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Abstract

Osteoarthritis is a degenerative disease that causes substantial changes in joint tissues,

such as cartilage degeneration and subchondral bone sclerosis. Chondroitin sulfate and

glucosamine are commonly used products for the symptomatic treatment of osteoarthritis.

The aim of the present study was to investigate the effects of these products when used

as structure-modifying drugs on the progression of osteoarthritis in the rabbit temporoman-

dibular joint. Thirty-six New Zealand rabbits were divided into 3 groups (n = 12/group):

control (no disease); osteoarthritis (disease induction); and treatment (disease induction

and administration of chondroitin sulfate and glucosamine). Osteoarthritis was induced

by intra-articular injection of monosodium iodoacetate. Animals were killed at 30 and

90 days after initiation of therapy. The treatment was effective in reducing disease

severity, with late effects and changes in the concentration of glycosaminoglycans in the

articular disc. The results indicate that chondroitin sulfate and glucosamine may have a

structure-modifying effect on the tissues of rabbit temporomandibular joints altered by

osteoarthritis.

Introduction

Osteoarthritis (OA) is a severe joint disease that can affect the temporomandibular joint

(TMJ), causing pain and functional limitations that compromise quality of life. The main

pathologic features of temporomandibular joint osteoarthritis (TMJ-OA) are cartilage degen-

eration and subchondral bone sclerosis [1]. Optimal treatment involves altering the natural

history of OA and reducing symptoms, inflammatory levels, and degenerative effects on carti-

lages and joint tissues [2].

Chondroitin sulfate (CS) and glucosamine (G) are commonly used as medicines or nutra-

ceuticals to control the symptoms of OA, especially pain, stiffness, and decreased functional
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capacity of the affected joint [3–7]. Although many studies have shown significant treatment

effects, the actual efficacy of CS and G treatment compared with other treatments is still con-

troversial [8]. In humans, the positive effects of CS and G when used as disease-modifying OA

drugs (DMOADs), whether alone or in combination (CS+G), have been observed during

long-term clinical studies and evaluated by imaging studies [4,9,10]. Experimental animal

studies testing CS and G, however, have yielded conflicting results and often assess the effects

in knee OA [11–16].

The TMJ fibrocartilage differs structurally and functionally from hyaline cartilage [17],

suggesting that the mechanisms of action and modulatory effects of CS+G on OA might not

be the same [18]. The main distinguishing feature is that the mandibular condyle is covered

by a thin layer of fibrous connective tissue containing mesenchymal cells that differentiate

into chondrocytes, thus being regarded as fibrocartilage [19]. Fibrocartilage, a secondary tis-

sue derived from perivascular osteogenic cells, has a denser extracellular matrix than hyaline

cartilage consisting of fibrous connective tissue that is primarily composed of glycosamino-

glycans (GAGs) and type I collagen fibers. The predominance of this type of collagen is char-

acteristic of fibrocartilage and associated with the need to support mechanical loading [20].

Collagen fibers are directly related to the tensile strength property of cartilages, while proteo-

glycans with their GAG side chains allow for tissue expansion due to osmotic pressure [21].

Anterior disc displacement and OA trigger the release of cytokines and growth factors in TMJ

synovial fluid, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β),

interleukin 6 (IL-6), interleukin 8 (IL-8), and prostaglandin E2 (PGE2). Cytokines participate

in several inflammatory processes and induce protease synthesis and release, which may

cause proteoglycan and collagen depletion, thus leading to the cartilage degradation observed

in OA [22].

Although fibrocartilage has limited regenerative capacity, important advances have been

made in the processes of growth factor modulation and cell differentiation involving chondro-

genesis in the repair of cartilage and subchondral bone tissue in TMJ-OA [23,24]. Some studies

suggest that CS+G or CS combined with hyaluronic acid may stimulate the differentiation of

progenitor cells, contributing to a more rapid and effective tissue repair of joint defects [18,25].

It is well established that insulin-like growth factors (IGF), transforming growth factors (TGF),

fibroblast growth factors (FGF), bone morphogenetic proteins (BMP), parathyroid hormone-

related peptide (PTHrP), members of the hedgehog (Ihh) family, and the Wnt pathway provide

important signals for the regulation of chondrocyte proliferation, differentiation, and matura-

tion during chondrogenesis. In response to external stimuli, articular cartilage would be able

to respond to adaptive changes by modulating these factors, resulting in multidirectional possi-

bilities of condylar growth and remodeling [17,26].

