both hemispheres. (b) Triggered SDs are lower in amplitude when the rat has been under
anesthesia for a longer duration (p < 0.0001, Dunn’s test); TBI-induced SDs are higher in amplitude than triggered SDs
(p < 0.0001, Dunn’s test); each dot represents 1 triggered SD or TBI impact. (c) Triggered SDs and TBI-induced SDs are
equal in duration. (d–f) Cresyl staining showing no structural damage following mild TBI or triggered SDs; regions where
MitoSOX fluorescence was measured are indicated by the red rectangles. (g–j) MitoSOX staining results in high-fluorescent-
intensity cells in fixed tissue; the percentage of high-MitoSOX cells is higher after mild TBI compared to controls (p = 0.0013,
Dunnett’s test); SDs are associated with more MitoSOX fluorescence (p = 0.044, Dunnett’s test); SDs in TBI-exposed animals
also show more MitoSOX fluorescence than controls (p = 0.0185, Dunnett’s test), with no difference compared with naïve
animals exposed to SDs (p = 0.16, Tukey’s test); each dot represents 1 animal. Scale bar = 200 µm. (k) Antioxidant capacity
increases after triggered SDs (p = 0.0189, Dunn’s test), unless triggered SDs were preceded by TBI (p = 0.38, Dunn’s test);
each dot represents 1 animal. (l) SOD1 mRNA expression is decreased in repetitive mild TBI-impacted rats (p = 0.0105,
unpaired T-test), but catalase (p = 0.22) and SOD2 (p = 0.68) mRNA expression are not affected by mild TBI; each dot
represents 1 animal. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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Because oxidative stress has been frequently described after TBI [54,55], we then inves-
tigated the potential role of SDs in ROS production. We measured MitoSOX fluorescence
in cortical sections from rats after repetitive mild TBI (one hit per day for five consecutive
days) (Figure 2g,h). Indeed, MitoSOX fluorescence was significantly higher in TBI-exposed
brains (Figure 2j; n = 17) compared with sham controls (n = 6; Figure 2j), indicating el-
evated ROS levels. Similar to TBI-exposed brains, MitoSOX fluorescence was higher in
brains from electrically induced SDs (n = 10; Figure 2i,j) compared to controls (Figure 2j).
ROS levels were also higher than controls in animals that endured repetitive mild TBI
followed by electrically triggered SDs (n = 5; Figure 2j), with no difference compared to
naïve animals exposed to SDs. To further assess brain defense capacity from oxidative
stress, we measured cortical antioxidant capacity, which is a measurement of the ability of
the antioxidant pool present within the cortex to reduce H2O2 (Figure S2). In naïve control
animals, triggering SDs resulted in a higher cortical antioxidant capacity (n = 9; Figure 2k)
than in non-triggered animals (n = 13), likely due to upregulation of antioxidant enzymes in
response to oxidative stress (Figure 2g–j). In contrast, repetitive mild TBI-impacted animals
failed to increase antioxidant capacity in response to SDs (n = 12; Figure 2k), suggesting
a compromised antioxidant defense mechanism. Interestingly, measuring mRNA levels
of antioxidant enzymes (SOD1, SOD2, and catalase) in the hippocampus—a brain area
previously shown to be susceptible to TBI [56,57]—revealed downregulation of SOD1
mRNA expression, with no change in SOD2 or catalase (Figure 2l) after repetitive mild TBI.

2.3. Severe TBI-Induced Immediate Death Is Associated with the Typical Electrocorticographic
Signature of NSD in Both Cortical Hemispheres and Brainstem, Followed by Terminal SD

SDs previously recorded in the brainstems of transgenic mice with epilepsy were
associated with sudden unexpected death [41]. In contrast, in a rat model of severe TBI,
early death was attributed to respiratory arrest followed by circulatory arrest [44]. In
human patients and rodents, the characteristic electrocorticographic signature of the dying
process in the wake of circulatory arrest is NSD of activity followed by terminal SD [27].
We therefore recorded the electrocorticographic events after severe TBI in both cortex and
brainstem.

Gross structural damage was observed after severe TBI impacts, manifesting most
often as epi-, sub-, and/or intracerebral hemorrhage (Figure 3a). SDs were less frequent
in the brainstem than in the cortex (3 of 37 (8%) versus 17 of 37 (46%) (chi-squared test,
p < 0.001, Figure 3e)). Of note, in these three rats, transient SD in the brainstem (Figure 3b)
did not lead to the death of the animals (Figure 3e).

