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HistoML, a markup language for 
representation and exchange 
of histopathological features in 
pathology images
Peiliang Lou   1, Chunbao Wang2, Ruifeng Guo   3, Lixia Yao4, Guanjun Zhang2, Jun Yang5, 
Yong Yuan6, Yuxin Dong1, Zeyu Gao1, Tieliang Gong7 & Chen Li8 ✉

The study of histopathological phenotypes is vital for cancer research and medicine as it links molecular 
mechanisms to disease prognosis. It typically involves integration of heterogenous histopathological 
features in whole-slide images (WSI) to objectively characterize a histopathological phenotype. 
However, the large-scale implementation of phenotype characterization has been hindered by 
the fragmentation of histopathological features, resulting from the lack of a standardized format 
and a controlled vocabulary for structured and unambiguous representation of semantics in WSIs. 
To fill this gap, we propose the Histopathology Markup Language (HistoML), a representation 
language along with a controlled vocabulary (Histopathology Ontology) based on Semantic Web 
technologies. Multiscale features within a WSI, from single-cell features to mesoscopic features, 
could be represented using HistoML which is a crucial step towards the goal of making WSIs findable, 
accessible, interoperable and reusable (FAIR). We pilot HistoML in representing WSIs of kidney cancer as 
well as thyroid carcinoma and exemplify the uses of HistoML representations in semantic queries to 
demonstrate the potential of HistoML-powered applications for phenotype characterization.

Introduction
The analysis of histopathological phenotypes plays a key role in cancer research and medicine; yet it remains a 
challenge to accurately define histopathological phenotypes due to highly heterogeneous and complex nature 
of tumor cells’ spatial distribution1. The recent progress of digital pathology and deep learning methods for 
image analysis facilitates large-scale extraction of histopathological features (e.g. cells, tissues, phenotypes) from 
whole-slide images (WSI) and improves the quantitative analysis techniques2. The integration of the various 
features as well as the analysis results sheds the light on objectively characterizing histopathological pheno-
types. However, it lacks a standardized digital format and a well-defined controlled vocabulary for represent-
ing the semantics in WSIs following the FAIR (Findable, Accessible, Interoperable and Reusable) standards3. 
Consequently, fragmentation of the information hinders large-scale integrated analysis of histopathological 
phenotypes.

Histopathological phenotypes refer to the phenotypes of tissues observed microscopically by a pathologist 
from a biopsy or surgical specimen. The complexity and heterogeneity of histopathological phenotypes lie in 
not only diverse types of the individual components (e.g. cells, tissues, substances), but also in their morpholo-
gies, spatial arrangements (e.g. architectural patterns) and behaviors (e.g. invasion, extension). In view of this, 
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it has been recognized that integrated analysis of histopathological features is the key to characterizing his-
topathological phenotypes4. As multi-scale histopathological features could be automatically extracted from 
WSIs using deep learning methods, some works have successfully applied this methodology to characterizing 
tumor-immune phenotypes5,6. However, the large-scale implementation of this methodology, for illuminating 
the intra-tumoral spatial heterogeneity, has so far remained elusive resulting from the lack of FAIR WSI datasets.

The total volume of WSI data has entered a rapid growth phase, as exemplified by lymphoma7 and breast can-
cer8. In addition, numerous deep learning models for histopathological image analysis including segmentation, 
classification, detection and quantitative analysis of multi-scale histopathological features (e.g. tumor-level9, 
tissue-level10, phenotype-level11 and single cell-level12) provide large amounts of information about histopatho-
logical phenotypes. Unfortunately, the information is stored in different file formats (e.g. CSV, JSON, XML) and 
represented using custom representation approaches (Fig. 1a,b,c), which are broadly adopted by the information 
systems of hospitals, annotations of histopathology datasets, software tools and computational models (Table 1). 
These representations do not share a controlled vocabulary and suffer from inflexibility and ambiguity (Table 2), 
thereby resulting in a heterogeneous set of resources that are extremely difficult to combine and reuse. The 
desire to achieve integrated analysis of histopathological phenotypes calls for a semantic standard to produce 
large-scale FAIR WSI data4; yet it remains a challenge to comprehensively and accurately represent the rich 
meaning within WSIs in a standardized and machine-readable format.