In response to mechanical stress, the TMJ disc has the ability to modify the synthesis of

GAGs, especially of chondroitin 6-sulfate (CS6), hyaluronic acid, and dermatan sulfate. As a

result, the biochemical properties of the disc are also continually modified [27]. Tissue

response, however, is dependent on the magnitude and duration of compressive forces and

the individual’s adaptive capacity [28]. Total GAG concentration in the TMJ disc ranges

from 0.6 to 10% of the dry weight [29]. Collagen accounts for approximately 30% of total disc

wet weight, most of which is type I collagen [30]. In an interspecies comparison, the GAG

concentration of rabbit TMJ discs was higher than that of human discs, but collagen content

was similar—although the human disc was significantly stiffer and stronger that the rabbit

disc [31].

Clinical trials evaluating the use of CS+G for the symptomatic treatment of TMJ dysfunc-

tion have reported different levels of efficacy [32–35]. However, to date, no study has assessed

the effects of CS and G used as DMOADs in TMJ-OA. Therefore, the present study
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investigated the 30- and 90-day effects of CS+G on the progression of TMJ-OA induced in rab-

bits by intra-articular injection of monosodium iodoacetate (MIA). The histologic appearance

of TMJ cartilage was evaluated and GAGs were quantified in the TMJ cartilage and discs after

30 and 90 days of treatment. The hypothesis was that the induction of TMJ-OA would reduce

the total amount of GAGs in the articular disc and cartilage via breakdown of the extracellular

matrix and that CS+G would restore the lost GAGs and have anabolic effects on cartilage,

reversing the degeneration caused by OA.

Materials and methods

Experimental design

Thirty-six 4-month-old male New Zealand rabbits (Oryctolagus cuniculus L.) weighing 3 to 4

kg each were used in the study. The animals were housed in individual cages under a 12 h/12 h

light/dark cycle, temperature of 21±1˚C, and relative humidity of 40–60% and given water,

rabbit chow, and green leaves ad libitum. The study was performed in accordance with Brazil-

ian law no. 11794/2008, which establishes the guidelines for the care and use of laboratory ani-

mals, and was approved by the Ethics Committee for the Use of Animals in Research of

Hospital de Clı́nicas de Porto Alegre (HCPA), approval no. 160238. All rabbits used in the

study came from a single breeding farm, which is a registered supplier to HCPA. The rabbits’

health conditions were monitored by a veterinarian during the entire experiment. Rabbits

were weighed weekly to calculate the CS+G dose and to control for potential diseases. For OA

induction, the animals were anesthetized and received analgesia. Because treatment involved a

simple and noninvasive procedure, the animals were restrained for treatment administration.

For euthanasia, the animals were anesthetized to avoid pain and minimize suffering.

Rabbits were randomly divided into 3 groups of 12 animals each: control (CG, no OA

induction); osteoarthritis (OG, OA induction); and treatment (TG, OA induction and CS+G

treatment). The animals were anesthetized with ketamine (10 mg/kg) and midazolam (1 mg/

kg) injected intramuscularly. TMJ-OA was induced in OG and TG rabbits by intra-articular

injection of 50 μL of 10 mg/mL MIA into the TMJ bilaterally. CG animals were injected with

50 μL of saline (Fig 1). A 30G needle (8 mm x 0.3 mm) was used to inject the solutions, and the

injection site was determined at 5 mm above and distal to the posterior border of the zygo-

matic process, according to a previously established model [36].

Treatment

Treatment was started 10 days after induction of OA. TG animals were given a subcutaneous

injection of 0.1 mL/kg of Condroton1 every 3 days, which corresponds to approximately 7.5

mg/kg of CS and 7.5 mg/kg of G. Doses were calculated according to the recommended dose

[37]. Rabbits were weighed weekly and drug doses were adjusted accordingly. CG and OG ani-

mals were injected with saline at the same dose of 0.1 mL/kg. Subsequently, according to pre-

determined time points (40 and 100 days after induction of OA), animals were anesthetized

with a combination of ketamine (20 mg/kg), meperidine (3 mg/kg), and midazolam (1 mg/kg)

injected intramuscularly and killed with an overdose of propofol (5 mg/kg) followed by intra-

venous injection of potassium chloride (1 mL/kg).