More frequently, following 11 of 37 impacts (~30%), non-spreading depression of
brain activity was recorded after the impact, identified by the simultaneous depression of
activity in both cortical hemispheres and the brainstem (Figure 3c,d). NSD was typically
detected within two minutes (47 s ± 40 s) after the impact, except in one animal, when
it was recorded 7 min after the impact. Following NSD, brain activity recovered in two
animals who survived the impact (Figure 3c,e); however, in nine animals, NSD of activity
was associated with respiratory slowing or complete arrest, and followed by terminal SD
recorded in both cortices and the brainstem (Figure 3d,e). All nine animals did not recover
from the trauma, and died. The delay between onset of NSD and onset of terminal SD was
125 ± 77 s (n = 9, 24%, Figure 3d,e). Sham controls or animals undergoing mild TBI never
died, and neither NSD nor terminal SD were ever recorded in these animals (Figure 3e).
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Figure 3. The electrophysiological changes in brain hemispheres and brainstem following severe TBI. The first two traces
represent raw ECoG recordings (band-pass: 0.02–100 Hz) from the right (black) and left (green) hemispheres, and the third
trace (blue) is from the brainstem. Traces 4, 5, and 6 show brain activity (band-pass 0.5–45 Hz) of the first three ECoG
traces, respectively. (a) Hemorrhages at the cortex and brainstem observed after severe TBI. (b) Recording after severe TBI
shows SD and associated depression of activity in both cortical hemispheres and the brainstem. (c) Recording showing
non-spreading depression of activity occurring simultaneously in both cortical hemispheres and the brainstem; activity
returns and the rat survives. (d) Recording showing lasting non-spreading depression of activity followed by terminal
spreading depolarizations (TSDs, arrows) in both cortical hemispheres and the brainstem, and death. (e) Occurrence rate
of SDs and non-spreading depression in mild and severe TBI, and their association with TBI outcomes; non-spreading-
depression-associated death occurs significantly more frequently (p < 0.0001, Fisher’s exact test) in severe TBI. **** p < 0.0001.
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3. Discussion

Our findings using near-direct current recordings, alternating current recordings, and
analysis of IOS show that SD and SD-induced spreading depression are common in both
mild and severe TBI, and are initiated within minutes after impact. Our observations
build on previous studies showing that direct impact to the dura mater of anesthetized
mice results in a bilateral decrease in regional cerebral blood flow (rCBF), which has been
suggested to result from SD [18]. Using electrocorticography, which is the gold standard for
identifying SDs in both animals and patients [25,34], we confirmed that SDs are commonly
triggered by closed head injury. TBI-induced SDs are higher in amplitude than electrically
triggered SDs. While the use of a near-DC amplifier (high-pass filter of 0.02 Hz) distorts the
signal and affects measurements of amplitude and duration, the difference in SD amplitude
(and not duration) could be the result of a longer duration of anesthesia (>1 h), since the
amplitude of electrically triggered SDs was higher when anesthetic duration was shorter
(~5 min). A suppressing effect of isoflurane on SD has indeed been reported in previous
studies [58].

A key feature of SDs is a slow propagating pattern along the cortical tissue. To confirm
the propagating nature of TBI-induced SDs, we analyzed changes in IOS using the open
cranial window method. Our observed IOS changes showed that SD is indeed associ-
ated with a slowly propagating change in cortical IOS [49,50], likely reflecting cytotoxic
edema [22,47] and changes in cerebral blood volume due to the hemodynamic response
to SD [48]. In contrast to previous reports showing that electrically induced SDs were
typically restricted to the ipsilateral hemisphere [59], we recorded TBI-induced SDs in both
hemispheres. The bilateral propagation in our recordings suggests multisite initiation, or a
different propagation pattern following TBI (Figure 1e and Video S1).