In this paper, we apply Semantic Web technologies (SW) to addressing this challenge by proposing the 
Histopathology Mark-up Language (HistoML), a representation language with a flexible syntax and extensible 
structure, along with a controlled vocabulary (Histopathology Ontology) to represent semantics in WSIs. The 
integration solutions enabled by SW have benefited many scientific fields, including system biology, integrative 
neuroscience, bio-pharmaceutics and translational medicine13. While some standards for highly multiplexed tis-
sue images are underdeveloped14, HistoML is developed focusing on histopathology images; moreover, the techni-
cal features of SW make HistoML more advanced than the previous works. First, in addition to single-cell features, 
HistoML could further represent mesoscopic-scale characteristics of histopathological phenotypes within WSIs 
such as spatial arrangement of tissues which information is challenging to represent and consequently lacking 
in many publicly accessible atlases of human tissues and tumors15. Second, as a mark-up language based on Web 
Ontology Language (OWL), HistoML could integrate various histopathological features and analysis results of 
WSIs, fragmented in the previous representations, into a coherent representation (Fig. 1d), with their relationships 
to one another specified explicitly, providing a systems-level view of histopathological phenotypes. Third, we 
propose Histopathology Ontology which has a broad coverage of histopathological concepts by reusing a number 
of widely-applied ontological resources relevant to histopathology. To validate our work, we pilot HistoML in 
representing semantics in WSIs of kidney cancer and thyroid carcinoma. Furthermore, we exemplify the uses  
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Fig. 1  Exemplar representations of histopathological features using the previous representations approaches 
vs. HistoML representation. Shown histopathological features include tissue-level, phenotype-level, cellular-
level features as well as quantitative analysis results. (a–c) Multi-scale histopathological features are currently 
described using different representation approaches by different groups. Quantitative analysis results are 
usually represented in tables; histopathological phenotypes, tissues and cells appeared in a whole-slide image 
(WSI) are represented using a list or taxonomy of labels while lacking a unified controlled vocabulary; more 
detailed descriptions of the intra-tumoral morphology rely on natural language which usually suffer from 
ambiguity, making natural language processing an error-prone process. (d) HistoML represents multi-scale 
histopathological features in a unified and machine-readable structure with their relationships to one another 
specified explicitly, providing a systems-level view of histopathological phenotypes.
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of HistoML representations in semantic queries to demonstrate the potential of HistoML-powered applications 
for phenotype characterization.

Results
HistoML Project.  Developing a standardized format for representing semantics in histopathology data is 
challenging owing to the heterogeneity of histopathological features and their diverse uses in cancer research and 
medicine. For HistoML to be successful, it must satisfy a majority of technical and practical needs of pathologists, 
biomedical researchers, IT experts and artificial intelligence (AI) scientists in order to be embraced by the com-
munity. We organize the HistoML project with engaging the community and build a consensus among different 
participants in mind. Additionally, we strive to follow the FAIR standards and seek to avoid many problems 
(Table 2) of the existing representation approaches. Therefore, we set up the following principles to steer HistoML 
toward those aims.

The language should

•	 be free and open to allow free use by the community;
•	 support representation of diverse histopathological features;
•	 be syntactically and semantically consistent and unambiguous;
•	 ensure the semantic interoperability of the representations constructed by different groups;
•	 support continuous integration of new histopathological features as histopathology knowledge evolves while 

the existing representations should remain compatible and usable;
•	 support the automated accessing and querying of the represented features in addition to storage and dissem-

ination by software and computational models;

As designing a perfect and complete language from the beginning is impossible, HistoML development is 
envisioned to proceed in stages. Major editions of HistoML are termed ‘levels’ with each higher HistoML level 
supporting representation of more histopathological features compared to the levels below it by adding additional 
structures and facilities. Moreover, through mapping all of the constructs from the previous level to the next level, 
different levels of HistoML and the corresponding representations would remain compatible and usable.

Overview of HistoML Level 1.  In this paper, we propose HistoML Level 1, which is the first implementa-
tion of these principles, with the aim to represent histopathological features in tumor including histopathological 
phenotypes, their individual components as well as their properties, relationships and behaviors.