Histologic analysis

The right TMJs were removed, fixed in 10% buffered formalin, decalcified in 5% nitric acid,

and sectioned in the sagittal plane. The sections were stained with safranin O/fast-green and

hematoxylin and eosin (H&E) for histologic analysis. To assess the degree of joint
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degeneration, the slides were analyzed qualitatively by an experienced pathology professor,

who was blinded to group allocation, using the OA grading system proposed by Pritzker et al.

[38]. In this system, the OA score represents an assessment of OA severity, ranging from 0

(absence of OA) to 6 (maximum OA severity).

Sample preparation and GAG quantification

The left TMJs were dissected to separate the discs and fibrocartilage. Specimens were obtained

from the anterior and central regions, including the lateral aspects, of the articular fibrocarti-

lage and discs. The specimens were weighed and sectioned in half in the coronal plane; 10 mg

of articular disc and 5 mg of fibrocartilage were obtained from each specimen and stored at

−80˚C. GAGs were quantified using the method proposed by De Jong et al. [39], with modifi-

cations. The specimens were fragmented with a scalpel, ground, and incubated in a dry bath at

60˚C for 24 h in a solution consisting of 150 μL of 50 mmol/mL phosphate buffer, pH 6.5, 0.24

g/L L-cysteine, 0.4% 0.5 M EDTA, and 0.0607 mg/mL papain (15 μL of papain for discs and

9 μL for cartilage). GAGs were separated by adding 300 μL of chloroform, followed by centrifu-

gation at 10,000 g (9,000 rpm) for 15 min at 4˚C. The supernatant was then collected for analy-

sis. GAG content was quantified by dimethylmethylene blue (DMB) assay, in which 5 μL of the

sample was mixed with a DMB solution (0.3 mol/L DMB with hydroxymethyl aminomethane

and 2 mol/l Tris), and absorbance was read at 530 nm (Spectramax M3 multi-mode microplate

reader, Molecular Devices, China). The results were expressed as μg GAGs/mg wet weight.

Statistical analysis

Median scores obtained in histologic analysis were compared by the nonparametric Kruskal-

Wallis test followed by Dunn’s post hoc test. Mean GAG concentrations were compared

between all conditions (groups and time points) by analysis of variance (ANOVA) followed by

Fisher’s least significant difference (LSD) test. Student’s t test for independent samples was

used to compare GAG concentrations between groups (without considering the time points).

Fig 1. Study design.

https://doi.org/10.1371/journal.pone.0231734.g001
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SPSS, version 21.0 (SPSS Inc., Chicago, IL, USA), was used for data analysis. The level of signif-

icance was set at 5% (p<0.05).

Results

The results of OA severity grading are shown in Fig 2. There was a significant difference in OA

severity between the 3 groups (x2 = 12.239, p = 0.032). CG and OG differed significantly at

both 40-day and 100-day assessment time points (CG40<OG40, p = 0.049; and CG100<OG100,

p = 0.019), indicating stable disease maintenance. There was no significant difference between

CG and TG at any time point (CG40 = TG40, p = 0.050; and CG100 = TG100, p = 0.702). This

Fig 2. Box plot of median and interquartile range of osteoarthritis severity scores for each group at each assessment time point. Osteoarthritis severity was

assessed using the grading system proposed by Pritzker et al. [38], where 0 indicates ‘absence’ and 6 ‘maximum severity’. Control group showed no signs of

osteoarthritis at 40 days and insignificant or incipient disease at 100 days. Osteoarthritis group had intermediate median scores at both time points, indicating that

disease severity remained stable throughout the study. At 40 days, median scores were similar for the treatment and osteoarthritis groups, but at 100 days the

treatment group had lower scores, indicating that treatment with chondroitin sulfate and glucosamine was effective (CG40: control group at 40 days, OG40:

osteoarthritis group at 40 days, TG40: treatment group at 40 days, CG100: control group at 100 days, OG100: osteoarthritis group at 100 days, TG100: treatment group

at 100 days).

https://doi.org/10.1371/journal.pone.0231734.g002
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result may indicate the late effectiveness of CS+G treatment. There was no significant differ-

ence between TG and OG at 40 days (p = 0.741), indicating that treatment was not effective

after 30 days of administration. At 100 days, TG showed a significantly lower median score

than OG (p = 0.042), indicating that treatment was effective in reversing the degeneration

caused by OA. However, treatment effect did not change over time (TG40 = TG100, p = 0.121).