To what extent the occurrence of SDs affects the outcome of brain injury, and many
mechanistic details, are still unknown. Recent human studies confirm that SDs can be fre-
quently recorded in sedated patients hours to days after severe TBI [20,28,60], subarachnoid
hemorrhage [45,61], malignant stroke [32,33], intracerebral hematoma [62], and subdural
hematoma [63]. Under these conditions, it has been shown that SDs may be associated with
an inverse neurovascular response, progression of ischemic injury, and worsened clinical
outcomes [30,34]. While blood flow measurements were not carried out in the present
study, we show that triggering SD causes elevated levels of reactive oxygen species, which
might be due to mitochondrial fragmentation induced by cytotoxic edema [23], and may
result in cellular injury or death if not resolved by antioxidants [55]. Indeed, TBI-induced
SD has been shown to be associated with apoptotic cell death [42]. Interestingly, while
in naïve animals repetitive SDs result in elevated antioxidant capacity within the treated
cortex, such a defense mechanism does not occur in TBI-impacted animals. These results
suggest a reduced capacity of the injured brain to adapt its antioxidant defense in response
to an SD challenge. By measuring the mRNA expression of mitochondrial enzymes, we
found that TBI induces downregulation of SOD1—one of the key antioxidant enzymes—in
the hippocampus. Hippocampal susceptibility to TBI has been shown previously [56,57],
and we observed a neuroinflammatory response to mild injury within the hippocampus
(Figure S1). Although cortical mRNA expression was not measured from these same ani-
mals, this opens the possibility that TBI-induced weakening of the antioxidant defense may
occur via downregulation of this antioxidant enzyme. A decrease in SOD1 expression was
also reported after a single mild TBI in mice, along with decreases in SOD2 and glutathione
peroxidase expression [64]. In addition, TBI has been reported to exacerbate the ALS
phenotype in some mutant SOD1 models [65], and increasing SOD1 function via stem cell
transplantation has been shown to be a promising method for faster recovery following
TBI [66].

In addition to injury to the cortex via oxidative stress, SD has previously been linked
to acutely harmful and dangerous consequences, including death, when it spreads into
the brainstem. We therefore measured brainstem electrical activity immediately after
severe TBI, with a high prevalence of post-traumatic death. Transient SDs in the brainstem,
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causing spreading depression of brainstem activity, were recorded after a few severe TBI
impacts, but were always nonlethal; this is consistent with previous works showing that
recovery from brainstem SD is possible, provided that it is short-lasting [40,41,67]. In other
words, we did not find SD in the brainstem to be a causative mechanism for respiratory–
circulatory arrest [68]. However, severe TBI could also result in sudden NSD of electrical
activity, occurring simultaneously in both cortical hemispheres and the brainstem. When
NSD of brainstem activity was short-lasting and not followed by SD, animals recovered
and survived the impact. In contrast, animals with prolonged NSD followed by SD did
not recover from the impact, and died. Takahashi et al. previously showed that severe TBI
in mice and rats can result in sudden apnea and bradycardia with hypertension followed
by hypotension, which was associated with NSD, followed by marked elevation in the
extracellular potassium concentration [44], and death of the animal. Our findings show
good agreement with these observations. The electrocorticography changes we observed
are assumed to represent a fundamental pattern that occurs in a characteristic manner
in both respiratory and circulatory arrest, and may thus represent anoxic episodes [69],
although some variation in detail is possible [70]. We observed NSD as soon as 20 s after
the injury. The most likely scenario is that the mechanical impact led directly to brain
hypoxia (potentially due to respiratory circulatory arrest) via an ultimately unclear shock
mechanism, which led to NSD with the usual latency.

Terminal SDs occur in severe noxious conditions—such as cardiac arrest, severe
prolonged hypoxia, hypoglycemia, and tissue exposed to very high concentrations of
K+ [26,27,71]—but have not been sufficiently shown immediately after acute TBI. We
recorded terminal SDs ~125 s after the onset of depression of brain activity, which is
consistent with the delay (98 ± 88s) previously observed in patients with TBI, aSAH,
and malignant hemispheric stroke during the dying process in the wake of circulatory
arrest [26]. In addition, we clearly demonstrated that terminal SDs did not occur simul-
taneously in both hemispheres and in the brainstem, but that their onsets had distinct
temporal latencies (Figure 3c). A terminal SD has two components: on the one hand,
there is the initial, still reversible SD component and, on the other hand, a late potential
component, which is termed negative ultraslow potential (NUP) [26]. We were not able
to detect the NUP in our recordings because we only performed near-DC recordings, and
not full-band recordings. In a future study, it would be interesting to find out whether
rapid-onset artificial ventilation can prevent the death of the animals, the specific cellular
mechanisms that lead to respiratory arrest, and whether they are reversible or not. In
contrast, preventing terminal SD in the presence of continued respiratory and circulatory
arrest is unlikely to be possible.