The structure (i.e. schema) of HistoML is implemented as an ontology16 (Fig. 2) which has been widely used 
to structurally represent knowledge regarding life sciences17. Entity, Utility and Data are the three root classes 
of HistoML in which Entity includes phenotypes, physical entities, while Utility includes classes for annotating 

Representation Approaches Problem

List of labels  
& Taxonomy of labels

1. List of labels is suitable to represent discrete histopathological features (e.g. different types of cells) in data 
while unable to represent their relationships (e.g. containment).

2. Single-parent hierarchies and connections of taxonomy preclude description of the complex 
interrelationships between histopathological features.

3. The information content could not be updated continuously and therefore unable to incorporate or exploit 
rapidly evolving histopathology knowledge.

4. Use of subjective words and synonyms would make it hard for machines to compare and understand 
different features.

5. Different groups use ad hoc controlled vocabularies having much inconsistency and cover only limited 
histopathological concepts.

Narrative description Though easy to be obtained from pathology reports, it introduces great ambiguity into the representations, 
thereby preventing machines from comparing and understanding histopathological features.

Tabular Quantitative Values Quantitative analysis results are suitable to objectively represent histopathological features and make them 
comparable while unable to represent their relationships (e.g. containment).

Table 2.  Inflexibility, ambiguity and inconsistency of the current representation approaches.

Representation Approaches Histopathological Features

List of labels
1. Different types of tissues and cells appeared in a WSI10

2. Histopathological phenotypes in a WSI11,44,45

Taxonomy of labels
1. Different types of cells together with their locating tissues appeared in a WSI12

2. Histopathological phenotypes in a WSI46–48

Narrative description 1. Morphologic characteristics of histopathological phenotypes48,49

Tabular Quantitative Values 1. Cell segmentations masks, spatial features like cell size and shape and subcellular morphological 
features33,34

Table 1.  Different types of histopathological features within whole-slide images (WSI) and the representation 
approaches used to describe them.
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Entity and its subclasses; Data includes classes for storing metadata of the raw histopathology data (e.g. height, 
width, magnification of a WSI). The semantics of a WSI are represented as individuals of HistoML classes (an 
individual of NeoplasticCell class is shown in Fig. 2), in which the object properties describe the relationships 
between HistoML individuals and datatype properties store metadata such as names or numerical values. A 
HistoML representation of a WSI mainly consists of individuals of lists of these classes:

PhysicalEntity: A description of a microscopically observable entity in the WSI (e.g. cell, tissue, chemical 
substance).

EntityAttribute: An attribute of a physical entity that can be changed while the entity still retains its biolog-
ical identity such as size, shape, length.

Quantification: A quantity used to quantitatively describe the attribute of an entity by providing the absolute 
amount or the numerical range of the attribute.

Phenotype: A description of microscopic physical changes in the WSI that prompt pathologists to look more 
closely, typically the ones suggesting malignancy. A phenotype composes of one or more physical entities which 
might have relationships with each other (e.g. containment) or behaviours (e.g. growth, invasion).

The syntax of HistoML is based on OWL in order to simplify the use of HistoML representations by taking 
advantage of existing software tools for editing, transmitting, querying, reasoning about and visualizing OWL. 
A software or a computational model can also read in a WSI expressed in HistoML and translate it into its own 
internal format for further analysis.

Components of HistoML.  In the following sections, we describe the various classes of HistoML with the 
help of three exemplar HistoML representations which describe three typical histopathological phenotypes of 
kidney cancer, including the rhabdoid feature, the alveolar pattern and the tumors’ extension into renal sinus. 
The raw images as well as the annotated ones of these phenotypes are shown in Fig. 3 and their textual definitions 
are provided in Table 3. A more realistic example, in which the histopathological features in a WSI of papillary 
thyroid carcinoma are represented using HistoML, is shown in Supplementary Figs. 1 and 2. These examples 
illustrate one application of HistoML, but users could customize HistoML representations to describe histopatho-
logical phenotypes of other neoplastic diseases. Space constraints prevent us from giving a detailed description of 
HistoML here; the full definition is available in the specification available from https://histoml.com/.