In OG, OA severity remained unchanged from day 40 to day 100 (p = 0.621). Animals in the

CG showed no significant degenerative changes in joint tissues over time (CG40 = CG100,

p = 0.523). (S1 Table).

Histologic evaluation

CG rabbits showed mandibular condyles with normal morphologic appearance (Fig 3A, 3B

and 3C), with a convex anterior region (Fig 4A). Fibrocartilage showed intense safranin O

staining in the fibrous connective tissue and underlying hyaline cartilage, with an extracellular

cartilaginous matrix without alterations in the molecular composition of proteoglycans (Fig

5A and 5B). Cartilage thickness, with the subdivision of cell layers, and the ossification process

were unaltered (Fig 5C).

OG rabbits showed substantial degenerative changes in the TMJ (Fig 3D, 3E and 3F). Mor-

phologically, anatomic modifications were observed in the condyles as a result of subchondral

bone tissue remodeling (Fig 4B and 4D). The cartilage layer showed ill-defined structure (Fig

5D), decreased thickness (Fig 5G), and complete cartilage matrix loss in certain areas (Fig 5E),

with attempted repair in others. In addition, cartilage surface deformations, deep cracks, and

areas of heterotopic ossification were present (Fig 5F). At the cellular level, degeneration (Fig

5H and 5I), attempted cell proliferation, and cell clustering (Fig 5H) were present. The extra-

cellular matrix showed reduced safranin O staining, indicating the loss of proteoglycans.

Fig 3. Macroscopic view of temporomandibular joint structures. (A, B, C)—Control group. (A) Condylar surface showing normal convexity and regular

contours. (B) Normal disc with characteristic thinning in the central part. (C) Detached condylar cartilage with normal appearance and thickness. Macroscopic

view of temporomandibular joint structures. (D, E, F)—Osteoarthritis group. (D) Condylar surface showing erosion, deformation, and flattening. (E) Perforated

articular disc. (F) Detached condylar cartilage with perforation and irregularities.

https://doi.org/10.1371/journal.pone.0231734.g003
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Edema formation was observed in the intercellular region. Intense subchondral bone remodel-

ing was also observed, with the presence of osteoblasts and Howship’s lacunae containing

active osteoclasts. There was fibrous connective tissue formation in bone trabeculae. In joints

with more severe OA, articular intraosseous cysts indicated advanced degeneration (Fig 4B).

TG40 and OG40 rabbits showed very similar degenerative changes, with severe OA. How-

ever, there was no difference between CG40 and TG40, indicating joint tissue recovery in the

latter. In TG40 rabbits, mandibular condyles were deformed, with discontinuity of the cartilage

surface by the presence of cracks invading the intermediate and deep layers (Fig 4C). Changes

such as fibrillation and erosion were also present. Repair attempts were observed at some sites,

as evidenced by areas of cartilaginous tissue formation close to regions of cell degeneration

(Fig 5J). Ill-defined cartilage layer (Fig 5K) and heterotopic ossification (Fig 5L) were also

observed. In the underlying bone tissue, fibrous connective tissue was observed in the spaces

between the bone trabeculae. Most TG100 rabbits showed no histologic changes compatible

with OA in the TMJ, with morphologically normal condyles and unaltered cartilage thickness

(Fig 4E). In some rabbits, joint degeneration was compatible with low grade OA, indicating

Fig 4. Histologic appearance of the mandibular condyle surface. (A) Control group—TMJ showing normal tissue structures and anatomically normal condyle;

characteristic convexity in the anterior region; normal cartilage layer (arrows); intact articular disc. (B and D) OG40 and OG100—TMJ showing anatomic changes

caused by OA. Condylar flattening and deformation; decreased cartilage thickness (black arrows); loss of cartilage matrix (red arrow); crack reaching the

subchondral bone tissue (blue arrow); subchondral irregularities; degeneration of bone trabeculae with intra-articular cyst formation (�); tear of the articular disc.

