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Identification of potential biomarkers and 
pathogenesis in neutrophil-predominant severe 
asthma
A comprehensive bioinformatics analysis
Shuanglan Xu, PhDa, Zi Chen, MD, PhDa  , Linyang Ge, MDa, Chenhui Ma, MDa, Quan He, MSa, Weihua Liu, MDa,  
Liuchao Zhang, MSa, Linfu Zhou, MD, PhDa,b,*

Abstract 
Background: Airway neutrophilia has been associated with asthma severity and asthma exacerbations. This study attempted 
to identify biomarkers, pathogenesis, and therapeutic molecular targets for severe asthma in neutrophils using bioinformatics 
analysis.

Methods: Fifteen healthy controls and 3 patients with neutrophilic severe asthma were screened from the Gene Expression 
Omnibus (GEO) database. Based on the analysis of differentially expressed genes (DEGs), functional and pathway enrichment 
analyses, gene set enrichment analysis, protein–protein interaction network construction, and analysis were performed. Moreover, 
small-molecule drug candidates have also been identified.

Results: Three hundred and three upregulated and 59 downregulated genes were identified. Gene ontology function enrichment 
analyses were primarily related to inflammatory response, immune response, leukocyte migration, neutrophil chemotaxis, 
mitogen-activated protein kinase cascade, Jun N-terminal kinase cascade, I-kappaB kinase/nuclear factor-κB, and MyD88-
dependent toll-like receptor signaling pathway. Pathway enrichment analyses and gene set enrichment analysis were mainly 
involved in cytokine-cytokine receptor interaction, the TNF signaling pathway, leukocyte transendothelial migration, and the 
NOD-like receptor signaling pathway. Furthermore, 1 important module and 10 hub genes (CXCL8, TLR2, CXCL1, ICAM1, 
CXCR4, FPR2, SELL, PTEN, TREM1, and LEP) were identified in the protein–protein interaction network. Moreover, indoprofen, 
mimosine, STOCK1N-35874, trapidil, iloprost, aminoglutethimide, ajmaline, levobunolol, ethionamide, cefaclor, dimenhydrinate, 
and bethanechol are potential drugs for the treatment of neutrophil-predominant severe asthma.

Conclusion: This study identified potential biomarkers, pathogenesis, and therapeutic molecular targets for neutrophil-
predominant severe asthma.

Abbreviations: BP = biological processes, CC = cellular component, CMap = Connectivity Map, DEGs = differentially expressed 
genes, ERK = extracellular regulating kinase, FC = fold change, GEO = Gene Expression Omnibus, GO = Gene Ontology, GSEA = 
Gene Set Enrichment Analysis, IL-1 = interleukin-1, IL-8 = interleukin-8, JNK = Jun N-terminal kinase, KEGG = Kyoto Encyclopedia 
of Genes and Genomes, MAPK = mitogen-activated protein kinase, MF = molecular function, MyD88 = myeloid differentiation 
factor 88, NETs = neutrophil extracellular traps, NF-κB = nuclear factor-κB, NOD = nucleotide-binding oligomerization domain, 
OVA = ovalbumin, PPI = protein–protein interaction, TLR = toll-like receptor.
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1. Introduction
Asthma is a chronic inflammatory airway disease with sus-
ceptibility involving multiple genes and a complex network of 
inflammatory cells, inflammatory mediators, and cytokines. It 
is characterized by airway inflammation, airway hyper-respon-
siveness, and airway remodeling.[1] Excess morbidity, mortality, 
and economic costs of asthma remain major global public health 
problems, causing substantial social and individual burdens 
worldwide.[2,3] Nowadays, established evidence confirmed the 
diversity and heterogeneity of asthma among the pathogenesis, 
symptoms, risk factors, disease severity, response to therapies, 
and prognosis.[4,5] According to Global Initiative for Asthma 
(GINA) guideline,[6] severe asthma is defined as asthma that has 
not been controlled despite high doses of inhaled corticosteroid 
(ICS) and long-acting β2 agonists (LABA), or those that require 
high doses of ICS-LABA to maintain control.[7] Although severe 
asthma constitutes only 5%–10% of asthma cases, it is associ-
ated with a greater burden than mild asthma.[6–8] No cure for 
severe asthma or method to prevent it has been established.