PhysicalEntity.  The PhysicalEntity class in HistoML is used to represent microscopically observable entities in 
a slide. According to their different types, PhysicalEntity has several subclasses covering cells, cellular compo-
nents, substances (e.g. product or reserve of a cell), tissues and other anatomical structures (e.g. a cavity or duct). 
It’s further categorized into NormalEntity and Tumor based on whether an entity is neoplastic or induced by 
tumor or not (e.g. blood vessels induced by tumor belong to Tumor instead of NormalEntity). An individual of 
PhysicalEntity is shown in Fig. 3a referred to as “Rhabdoid_Cell1”.

PhysicalEntity has four main object properties which are entityReference, hasAttribute, hasProduct and has-
Component. Firstly, there are often many entities all of the same kind in a WSI; in order to create different forms 
of a generic entity without duplicating information common to all the forms, the generic entity is defined using 
EntityReference, while its diverse forms are defined using PhysicalEntity; entityReference is used to link them 
together. Secondly, hasAttribute is used to define the attributes of a physical entity; for example, shape, size or 
other chemical attributes such as eosinophilic. A set of attributes helps define the state of an entity. Thirdly, 
a good number of materials within cells, known as the granular cytoplasmic inclusions such as mucin, acid, 
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Fig. 2  High-level view of the HistoML Level 1. HistoML classes are shown as boxes and the arrows represent 
subclass relationships. An individual of NeoplasticCell class is shown as an example at the top. The object 
properties are italicized while the datatype properties are not and the asterisks indicate that multiple values for 
the property are allowed. Refer to HistoML Level 1 ontology specification and documentation at https://histoml.
com/ for full details of all the classes and properties.
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Fig. 3  Three exemplar HistoML representations of histopathological phenotypes. An individual of HistoML 
class is shown as a rounded rectangle. HistoML class names are highlighted in bold, HistoML object properties 
are italicized while the datatype properties are not. (a) An example of Cellular_Appearances representing 
rhabdoid cells in RCC (renal cell carcinoma). On the left are the original image and the one that has been 
manually annotated by an expert pathologist. In the middle are the representations of the phenotype as well as 
its individual components. On the right are the representations of their properties using EntityAttribute and 
Quantification. (b) An example of Architectural_Pattern representing an alveolar pattern of ccRCC (clear 
cell renal cell carcinoma). On the left are the original image and two that have been manually annotated and 
on the right is the representation. (c) An example of representing tumors extending into renal sinus. The green 
rectangle corresponds to the left space of the renal sinus other than the space occupied by the tumors, the yellow 
arrows indicate the directions of the tumor extension. The complete HistoML representations of these three 
examples are available at https://histoml.com/ which contain descriptions of all the individual components, 
while space limitations permit us to show only a few in this figure.
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glycogen and starch, are also microscopically-observable and they are the product or reserve of these cells; 
hasProduct and hasReserve are used to represent this information. Last but not least, hasComponent is used to 
express containment relationships between PhysicalEntity which has three child properties including hasCell, 
hasCellularComponent and hasAnatomicalEntity.

EntityAttribute and Quantification.  Pathologists usually assess morphological characteristics of physical enti-
ties subjectively and use unspecific words (e.g. “atypical”, “large”) to describe them. It brings much ambiguity 
for objectively characterizing histopathological phenotypes. For example, “atypical nuclear change” could be 
confusing since it might mean irregularity in the nuclear size or shape; moreover a “large” kidney tumor cell 
is usually smaller than a “small” liver tumor cell. To avoid this issue, HistoML uses EntityAttribute to spec-
ify what attribute is “atypical” by providing their semantic cross-references to the controlled vocabulary such 
as The Phenotype And Trait Ontology (PATO) through an object property named hasXref. Additionally, as 
the advances of quantitative histomorphometry (QH) facilitate quantitatively assessing tissue morphology and 
architecture18, HistoML uses Quantification to illustrate how “atypical” the attribute is by incorporating QH 
measurements. For example, as Fig. 3a shows, “large” could be defined by area, “irregularly-shaped” could be 
defined by circularity etc. Quantification could provide values of the measurements, the unit definitions as well 
as the formulas regarding how to calculate the measurements. Furthermore, if available, the link of the source 
material proposing the measurement (e.g. Gaussian Width19) could be added to Quantification for further val-
idation. In combination of EntityAttribute and Quantification, it is easy to objectively compare morphological 
characteristics of the physical entities.