(C) TG40—Decreased cartilage thickness (black arrows); presence of substantial crack starting at the articular surface and extending in depth (blue arrow); articular

disc constricted in the middle. (E) TG100—Tissues with normal appearance; anatomically normal articular condyle; typical condylar convexity in the anterior

region; cartilage layer without changes (arrows); intact articular disc. (TMJ: temporomandibular joint, OA: osteoarthritis, OG40: osteoarthritis group at 40 days,

OG100: osteoarthritis group at 100 days, TG40: treatment group at 40 days, TG100: treatment group at 100 days).

https://doi.org/10.1371/journal.pone.0231734.g004
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Fig 5. Histologic appearance of the mandibular condyle surface. (A, B, and C) Control group—Normal articular cartilage layer; safranin O staining

indicating normal presence of proteoglycans (black arrows); normal presence of chondrocytes and ossification process (red arrows). (D, E, and F) OG40

—Ill-defined articular cartilage and cell degeneration (�); presence of cracks (black arrows); loss of cartilage matrix and fibrous connective tissue (blue

arrows); areas of superficial heterotopic ossification (o) involving cartilage regions (c). (G, H, and I) OG100—Decreased cartilage thickness and

subchondral irregularities (�); reduced safranin O staining indicating loss of proteoglycans (black arrows); erosion and discontinuity of cartilage surface

(red arrows); cell clustering (blue arrows) close to areas of cell degeneration (d); areas of fibrillation (green arrows). (J, K, and L) TG40—Hypertrophic
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articular tissue recovery after CS+G treatment. As expected, OG100 animals continued to show

severe joint degeneration. In TG100 rabbits, some condylar regions showed a slight reduction

in hyaline cartilage thickness and areas of fibrillation. Eventually, chondrocyte clusters were

observed close to areas with reduced cell numbers. There was normal safranin O staining in

the articular cartilage, suggesting the recovery of proteoglycans in the extracellular matrix (Fig

5M). Overall, the cartilage layer and subchondral bone had a histologic appearance without

evidence of degenerative changes (Fig 5N and 5O).

GAG quantification

Considering the time points, no significant changes were observed in GAG content in the

articular discs (F = 0.645; p = 0.667) and cartilage (F = 1.892; p = 0.125) between the 3 groups.

Without considering the time points, there was a significant increase in GAG concentrations

in the articular discs after OA induction (OG: 4.04±1.37 vs CG: 3.02±0.82, p = 0.041)

(Table 1). However, there was no significant difference between CG (3.02±0.82) and TG (3.64

±1.54), suggesting that GAGs returned to near normal levels in the articular discs of treated

rabbits (p = 0.241) (Table 1). The same analysis in the articular cartilage showed no significant

difference between CG (7.57±4.25) and OG (8.78±3.73) (p = 0.468) or between CG (7.57

±4.25) and TG (8.83±2.61) (p = 0.391). (S2 Table).

Discussion

Treated rabbits had no adverse effects and tolerated well the medication, handling, and route of

administration used. In addition, the diet offered was well accepted, leading to significant weight

gain at all assessment time points. Our data show a late beneficial effect of CS+G administered

subcutaneously on TMJ tissues in rabbits with OA. Oral CS+G is widely used as a supplement

by patients with OA and has been tested in several experimental animal studies [11,13,40]. How-

ever, oral administration to rabbits would require the preparation of rabbit-specific foods con-

taining the active ingredient or gavage administration. Disadvantages include the high cost of

diet preparation and potential iatrogenic complications resulting from long-term gavage admin-

istration. In addition, animal handling to perform the technique could become difficult over

time, precluding administration. Therefore, the subcutaneous route was chosen for practicality

and safety purposes, providing a successful route of administration until the end of the

experiment.

zone (h) indicating an attempted cartilage repair in the degeneration area (d); deep crack (black arrows); ill-defined cartilage layer (�); heterotopic

ossification in degenerative cartilage (o). (M, N, and O) TG100—Normal safranin O staining indicating the presence of proteoglycans (black arrows);

uniform articular surface and organized fibrous connective tissue (blue arrows); cartilage layer with normal thickness and subdivisions (�). (OG40:

osteoarthritis group at 40 days, OG100: osteoarthritis group at 100 days, TG40: treatment group at 40 days, TG100: treatment group at 100 days).

https://doi.org/10.1371/journal.pone.0231734.g005

Table 1. Concentration of glycosaminoglycans in control vs osteoarthritis groups and control vs treatment groups.