Based on granulocyte patterns in bronchoalveolar lavage 
fluid (BALF), severe asthma has been divided into 4 pheno-
types of inflammatory subtypes: isolated eosinophilia, isolated 
neutrophilia, mixed granulocytic, and pauci-granulocytic.[9,10] 
Interestingly, neutrophils, but not eosinophils, were increased 
in induced sputum samples of severe asthmatics, suggest-
ing increased infiltration of neutrophils into the airway.[11–13] 
Previous studies confirmed that neutrophil counts and airway 
inflammation were strongly associated with severe asthma phe-
notypes when compared with mild-to-moderate asthma.[14,15] 
Therefore, neutrophils may play an important role in the patho-
genesis of severe steroid-resistant asthma.

Glucocorticosteroids are now generally being successfully 
used as anti-inflammatory agents to treat asthma; however, 
they have no effect on neutrophilic asthma.[16,17] The mechanism 
underlying neutrophilia and its involvement in the pathogene-
sis of severe asthma remain unclear.[18] Thus, there is an urgent 
need to discover novel biomarkers and molecular mechanisms 
to provide new targets for the effective prevention and treat-
ment of neutrophil-predominant severe asthma. Bioinformatics 
analysis, a method of analyzing gene expression, has confirmed 
to be an efficient approach to identify hub genes and potential 
biomarkers for disease diagnosis, treatment, and prevention.[19] 
This study attempted to identify biomarkers, pathogenic factors, 
and therapeutic molecular targets for neutrophil-predominant 
severe asthma using bioinformatics analysis, in order to deliver 
more precise diagnosis and treatment options.

2. Materials and Methods

2.1. Ethical approval

The participant data from microarray dataset were based on 
online datasets, thus, no ethical approval and patient consent 
are required.

2.2. Microarray data

Based on the platform of GPL6104 platform (Illumina human-
Ref-8 v2.0 expression beadchip), the microarray dataset of 
accession number GSE137268 was obtained from the Gene 
Expression Omnibus (GEO) datasets (https://www.ncbi.nlm.
nih.gov/).

2.3. Differential expression analysis

The GEO2R online web tool (http://www.ncbi.nlm.nih.gov/
geo/geo2r) based on R package[20] was used for differentially 
expressed gene (DEGs) analysis, and the significant DEGs were 
identified based on the thresholds of |log2 fold change | value > 1 

and adjusted P value < 0.05. DEGs with log2 FC > 1 were con-
sidered upregulated, and those with log2 FC < 1 were classified 
as downregulated. Volcano and heatmaps were generated to 
show the characteristics of the DEGs.

2.4. Function and pathway enrichment analyses

Gene ontology (GO, http://www.geneontology.org/) functional 
enrichment analysis was categorized into 3 domains: biological 
process, cellular component, and molecular function. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.
jp/) database contains information about genes, systems, and 
chemicals.[21,22] GO and KEGG functional and pathway enrich-
ment analyses for the DEGs were performed using the online 
tool David Bioinformatics Resources 6.8 (https://david.ncifcrf.
gov/),[23] and the top 10 categories were identified using R soft-
ware. Statistical significance was set at P < .05.

2.5. Gene set enrichment analysis (GSEA)

We analyzed the association between the expression of upregu-
lated and downregulated hub genes using GSEA 4.0. GSEA was 
conducted to obtain the biological pathway from a database to 
a gene set.[24] The cutoff criteria were set as nominal P < .05 and 
enrichment score (ES) > 0.4.

2.6. Protein–protein interaction (PPI) network construction, 
module analysis, and hub genes analysis

The Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (https://string-db.org/) was used to char-
acterize the protein–protein interaction (PPI) networks of 
DEGs,[25] and a comprehensive correlation score > 0.15 as a 
threshold condition. Cytoscape version 3.6.1 (http://www.cyto-
scape.org/)[26] was used to screen key modules by Molecular 
Complex Detection (MCODE) app (score ≥ 10), and analysis 
of the hub nodes named the core gene or core protein by the 
cytoHubba plugin with the multiscale curvature classification 
(MCC) algorithm (score ≥ 5).