In summary, we presented the immediate electrophysiological changes after TBI,
showing that both mild and severe TBI frequently lead to SD and SD-induced spreading
depression of cortical activity, while seizures are rare. We suggest that SD causes oxidative
damage. Importantly, triggering SDs, on the other hand, resulted in higher cortical antioxi-
dant capacity, likely due to upregulation of antioxidant enzymes in response to oxidative
stress, but TBI-impacted animals failed to increase antioxidant capacity in response to SDs.
This merits further study. We also observed that brainstem SDs inducing spreading depres-
sion could spontaneously occur in severe TBI, but were nonlethal. On the other hand, NSD,
predominantly followed by terminal SD, indicated the dying process. Further studies are
needed to explore whether—and up to which point in the NSD and SD process—artificial
ventilation can still lead to survival of the animal.

4. Materials and Methods
4.1. Animals

Young (10–12 weeks old) adult male Sprague Dawley rats (Charles River, Montréal,
QC, Canada, n = 146) were double-housed in standard cages at the Dalhousie University
animal care center (Tupper building) with access to food, water, and shelter ad libitum in
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accordance with animal care protocols 16-094 (1 October 2016), 17-105 (1 November 2017)
and 19-065 (1 June 2019). Rats were exposed to a normal 12:12 light:dark cycle.

4.2. Recording of Cortical Activity

The rats (n = 81) were implanted under deep isoflurane anesthesia (3% for induction
and 1.5% for maintenance). Blood oxygen saturation (SpO2) was monitored continuously
using a paw clip connected to an animal oximeter pod (ML325, ADInstruments, Colorado
Springs, CO, USA) and a PowerLab data acquisition device (PL3508, ADInstruments). A
midsagittal incision (2.5 cm) was made to expose the skull, and two holes (2 × 2 mm in
diameter) were drilled for screw placement (stainless steel bone screws, Fine Science Tools,
0.86 mm × 4 mm) in either one or both parietal bones (2 mm posterior to the bregma, 2
mm anterior to the lambda, and 3 mm lateral to the sagittal suture, Figure 4). A ground
electrode was inserted into the neck’s subcutaneous tissue. Epidural ECoG electrodes
were constructed from Teflon-insulated silver wire (280 µm diameter, A-M Systems, Inc.,
Sequim, WA, USA) and miniature connectors (Ginder Scientific, Napean, ON, Canada,
ABS plug, ref. GS09PLG-220). The silver wires of the electrodes were wrapped around the
screws and were fixed to the skull using dental cement. In a subset of animals (n = 18), a
cranial window (4 × 6 mm in diameter, 2 mm posterior to the bregma, 2 mm anterior to
the lambda, and 2 mm lateral to the sagittal suture) was made in between the two ECoG
electrodes, as described in [72] (Figure 4), and covered with a transparent plastic cover
slip. A cylindrical TBI platform (1 cm in diameter and 1.5 cm in height) was formed above
the frontal or parietal bones using dental cement (Figure 4), where a weight was dropped
transmitting an impact to the brain. For brainstem recordings, two holes were drilled in
the occipital bone (12 mm posterior to the bregma, and 3 mm right and left to the midline)
(n = 10, Figure 4). Two Teflon-insulated silver wires were placed at these holes and inserted
at 9 mm depth into the brainstem.