Phenotype.  Phenotype class has three subclasses which are Cellular_Appearances, Product_or_Reserve and 
Architectural_Pattern, covering different levels of phenotypes that could appear in a WSI. HistoML represents 
a phenotype in which each of the individual components is described, including their properties, relationships 
and behaviors.

Cellular_Appearances and Product_or_Reserve are used to describe a physical change of a single cell or a 
subcellular structure usually observed microscopically at high magnification. The comprehensive and quantita-
tive description of the physical entity’s morphology is the key to objectively characterize these two types of phe-
notypes. An example of Cellular_Appearances representing the rhabdoid feature in RCC (renal cell carcinoma) 
is shown in Fig. 3a. According to the definition of this phenotype (Table 3), there are four main characteristics 
differentiating rhabdoid cells from others which are the size of the cell, the shape of the nucleus, the position of 
the nucleus within the cell as well as the prominence of the nucleolus. We represent this phenotype by defining 
these characteristics using EntityAttribute and their owner physical entities using PhysicalEntity; moreover, 
we use four parameters to quantify the characteristics including area, circularity, eccentricity and image entropy. 
present_Entity is used to link the phenotype to its component.

Architectural_Pattern is used to describe histologic patterns of cell populations and tumor behaviors which 
are usually observed microscopically at medium and low magnification. The spatial arrangement of the com-
ponents is the key to characterize a histologic pattern. HistoML represents the pattern by specifying the com-
ponents, their containment relationships and providing their segmentation masks to make the components 
spatially-resolved. An example of Architectural_Pattern representing the alveolar pattern of ccRCC (clear 
cell renal cell carcinoma) is shown in Fig. 3b. According to its definition, it is a neoplastic area which consists 
of a stroma and parenchyma; the stroma is basically a capillary containing erythrocytes and endothelia and 
the parenchyma is full of neoplastic cells. We represent this phenotype by specifying all of these physical enti-
ties using PhysicalEntity as well as their containment relationships through hasComponent. As for the spatial 
arrangement information that the parenchyma is surrounded by the capillary and the distribution of the neo-
plastic cells in the parenchyma, we represent it by providing the locations of these physical entities in the WSI 
(e.g. positions of the pixels) through a datatype property named ‘segmentation’, which stores the identifiers of the 
segmentations or the annotation masks. ‘segmentation’ links the semantic representations of histopathological 
features with their positions in a WSI, thereby making it possible for scientists to assess the features themselves 
and keep track of the tissue context and their spatial attributes. Another example of Architectural_Pattern 
representing a tumor behavior, which is a tumor extension into renal sinus, is shown in Fig. 3c. Tumor is in 
motion within the human body while a WSI is only one frame of the movement. HistoML describes the move-
ment by specifying the types of the movement, the moving object and the subject the movement towards using 
Relationship.

In summary, compared with the current representation approaches, HistoML could provide a far more com-
prehensive description of a histopathological phenotype by interrelating layers of information in a WSI, which 
paves the way for integrated analysis of intra-tumoral spatial heterogeneity.

Histopathological Phenotype Definition

Rhabdoid Feature The rhabdoid cells are large neoplastic cells with eosinophilic intracytoplasmic inclusions and their 
nuclei are irregularly-shaped and eccentric with prominent nucleoli36.

Alveolar Pattern An alveolar pattern is morphologically similar to alveoli or little cells, sacs or nests in which no 
rounded luminal space is present31,36.

Tumors’ Extension into Renal Sinus The spread or migration of cancer cells into renal sinus which is a fatty compartment containing veins 
and lymphatics50.

Table 3.  Definitions of the three represented histopathological phenotypes.
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Histopathology Ontology.  To ensure semantic interoperability between HistoML representations 
constructed by different groups, it is vital to create a controlled and shared vocabulary for achieving consist-
ency in preferred terms and the assignment of the same terms to similar content. Therefore, we constructed 
Histopathology Ontology, with the goal of covering all information HistoML could represent. Histopathology 
Ontology is applicable to human pathology, especially for tumor pathology. In HistoML, Xref class and hasXref 
are used to map HistoML representations to the controlled vocabulary.