2.7. Identification of small-molecule candidate drugs

The Connectivity Map (CMap) database can reveal the 
relationship between small-molecule drugs, gene expres-
sion levels, and interrelated diseases,[27] which should help 
scholars to quickly identify genes highly associated with 
a disease, identify the main chemical structure of a mole-
cule, and summarize the possible directions of the mecha-
nism of drug molecules. The small-molecule candidate drugs 
may have a therapeutic effect on asthma, according to the 
DEGs, and the threshold was set according to P < .05, and 
|enrichment|>0.75.

3. Results

3.1. Characteristics of participants for microarray

The gene expression profile GSE137268 was generated from 
sputum samples from 15 healthy controls and 54 asthmatics, 
and the inflammatory phenotypes of asthma were eosinophilic, 
neutrophilic, pauci-granulocytic, and mixed-granulocytic. 
In this study, we focused on the difference between 3 neutro-
phil-predominant severe asthma and 15 healthy controls.

3.2. Identification of DEGs

A total of 362 significant DEGs were identified between the 
healthy controls and neutrophil-predominant severe asthma, 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.geneontology.org/
http://www.kegg.jp/
http://www.kegg.jp/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/
http://www.cytoscape.org/
http://www.cytoscape.org/


3

Xu et al.  •  Medicine (2022) 101:38� www.md-journal.com

which included 303 upregulated and 59 downregulated genes 
in the latter group (Table  1). Further analysis of these DEGs 
was performed by creating a heatmap (Fig. 1A) and a volcano 
plot (Fig. 1B). Complete information is available in Table S1, 
Supplemental Digital Content 1, http://links.lww.com/MD/
H351.

3.3. Functional and pathway enrichment analyses of DEGs

GO functional enrichment analysis showed that the main path-
ways enriched for biological processes were neutrophil functions 
(including activation, degranulation, chemotaxis, and migra-
tion), response to lipopolysaccharide, inflammatory response, 

immune response, cellular response to interleukin-1 (IL-1), 
response to interferon-alpha/beta/gamma, leukocyte migration 
and adhesion, cell apoptosis and proliferation processes, and 
regulation of signaling pathways, including the inflammatory 
response, mitogen-activated protein kinase (MAPK) cascade, 
Jun N-terminal kinase (JNK) cascade, neutrophil chemotaxis, 
I-kappaB kinase/nuclear factor-κB (NF-κB), myeloid differen-
tiation factor 88 (MyD88)-dependent toll-like receptor (TLR), 
T-cell receptor, and interleukin-8 (IL-8)-mediated signaling 
pathways.

Cellular components include intracellular, plasma mem-
brane, extracellular exosome, nucleosome, cortical actin 
cytoskeleton, and extracellular space. The molecular func-
tions included peptidoglycan binding, IL-8 receptor activity, 

Table 1

Identification of DEGs associated with neutrophil severe asthma.

Regulation Genes 

Upregulated 
(n = 303)