4.3. Traumatic Brain Injury

TBI was induced at 24–72 h after placing recording electrodes using a modified
weight-drop model of TBI [52,73]. Briefly, rats were sedated using an induction cham-
ber (3% isoflurane, 2 L/min O2) until the toe-pinch reflex was absent. Rats were then
placed in the prone position on a sheet of aluminum foil taped to the top of a plastic box
(30 × 30 × 20 cm in depth). A metal bolt (1 cm diameter× 10 cm length) was placed on the
dental cement TBI platform. A cohort of animals (n = 17) received repetitive mild TBI (1 hit
per day for 5 consecutive days). Mild TBI was defined by an impact (500–600 g travelling
vertically for 0.85 m along a metal guide rail onto the frontal TBI platform; Figure 2e) that
does not cause gross structural damage, nor death after a single hit, but does result in a
transient reduction in neurological score at 10 min after impact (Figure S1). For severe
TBI, the same weight was dropped from 1.00 m above the TBI platform located above the
parietal bone, causing gross structural damage (Figure 3a), 20% immediate mortality after
a single hit, or 70% mortality after repeated impacts (Figure S1). Following the impact,
animals fell through the foil onto a foam pad placed at the bottom of the box, causing a
rotation of the head and neck. Sham controls were anesthetized, but did not receive TBI.

4.4. Electrocorticographic Recordings

Animals were tethered to an Octal bio amplifier (ML138, ADInstruments, Sydney,
Australia) for recording differential epidural ECoG signals. Near- DC recordings were
acquired (sampling rate of 1 kHz) with a high-pass filter of 0.02 Hz, a low-pass filter of
100 Hz, and a 60 Hz notch filter. During the light phase of the day cycle, a one-hour baseline
recording was acquired in a recording box (60 × 30 × 30 cm). Immediately following TBI,
animals were reconnected to the recording system within <30 s. Electrical recordings were
continued for 2 h following TBI. Brainstem recordings were limited to animals undergoing
severe TBI. ECoG data were analyzed using LabChart software (version 8) and MATLAB.
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Figure 4. Flowchart of the study design. Schematic drawings show the location of ECoG recording and electrically triggering
SDs, right parietal window for cortical monitoring, and constructed platforms for TBI.

4.5. Electrical Induction of Spreading Depolarizations

For electrical induction of SDs, a window in the right frontal bone—the presumed
skull area of maximal impact force—was created instead of a TBI platform (Figure 4). The
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frontal bone window (2× 2 mm in diameter, 2 mm lateral and 2 mm anterior to the bregma)
was located anterior to the electrodes for parietal ECoG recordings (n = 32). In a subset
of animals (n = 12), a right parietal cranial window was also prepared for cortical surface
imaging. Two stainless steel stimulation electrodes (0.5 mm in diameter) were placed at the
right frontal bone window for epidural stimulation. SDs were induced under anesthesia
(1.5% isoflurane, 0.8 L/min O2), as reported in [49,61,74], using electrical stimulation with
20 volts and 20 hertz for 2 s with a pulse duration of 5–20 ms.

4.6. Cortical Surface Imaging

Intravital microscopy (Axio Zoom, V16, Zeiss GmbH; Konigsallee, Germany) was
performed as described in [72], immediately (<30 s) following impact or electrical stimula-
tion. Images were taken from the surface of the cortex at a rate of one image/sec using a
scientific CMOS camera (PCO Edge 5.5 model, PCO-Tech Canada). Changes in intrinsic
optical signal (IOS) were analyzed using MATLAB, as reported in [49,74].

4.7. Histochemistry

Within 1 week following TBI or electrically induced SDs, animals were perfused with
4% paraformaldehyde, brain tissue was collected, and 30 µm thick coronal sections were
cut using a microtome (Microm, HM400). The mounted sections were stained with FD
cresyl violet solution (FD NeuroTechnologies, PS102-2). Other mounted sections were
incubated for 30 min with MitoSOX red (Thermo Fisher, Eugene, OR, USA, ref. M36008)
in the dark to detect reactive oxygen species in vitro [75]. Each slide contained 6 evenly
spaced sections and 4 regions of interest (2 on each hemisphere) in the forelimb and
hindlimb areas of the cortex and parietal cortex, which were analyzed for each section.
MitoSOX-stained cells were considered to be high-ROS cells when MitoSOX fluorescence ≥
median + (median− lowest 5th percentile). The number of MitoSOX-positive cells was
counted and divided by the total number of cells present in that region observed via DAPI
staining.