We build Histopathology Ontology by reusing a number of widely-applied ontological resources relevant 
to histopathology. For example, histopathological phenotypes are described using National Cancer institute’s 
Thesaurus (NCIt)20 and Cellular Microscopy Phenotype Ontology (CMPO)21; their individual components are 
described using Foundational Model of Anatomy Ontology (FMA)22 and Gene Ontology (GO)23; their prop-
erties are described using The Phenotype And Trait Ontology (PATO)24; units of quantification are described 
using the Units Ontology (UO)25 etc. Most of these reference ontologies are part of the Open Biological and 
Biomedical Ontologies (OBO) Foundry26 which are designed to be reused by multiple groups and stakeholders. 
Mapping to these terms, HistoML representations can be easily integrated not only with each other, but also 
into the ecosystem of other datasets that are annotated using these ontologies. Furthermore, implemented as an 
ontology, the structure of Histopathology Ontology is multi-parentage (i.e. one term could have multiple par-
ents); as a result, compared with the ad hoc controlled vocabularies organized in list or in a single-parent hier-
archy, it’s easier to continuously generate and merge new terms to Histopathology Ontology to exploit evolving 
histopathology knowledge. Histopathology Ontology is freely available at https://histoml.com/.

Use of Histopathological Features Encoded in HistoML.  In addition to the broad coverage of histo-
pathological features, HistoML representations are highly structured that users could easily access various fea-
tures through SPARQL queries; moreover, the query results could be used to enable advanced analysis of the 
features. In this section, we demonstrate that histopathological features represented in HistoML can be queried 
using SPARQL. Furthermore, we show how the queried results could be used for phenotype characterization.

Figure 4 demonstrates one SPARQL query over a HistoML representation. The characteristics of a 
tumor-immune phenotype of breast cancer are represented using HistoML and a few lines of SPARQL query 
code are able to obtain the stromal component, the infiltrated lymphocytes (i.e. the lymphocytes within the 
stromal component) as well as their corresponding segmentations in the raw image. The query results can be 
further used to calculate the stromal tumor-infiltrating lymphocytes (TILs), a crucial parameter for characteriz-
ing tumor-immune phenotypes27. As the areas of the stroma and the infiltrated lymphocytes could be obtained 
through their segmentations, the value of the stromal TILS is the fraction of the stroma covered by the lympho-
cytes. The source code of this use case is available at https://github.com/Peiliang/HistoML.
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Fig. 4  Quantitatively characterizing a tumor-immune phenotype of breast cancer by calculating the stromal 
tumor-infiltrating lymphocytes (TILs). A raw image and an annotated image of a tumor-immune phenotype of 
breast cancer are shown in the top-left corner. In the annotated image which is on the right of the raw image, 
the parenchyma and the stroma area within which there are many lymphocytes, endothelia, erythrocytes, are 
annotated. Firstly, the image of this phenotype is represented using HistoML and a SPARQL query is generated. 
Secondly, we could obtain the stromal components, the infiltrated lymphocytes as well as their corresponding 
pixels in the image by running the SPARQL query on the HistoML representation. Thirdly, we could obtain 
Stromal TILs of this phenotype by calculating the area of each lymphocyte and stromal component.
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Discussion
HistoML is a machine-readable format with a flexible syntax and an extensible structure; moreover, HistoML 
representations cover various histopathological features in WSI data as well as the metadata. In combina-
tion of these characteristics, HistoML could facilitate several applications as Fig. 5 shows. Firstly, HistoML 
and Histopathology Ontology could be used as a shared language and controlled vocabulary of WSI data 
which would reduce the number of translations required to exchange information between multiple sources. 
Furthermore, it facilitates integration of WSI data by consistently and comprehensively representing heterog-
enous histopathological features extracted from WSIs by deep learning methods, as Fig. 5a shows. As a result, 