ORM1, PI3, TNFSF14, VNN2, HCAR3, LMOD3, HCAR2, IRAK2, ISG20, SAMSN1, ADORA2A, G0S2, HIST2H2AC, PROK2, FAM200A, NAMPT, ALPP, CAMK2B, 
ZNF14, TNFAIP6, HSD17B7, TDRD1, RGL4, HIST2H2AA3, CXCR4, FPR2, SOD2, ZNF786, KCNJ2, DNAJC28, DNM1P46, IFITM1, SELL, FAM65B, LPCAT1, 
HCAR1, TAGAP, CXCR1, ALPL, PHACTR1, LILRA3, FCGR3B, NLRP3, PLAU, FAM63A, TFIP11, H3F3C, MARCKS, CHST15, HIST2H2BE, CXCR2, PDE4B, 
PELI1, USP49, CMTM2, ANTXR2, FFAR2, IL18RAP, LRG1, CEACAM1, CLEC4E, GABRB1, TMEM71, IL1R2, ADM, ASPRV1, CLC, HLA-C, GBP5, ANK-
RD22, CLEC4D, WTAP, SIGLEC5, CRISPLD2, TMEM154, MZB1, PADI4, ADGRG3, TREML2, YRDC, CXCL1, HSD17B7P2, CPD, GK, OLIG2, MSX1, LILRA2, 
C15orf48, PLEK, HES4, SLCO4A1, ZNF223, IFITM2, TNFAIP3, SLC7A5, IDO1, CA4, CDKN2D, KIAA0408, HACD4, CXCL8, CLEC4A, ZNF467, SERPINA1, 
RASSF5, C15orf39, ATG2A, IER3, MXD1, RASSF2, ORM2, MARCKSL1, LILRA5, DUSP6, GPR84, ERVW-1, C9orf72, IL18R1, SPINK1, PLXNC1, KCNJ15, 
FPR1, LHX2, LIMK2, LAMB3, KIAA1551, CSF3R, IRAK3, TLR2, ICAM1, S100A9, DYSF, NINJ1, TNFRSF1B, PRKCB, MBOAT7, TMEM158, RAX2, CHST7, 
CYSTM1, QPCT, SLC16A10, CYFIP2, STX3, TANK, DEFA1B, TNIP1, UPB1, STON1, PTGES, ICAM3, SPAG9, SLC7A11, NDRG1, PIM2, CCR7, SIPA1L1, 
EDN1, PGLYRP1, BMP6, CDC42EP2, FGF9, RNF150, CEACAM3, CST7, SOCS3, MUCL1, BASP1, MAGEA10, CD93, LCP2, POU5F1, FAM101B, TRIB3, 
CIDEA, B3GNT8, ADGRE5, CD55, TRIB1, USP10, DCUN1D3, PARVB, ETS2, FAM104B, LEP, NSMAF, TTPAL, PRICKLE1, SNN, L2HGDH, SAPCD2, BMP4, 
GCA, SAXO1, E2F6, EOMES, GPR132, NBN, FNIP1, STEAP4, SERPINB1, HBP1, GBP1, STOX2, RGS2, OSM, IFITM3, MT1X, RNF19B, ATOH8, TREM1, IRF1, 
BATF, CDA, TREML4, HIST1H2AC, SCARF1, PDE7B, AQP9, ELF1, SP140, KREMEN1, IL6R, MGAM, ADCY2, TAP1, IGDCC3, SLC15A4, KANK4, LRP10, 
S100A8, GCH1, PIM3, DLC1, PELI2, ATP6V1B1, CRYAB, CDC42, PTP4A3, IRS2, NOD2, PLK3, HOXA5, ELAVL4, KRT23, SMAP2, ITPRIP, COL8A1, KLHL34, 
PLEKHO1, RHOH, GCLM, CLDN14, FARSB, PAG1, NKG7, GBP4, ST3GAL4, SEZ6, CACNG2, STX11, OLIG1, NEDD9, IPO11, P2RY8, ST8SIA4, BAZ1A, INP-
P5A, PRDM8, TNFSF13B, MSRB1, E2F3, HIST1H2BK, CCL3, KIF19, PFKFB3, F5, SEC22B, SMOX, NEDD4L, MLLT6, IRX2, VAMP5, CARD17, GABARAPL2, 
PHC2, TOM1, IL1RN, BATF2, TSC22D3, LIMS1, NFE2L2, CASP4, CREBRF, CD48, DDIT4, KCNH2, LAMP3, AGMAT, PTEN, CARD19, ZDHHC18, TMEM140

Downregulated 
(n = 59)

IGFBP2, C8B, ZNF589, GPA33, TMEM74B, SHROOM3, CA2, ECHDC2, SLC47A1, RAPGEF3, MLPH, GPD1, PNPLA7, PROS1, HOXB7, COLEC12, SLC19A3, 
SH3PXD2A, ACKR3, TAGLN, SPIRE2, GCHFR, ACACB, LGALS3BP, FABP4, FHL1, ENPP3, RDH10, PDE1B, IDUA, GSTT1, PLA2G16, TCEA3, GGA2, TPM2, 
COL9A2, MARCO, ABCC3, SLC4A11, RMDN3, PKD2L1, GLDN, ST5, EVL, MYB, LY6E, ICOS, C15orf52, FOLR1, PLA2G15, DDIAS, PI4KAP2, DGKQ, 
FAM156A, SPARC, SLC46A3, PON2, TRPV4, FAM89A