Group Structure
Disc Cartilage Disc Cartilage

Control 3.02±0.82 7.57±4.25 3.02±0.82 7.57±4.25
Osteoarthritis 4.04±1.37 8.78±3.73
Treatment 3.64±1.54 8.83±2.61
p (< 0.05) 0.041 0.468 0.241 0.391

�mean ± standard deviation (μg/mg wet weight)

https://doi.org/10.1371/journal.pone.0231734.t001
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The rabbit TMJ is anatomically and physiologically similar to the human TMJ [41]. The

incomplete glenoid fossa in the posterior region also facilitates access for experimental manip-

ulation. An example of this advantage is the possibility to inject substances intra-articularly

without the need to access the joint surgically, and this is one of the reasons why rabbit models

have emerged as the animal models of choice for the experimental study of diseases and thera-

pies in the human TMJ [42,43]. In addition, we decided to inject MIA directly into the rabbit

joint cavity given the results of previous studies confirming the efficacy of OA induction in the

TMJ and important late degenerative changes [36,41,44].

Late beneficial effects of CS+G were observed on TMJ tissues with OA. Previous studies

of CS+G treatments have shown positive results in improving symptoms [32,35]. However,

the authors are unaware of a previous study that showed positive effects of CS+G used as

DMOADs in TMJ-OA in an animal model. CS+G had an anabolic effect on the articular carti-

lage by promoting extracellular matrix production, suppressing inflammatory mediators, and

inhibiting tissue degeneration [45]. It should be noted that there was a large variability in the

histologic data of animals subjected to OA, especially in the first 40 days after disease induc-

tion. These data reflect a period of marked adaptation of the tissues involved in OA [38].

Moreover, after 30 days of treatment, there was no improvement in OA in TG40 compared

with OG40. After injection of MIA, peak matrix metalloproteinase (MMP) levels and aggreca-

nase proteoglycan cleavage sites occur between days 3 and 7 [46]. In the rat knee, inflamma-

tory processes and histologic effects have been observed by day 1 and 7 post-MIA injection,

respectively [47]. In the TMJ, decreased cartilage thickness and presence of subchondral bone

invasion have been observed by day 10 post-MIA injection [41]. This was the waiting time to

start treatment with CS+G after MIA injection in the present study. The action of CS+G as a

symptomatic slow-acting drug for OA (SYSADOA) begins at 2 to 3 weeks after the start of use

[48]. A study evaluating oral CS and G used as DMOADs in the rabbit femur for defect filling

with implantation of autologous cultured chondrocytes reported cell cluster formation and

columnar arrangements at 12 weeks. At 24 weeks, cell columns and substantial extracellular

matrix containing proteoglycans and type II collagen were observed. The effect of CS and G

without autologous chondrocyte implantation on the treatment of cartilage defects was uncon-

vincing [13]. However, in the present study, rabbits showed an improvement in OA severity

after 30 days of CS+G treatment (OG40 vs TG40).

Although the pathophysiologic mechanisms by which CS+G acts on OA have not been fully

elucidated [49], the treatment tested here yielded positive results in TMJ tissues damaged by

OA after 90 days of treatment (TG100). Treated rabbits showed a significantly reduced degen-

eration (OG100 vs TG100), an effect that we attribute to the action of CS+G as a DMOAD.

However, a similar treatment effect was observed over time (TG40 vs OG100). Taşkesen et al.

[40] observed a repair process in the extensor digitorum longus tendon of rabbits subjected to

surgical lesion after treatment with CS+G. There was increased cartilage formation and

decreased formation of blood vessels after 6 weeks of treatment. However, these differences

were not observed in comparison with the control group after 12 weeks of CS+G use. The

treated group also showed tissue improvement, similar to that observed in the present study

after 90 days of treatment. Roman-Blas et al. [11] induced OA in the rabbit knee by cruciate

ligament transection and partial medial meniscectomy and tested the oral administration of

CS+G for 14 weeks. Histologic parameters showed no reduction in disease severity in the hya-

line cartilage that could indicate a therapeutic effect of CS+G as a DMOAD. In addition, long-

term use of CS+G did not reduce the high levels of the inflammatory cytokines IL-1β and