Phenotype

Spa�al Arragement

Morphologic Metric

Tissue

Single Cell

Raw WSI

HistoML

Deep Learning-based
Image Analysis Pipeline

1) Raw WSIs 2) Feature Extrac�on 3) HistoML
Representa�ons 4) Feature Repository

Tissue
Segmenta�on

Phenotype
Detec�on

Cell
Segmenta�on

Quan�ta�ve
Analysis

Ques�on Answer

SPARQL

Pathologist

Ques�on Answering

HistoML

Algorithm Development

Data Sharing and Integra�on

Time

Phenotype Characteriza�on

1,1,1 1,2,1 ⋯ 1, ,1
2,1,1
⋮
,1,1

2,2,1
⋮
,2,1

⋯
⋱
⋯

2, ,1
⋮
, ,1

Fig. 5  Future Applications of HistoML. (a) A deep-learning based histopathological image analysis pipeline 
which consists of segmentation, detection and quantitative analysis of multi-scale histopathological features 
including tissue-level, phenotype-level and single cell-level features. (b) A flow diagram of producing HistoML 
representations of WSI data and constructing a feature repository of histopathology. (c) Potential applications of 
the feature repository including sharing and integrating WSI data from multiple sources, developing a question-
answering system, training image analysis algorithms and characterizing phenotypes using mathematical models.
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it paves the way to construct a feature repository of histopathology (i.e. knowledge base) in addition to the raw 
data repository (e.g. The Cancer Genome Atlas28) as Fig. 5b shows. This feature repository would be an impor-
tant resource to pathology, as some of the best practices of FAIRness to the life sciences, such as UniProt29 and 
BioModels30.

HistoML representations of WSI data could contribute to integrated analysis of histopathological phenotypes, 
as Fig. 5c shows. Firstly, HistoML makes it easy for researchers and pathologists to implement multi-dimensional 
queries of histopathological features using SPARQL. Interfacing with such service, the feature repository could 
answer key questions about the intra-tumoral spatial heterogeneity. For example, when a pathologist observes 
a novel combination of histopathological features in his cases that he has never been observed before which 
might indicate a new disease subtype, he could test whether this observation exists in the cases of other medical 
centers by creating just a simple SPARQL query. However, this process of validation, as a crucial step for pre-
cise classification of patients, traditionally takes years as the evidential cases are obtained mainly from medical 
publications and thus accumulate slowly; for example, it took ten years to involve acquired cystic RCC in the 
WHO Classification of kidney tumors31 since its pathologically unique features had been firstly discovered32. In 
contrast, searching on the feature repository would largely accelerate this process. On the other hand, layering 
of detailed HistoML representations of histopathological phenotypes and digital slides provides a computa-
tional basis for quantitative analysis of histopathological phenotypes. As a result, many graph-based algorithms 
as well as additive models could be introduced to phenotype characterization for modelling the relationships 
between multi-scale histopathological features, providing more tools to systematically define histopathological 
phenotypes.

In addition to phenotype characterization, HistoML could contribute to computational analysis of WSIs. 
Used as data annotation format, HistoML could improve performance and generality of deep learning models 
for WSI analysis. Compared with the current annotation formats for histopathology (e.g. list or taxonomy of 
labels, narrative descriptions), HistoML could annotate histopathological features within histopathology data 
more precisely and comprehensively. Therefore, it could construct datasets covering more variations that are 
encountered in real-world practice, thereby developing more powerful image-processing algorithms to meet the 
evolving needs of pathologists and oncologists. On the other hand, HistoML could be used as an information 
standard to harmonize diverse image-processing algorithms and data types of WSI across research groups and 
programming languages, for constructing a computational pipeline of WSI analysis in a FAIR way, as Fig. 5a 
shows. The current pipelines33–35 involve mainly single-cell analysis methods; they could further incorporate the 
analysis methods of histopathological phenotypes by using HistoML.