Figure 1.  Identification of the significant expression changes of DEGs. (A) The heatmaps of DEGs. (B) Volcano plot of DEGs. Red, blue/green, and black dots 
represent genes that are upregulated, downregulated and not significantly differentially expressed.

http://links.lww.com/MD/H351
http://links.lww.com/MD/H351
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C-X-C chemokine receptor activity, protein dimerization, 
and signaling pattern recognition receptor activity. In 
addition, KEGG pathway analysis revealed enrichment in 
cytokine–cytokine receptor interaction, nucleotide-bind-
ing oligomerization domain (NOD)-like receptor signaling 
pathway, neutrophil extracellular trap (NET) formation, and 
viral protein interaction with cytokines and cytokine recep-
tors. Figure  2 shows the top 10 clusters of GO functional 
enrichment analysis and KEGG pathway enrichment analy-
sis of the DE mRNAs.

3.3.1. GSEA.  GSEA revealed that the upregulated and 
downregulated hub genes were enriched in the gene sets of 
“NOD-LIKE RECEPTOR SIGNALING PATHWAY” (Fig. 3A) 

and “CYTOKINE–CYTOKINE RECEPTOR INTERACTION” 
(Fig. 3B).

3.4. PPI network, module analysis, and hub gene analysis

The PPI network of the 362 DEGs is presented in Figure 4A, con-
taining 296 nodes and 1073 edges. The upregulated and down-
regulated genes are shown in Figure  4B. Based on Cytoscape 
plug-ins, an important module was identified (Fig. 4C), which 
contained 23 nodes and 144 edges. Additionally, the top 10 hub 
genes were identified in the PPI network, namely CXCL8, TLR2, 
CXCL1, ICAM1, CXCR4, FPR2, SELL, PTEN, TREM1, and 
LEP (Table 2).

Figure 2.  GO functional and KEGG pathway enrichment analysis. Top 10 clusters of (A) BP, (B) CC, (C) MF and (D) KEGG. BP = biological processes, CC = 
cellular component, MF = molecular function.

Figure 3.  Enrichment plot of GSEA analysis: (A) NOD-like receptor signaling pathways and (B) cytokine–cytokine receptor interaction. GSEA = Gene Set 
Enrichment Analysis.
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3.5. Prediction of small-molecule drugs

Candidate small-molecule drugs were predicted using the CMap 
database. Negative correlations were considered to indicate 
drugs with the potential to treat neutrophil-predominant severe 
asthma, including indoprofen, mimosine, STOCK1N-35874, 
trapidil, iloprost, aminoglutethimide, ajmaline, levobuno-
lol, ethionamide, cefaclor, dimenhydrinate, and bethanechol 
(Table 3).

4. Discussion
Asthma is a heterogeneous disease with a consequence of 
complex gene-environment interactions, and severe asthma is 
one of the most common causes of death among hospitalized 
patients.[8,28] However, the biomarkers and therapeutic targets 
of neutrophil-predominant severe asthma remain poorly under-
stood. In this study, the gene expression profile GSE137268 

was generated from the GEO database, in which 362 signifi-
cant DEGs, including 303 genes that were upregulated in severe 
asthma and 59 that were downregulated. We then screened can-
didate important functional and signaling pathways, hub genes, 
and small-molecule drugs associated with neutrophil-predomi-
nant severe asthma via bioinformatic analysis. This analysis pro-
vides new targets for the effective prevention and treatment of 
neutrophil-predominant severe asthma.

Hundreds of statistically significant differences of gene expres-
sion were interpreted by the enrichment analyses using GO 
functions, KEGG pathways, and GSEA. This analytical strategy 
revealed that the important functions and pathways related to 
neutrophil-predominant severe asthma include the inflamma-
tory response, neutrophil chemotaxis, and signaling pathways 
of MAPK cascade, JNK cascade, NF-κB, IL-8-mediated, cyto-
kine–cytokine receptor interaction, MyD88-dependent TLR, 
NOD-like receptor, and NET formation. In our study, the hub 
genes in the PPI network included CXCL8, TLR2, CXCL1, 

Figure 4.  Network of DEGs. (A) PPI network analysis of DEGs, (B) DEGs regulatory network; pink nodes indicate upregulated RNAs, and green nodes indicate 
downregulated RNAs, and (C) important modules in the PPI network.