4.8. Antioxidant Assay

Within 1 h after the last triggered SD with (n = 12) or without (n = 9) prior TBI,
rats were euthanized, and their brains were dissected for antioxidant capacity assays as
previously described [76]. Brain tissue of healthy rats was collected as control (n = 13). The
injured right cortical hemisphere was isolated and homogenized (100 mg/mL) in 1.55 M
KCl. Brain homogenates were added to a reaction mix with myoglobin (Sigma-Aldrich,
St. Louis, MO, USA, ref. M0630) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
(ABTS) (Roche, Mannheim, Germany, ref. 10102946001), and ABTS oxidation by H2O2
was measured spectrophotometrically (SpectraMax M3, Molecular Devices, San Jose, CA,
USA) at an absorbance of 734 nm (Figure S2). Time to absorbance shift was measured and
compared to a Trolox (an artificial antioxidant) (EMD Millipore, Temecula, CA, USA, ref.
648471) standard line.

4.9. Real-Time Quantitative PCR

One week after repetitive mild TBI (n = 18) or repetitive isoflurane exposure (n = 8),
rats were euthanized, and hippocampal brain tissue was collected, frozen in liquid nitrogen,
and stored immediately at −70 ◦C. Total RNA was extracted via homogenization in TRIzol
reagent (100 mg/mL), addition of chloroform (200 µL/mL TRIzol), and centrifugation
at 12,000 rpm for 15 min at 4 ◦C. Supernatant was resuspended in isopropyl alcohol
(500 µL per 1 mL TRIzol reagent) and centrifuged at 12,000 rpm for 10 min at 4 ◦C. The
resultant RNA pellet was washed with 75% ethanol and dissolved in DNase/RNase-free
water. cDNA was obtained from this purified total RNA via reverse transcription. mRNA
expression was measured using real-time quantitative PCR (40 cycles; Table 1) using a
QuantStudio 6 Flex (Applied Biosystems). Mean threshold cycles were normalized to
a reference gene (18S), and relative gene expression levels were quantified using the 2-
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∆∆CT method. Primer sequences (Table 2) were designed using PrimerBank (Spandidos
et al., 2010), NCBI/NIH Primer-BLAST, and GenScript Real-Time PCR (TaqMan) Primer
Design, and primer physical characteristics were cross-checked with the Integrated DNA
Technologies OligoAnalyzer Tool.

Table 1. Primer sequences used for RT-qPCR.

Gene Primers

SOD 1 AAGTGCTGTTGAGTCCAGGT
CCATTTCCTCCAGGGTGACT

SOD2 ACTGGTTTCTCAGCTCCTC
TCAGGAGCCACAAGTGAGAG

Catalase ATGGCTCCAAGCGATGTTTC
AAGGGTGCTGAATGCCTACT

Table 2. Thermocycling conditions for RT-qPCR. Step 3 and 4 were repeated for 40 cycles.

Step Temperature (◦C; Ramp Rate: 1.6 ◦C/s) Time (min)

1 50 2:00
2 95 10:00

3 95 0:15
4 60 1:00

5 95 0:15
6 60 1:00
7 95 0:15

4.10. Statistical Analysis

The normality of our data was tested using Shapiro–Wilk tests, and non-parametric
tests were used when normality could not be assumed. Differences between two groups
were determined using Student’s t-test. Differences between more than two groups were
determined via one-way ANOVA or Kruskal–Wallis test, with Dunnett’s, Tukey’s, or
Dunn’s post-hoc tests. The differences in SD, seizure, or NSD prevalence between groups
were determined using Fisher’s exact test. All statistical analyses were performed using
IBM SPSS Statistics (version 25.0) and GraphPad Prism (version 8.0).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111642/s1: Figure S1: Validation of the weight-drop TBI model: (a) Schematic overview
of the impact. A weight is dropped (1) on the TBI platform constructed on the rat’s head. Upon
impact, the aluminum foil breaks, resulting in rotation of the head (2), and the rat falls on a foam pad.
Immediately, the recording electrodes are connected to a recording device (3); (b) mild TBI results in
a reduction in neurological score, defined as the combined performance in an open-field test, a beam
walk test, and a mesh strength test [77]; (c) mild TBI causes a neuroinflammatory response in the
hippocampus, as measured by increased GFAP immunoreactivity; (d) no mortality is observed after
a single mild impact, and low chance of mortality after repetitive mild TBI (11%). High mortality
rates were observed after a single severe impact (20%) and repeated severe TBI (70%). Figure S2:
Reaction scheme for the antioxidant assay. Video S1: The propagation of electrically triggered SD, as
observed by time-lapse imaging of the intrinsic optical signal.
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