COX2 present in the synovial membrane of animals with OA. However, in a rabbit model of

arthritis, intraperitoneal G administration had an effect on the modulation of the inflamma-

tory process in the knee synovial membrane, with less intense mononuclear cell infiltration
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than that of control animals [14]. It should be taken into consideration that the hyaline carti-

lage structure lacks blood supply, does not contain fibrous connective tissue and has a limited

number of progenitor cells. Nevertheless, 60-day combined CS+G treatment in female rats

subjected to tibial epiphyseal degeneration by ovariectomy resulted in marked chondrocyte

proliferation and significant longitudinal bone growth [50]. In the TMJ, however, fibrocarti-

lage may behave similarly to the perichondrium by becoming a source of mesenchymal cells

that are precursors of new chondrocytes [51]. Therefore, it can be suggested that the effect of

CS+G associated with the characteristics of fibrocartilage may have promoted the regression of

the TMJ degenerative process observed in the present study.

Previous studies have reported complete loss of extracellular matrix GAGs both in articular

cartilage with severe OA [52,53] and in degenerative or displaced articular discs [54]. However,

in the present study, there was a significant increase in GAGs in the articular discs of OG vs

CG rabbits, when analyzing the 2 time points together. This result was also reported by Axels-

son [55] in a study in which OA was induced by surgical disc perforation in the TMJ of rabbits.

After 16 weeks, larger amounts of GAGs were detected in treated rabbits than in controls. In

experimental articular discs, the population of large proteoglycans had a slightly increased

synthesis and decreased degradation rate. In the early stage of OA or initial repair stage, the

increased synthesis of the extracellular matrix and DNA components characterized by cell pro-

liferation and clustering occurs biochemically, resulting in an increased metabolic activity of

chondrocytes [56], which may explain the results of the present study. In an in vitro study,

chondrocytes responded with increased GAG release in the presence of interleukin 1 (IL-1)

[57]. A positive effect has also been observed on GAG production by chondrocytes cultured in

fibrin-alginate hydrogel supplemented with CS and hyaluronic acid. Supplemented hydrogels

have also shown significantly higher cellular DNA levels than non-supplemented control

hydrogels [58]. Thus, in the OA model used here, it could be suggested that chondrocytes

responded with increased GAG production. However, such processes occur in the cartilage,

where the results differed from those observed in the disc. There was no difference in GAG

concentration between CG and OG, which suggests that OA may induce greater changes in

the cartilage, reducing its responsiveness to disease—even though repair attempts were

observed in some cartilage regions, with cell proliferation and clustering, which might have

led to an increased production of molecular components, such as GAGs. The attempted repair

process is mediated by growth factors, which diffuse through the extracellular matrix to reach

the chondrocytes. In OA, there is a greater-than-normal diffusion of growth factors resulting

from loss of tissue integrity [55].

No significant difference was found in mean articular disc GAG concentration between

CG and TG rabbits, considering the 2 assessment time points. This result suggests that the

improvement in OA severity, as a result of CS+G treatment, may have led to a decrease in

GAG release by chondrocytes. CS and G exert an effect by enhancing the response of chondro-

cytes to adverse environmental conditions, such as in the presence of OA, but not in normal

cartilage [59]. These agents stimulate extracellular matrix turnover by increasing GAG produc-

tion in the presence of OA, with subsequent normalization of the metabolism, thus returning

molecular components to normal levels [52]. In vitro studies have shown that the presence of

IL-1 induces the release of GAGs and that both G sulfate alone and the combination of high

doses of CS+G can reduce the release of these molecular components by chondrocytes in joint

tissues [57,59]. However, in the present study, there was no significant difference in articular

cartilage GAG concentration between CG and TG rabbits. A possible explanation is that the

differences in GAG contents between articular discs and cartilages may result from the lack of

specificity of DMB reaction due to GAG metabolism byproducts or the lack of sensitivity of

the assay [57].
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The model provided in the present study is easily reproducible, as it obviates the need for

surgical procedures. In addition, the results obtained with the CS+G treatment support the

conclusion that CS+G can reverse degenerative changes in the intra-articular structures of the

TMJ, which makes it possible to regard them as DMOADs. However, in the treatment of

TMJ-OA, other factors that can interfere with the pathogenesis of the disease should also be

considered, especially age, sex, dental occlusion, and behavioral habits. Moreover, because of

the limited repair capacity of cartilage and the complex mechanisms that lead to the develop-

ment of OA, additional studies are needed to further evaluate the effect of CS+G on joint tis-

sues with OA and their mechanisms of action as DMOADs.
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