Table 2

Top 10 Hub genes identified in the PPI network.

Genes symbol Genes title Degree P value Log FC 

CXCL8 C-X-C motif chemokine ligand8 56 .0037 1.4647
TLR2 Toll like receptor2 49 .0001 1.3871
CXCL1 C-X-C motif chemokine ligand1 41 .0002 1.5575
ICAM1 Intercellular adhesion molecule1 37 .0004 1.3836
CXCR4 C-X-C motif chemokine receptor4 36 .0002 2.0934
FPR2 Formyl peptide receptor2 36 .0006 2.0709
SELL SelectinL 29 .0117 1.9684
PTEN Phosphatase and tensinhomolog 29 .0012 1.0031
TREM1 Triggering receptor expressed on myeloid cells1 28 .0002 1.1544
LEP Leptin 28 .0204 1.2117
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ICAM1, CXCR4, FPR2, SELL, PTEN, TREM1, and LEP, which 
play important roles in the occurrence and development of neu-
trophil-predominant severe asthma. Some candidate highlights 
are discussed below.

As summarized in previous studies, the survival of proinflam-
matory neutrophils is enhanced in children with neutrophil-pre-
dominant severe asthma, which is accompanied by increased 
neutrophil activation and airway release of proinflammatory 
cytokines and chemokines.[29] The proinflammatory cytokines 
IL-8 mediate the recruitment and activation of neutrophils 
and then enhance the migration of neutrophils into airways.[30] 
Eventually, this leads to increased inflammation of the lungs and 
severe asthma with airway remodeling.[31]

Neutrophils are the major pathogen-fighting immune cells 
in mammals. As the first line of defense in the innate immune 
system against infection, neutrophils can protect against a 
wide range of infectious pathogens.[32] In 2004, the existence 
of NETs, which are reticular structures released by neutrophil 
activation, has been confirmed for the first time.[33] High neu-
trophil counts are found in patients with severe asthma, and 
NETs are detectable in the BALF and sputum. Interestingly, 
higher levels of NETs positively correlated with asthma sever-
ity and IL-17 levels.[34–36] IL-17A levels are increased not only 
in severe asthma, but also in other inflammatory diseases with 
neutrophil recruitment.[37,38] In our previous review, we pro-
posed that NETs are potential therapeutic targets for severe 
asthma.[39] However, the mechanism underlying the involve-
ment of NETs in neutrophil-predominant severe asthma 
remains to be explored.

Mitogen-activated protein kinases (MAPKs) are positively 
involved in the pathobiology of asthma associated with inflam-
mation and remodeling in the airways by activating immune/
inflammatory cells and structure-resident cells.[40,41] MAPKs rep-
resent a large family of signaling enzymes that include 3 major 
subgroups: p38, extracellular regulating kinase, and JNK.[42] In 
1 study of BALB/c mice exposed to egg ovalbumin to observe 
neutrophil recruitment to the airway, this pathological process 
was reversed by p38 MAPK inhibitors.[43] Notably, in vitro 
experiments also showed that p38 MAPK inhibitors not only 
synergistically enhance the efficacy of corticosteroids in alveolar 
macrophages from asthmatic patients but also have a greater 
effect in patients with corticosteroid-insensitive asthma.[44,45]

The transcription factor NF-κB plays an important role in 
inflammatory and immune responses, given its ability to induce 
the expression of many inflammatory mediators and their acti-
vation by inflammatory stimuli.[46,47] NF-κB was also found to 
be persistently activated in severe uncontrolled asthma, prob-
ably owing to an inflammatory microenvironment in vivo.[48] 
Conversely, when peripheral blood mononuclear cells (PBMC) 
were removed from their in vivo environment to in vitro follow-
ing the addition of a specific NF-κB inhibitor, the production of 

the proinflammatory cytokine IL-8 was significantly reduced.[48] 
Therefore, inhibition of the NF-κB pathway is a potential thera-
peutic target in neutrophil-predominant severe asthma.

Pattern recognition receptors that recognize microbial-asso-
ciated molecular patterns (MAMPs) trigger an early immune 
response to pathogens. One class of pattern recognition recep-
tors is the TLR family, which acts as a first line of defense against 
invading microbes and pathogens in innate and adaptive immune 
responses. Dysregulation of TLR has also been shown to lead 
to numerous disease states.[49] Myeloid differentiation factor 88 
(MyD88) is a key adaptor protein for TLR, and MyD88 defi-
ciency (MyD88−/−) disrupts TLR signaling pathways. Compared 
with the level in WT controls, IL-17 concentration was signifi-
cantly reduced in MyD88−/− mice by ovalbumin-induced aller-
gic asthma, and airway neutrophilia in BALF was significantly 
reduced by α-GalCer instillation. Taken together, these findings 
suggest that the MyD88-dependent TLR signaling pathway 
is critical for neutrophil recruitment and IL-17A production 
in allergic asthma.[50] Another class of molecules that play an 
important role in the broader control of adaptive immunity and 
various disease states is the NOD-like receptor (NLR).[51,52] It is 
confirmed that NLR could as a novel biomarker with adversely 
links innate and adaptive immunity and leads to allergic dis-
ease and asthmatic lung inflammation.[53] Furthermore, airway 
tolerance is sufficiently blocked by a NOD2 pattern recogni-
tion receptor, leading to Th2-driven lung inflammation.[53] Thus, 
the NLR could be a novel factor conferring susceptibility to the 
development of allergic asthma. However, the role of NLR in 
severe asthma remains unclear.

The results for predicting small-molecule drugs with poten-
tial efficacy for treating neutrophilic severe asthma identified 
indoprofen, mimosine, STOCK1N-35874, trapidil, iloprost, 
aminoglutethimide, ajmaline, levobunolol, ethionamide, cefa-
clor, dimenhydrinate, and bethanechol. In previous studies, 
these small-molecule drugs have rarely been studied in neutro-
phil-predominant severe asthma. Further research is needed to 
confirm whether these drugs are effective against this disease.

This study had some limitations. First, the results are only 
based on bioinformatic predictions, and experimental valida-
tion in vitro and in vivo is lacking. Moreover, the sample size of 
the study was relatively small. Thus, the findings of this study 
should be validated in a larger cohort. Further research is war-
ranted to determine potential biomarkers, pathogenic factors, 
and therapeutic molecular targets in the generation and devel-
opment of neutrophil-predominant severe asthma.

5. Conclusions
In conclusion, this study identified 3 key genes as potential 
biomarkers, pathogenic factors, and therapeutic molecular tar-
gets for neutrophil-predominant severe asthma. These findings 

Table 3

Results of the connectivity map analysis.

Rank CMap Name Mean N Enrichment P value Specificity Percent 

1 Indoprofen −0.621 4 −0.914 .0001 0 100
2 Mimosine −0.503 3 −0.877 .00377 0 100
3 STOCK1N-35874 −0.41 2 −0.86 .03929 0.0729 100
4 Trapidil −0.261 3 −0.834 .00899 0.037 66
5 Iloprost −0.246 3 −0.824 .01098 0.025 66
6 Aminoglutethimide −0.309 3 −0.784 .02049 0.0179 66
7 Ajmaline −0.312 3 −0.782 .02127 0.0709 66
8 Levobunolol −0.387 4 −0.781 .00475 0.0192 75
9 Ethionamide −0.378 3 −0.781 .02157 0.0438 66
10 Cefaclor −0.356 4 −0.778 .00507 0.0119 50
11 Dimenhydrinate −0.306 4 −0.769 .00573 0.0072 50
12 Bethanechol −0.233 4 −0.76 .00682 0 50
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deepen our understanding of the molecular mechanisms under-
lying the pathogenesis, diagnosis, treatment, and prognosis of 
neutrophil-predominant severe asthma. For more conformation 
further extended studies would be required.
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