There are several limitations of HistoML and Histopathology Ontology remaining to be overcome. Firstly, 
it is understood that there exist more types of histopathological phenotypes than HistoML Level 1 could repre-
sent explicitly. Therefore, we plan to improve HistoML by representing histopathological phenotypes of more 
neoplastic diseases such as cervical adenocarcinoma and insulinoma, making it more generalizable to differ-
ent histopathological phenotypes while remain compatible. Secondly, morphological heterogeneity is only one 
aspect of intra-tumoral heterogeneity; therefore, to study the dynamic heterogeneity of cancer cells as well 
as the driving factors, it’s necessary to incorporate more biologically and medically meaningful features into 
HistoML representations. Some of the features under discussion for HistoML Level 2 are the introduction of 
histopathological diagnoses, which play a key role in understanding the prognostic value of histopathologi-
cal phenotypes. Thirdly, due to the long time required for representing semantics of a WSI and as a result the 
shortage of HistoML representations, the use case presented in this paper are limited in scope. In the future, we 
plan to validate HistoML-powered phenotype characterization on a larger WSI dataset. As for Histopathology 
Ontology, despite the abundance of ontology resources that are available for reuse, some necessary histopatho-
logical features are not represented or sufficiently represented by the reference ontologies. For instance, the 
reference ontologies lack the detailed catalogue of descriptive cell types and histopathological phenotype terms. 
Therefore, more works should be conducted to add terms and metadata to Histopathology Ontology.

HistoML Level 1 is a starting point toward standardizing the representation of all histopathological features. 
The evolution of HistoML would be largely driven by the needs of the community. It is our hope that members 
of the community will support and use HistoML in the cancer research and medicine.

Materials and Methods
HistoML Design and Implementation.  HistoML is developed through a community-based approach. 
We formed a group of biomedical researchers, pathologists, ontologists, computer scientists and AI scientists. 
The expert team of pathologists consists of the directors of pathological department from three grade “A” hos-
pitals including the First Affiliated Hospital of Xi’an Jiaotong University, The Second Affiliated Hospital of Xi’an 
Jiaotong University, and Shaanxi Provincial Tumor Hospital respectively, each director with more than 30 years’ 
experience as well as their teams of which pathologists have more than 10 years’ experience. From February 2019 
to June 2021, this group had weekly meetings to discuss the content of HistoML based on the respective needs 
and goals. Our group firstly decided that the aim of HistoML Level 1 is to represent histopathological features in 
tumor contained in digital slides. The is because on the one hand these features are key to cancer research and 
medicine, and on the other hand, advances of deep learning methods for image analysis have enabled extract-
ing large amounts of histopathological features from WSIs while other technological advances, such as QH and 
graph-based algorithms, have improved analysis techniques of these features. Therefore, the time is ripe to sys-
tematically collect and integrate these features in a standardized format.

Then, HistoML ontology classes, reaching the group consensus, were iteratively added in HistoML. The 
coverage of histopathological phenotypes as well as the minimal information required to represent them in 
HistoML were defined according to a set of histopathology textbooks36,37, official guidelines37, as well as the 
pathologists’ and researchers’ knowledge and experience.
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We chose to implement HistoML using OWL considering its advantages in knowledge representation, trans-
mission and processing. As HistoML is the first OWL-based histopathology information standard, we learned 
from other successful practices in related fields such as BioPAX38, an OWL-based representation format devel-
oped for system biology. We used Protégé39 to create and edit HistoML. To introduce more details and encourage 
broad adoption, we provide the ontology specification and documentation of HistoML, available at https://
histoml.com/.

Histopathology Ontology Development.  The development of Histopathology Ontology follows the 
principles promoted by the Open Biological and Biomedical Ontologies (OBO) Foundry (e.g. openness and col-
laboration). Our group worked together to construct Histopathology Ontology by reusing existing reliable ontol-
ogies, object properties and datatype properties, with the aim of systematically classifying different cell types, 
tissues, histopathological phenotypes etc., to cover the information HistoML represents. Existing terms from 
other ontologies were imported into Histopathology Ontology using Ontofox40.

Development of The Exemplar HistoML representations.  In this paper, we illustrate the application 
of HistoML by applying it to representing several histopathological features as shown in Fig. 3, Supplementary 
Fig. 1 and Supplementary Fig. 2. We further provide a HistoML representation to demonstrate the use of HistoML 
in semantic queries as shown in Fig. 4. To construct these representations, we collected five hematoxylin and 
eosin-stained digital slides from the First Affiliated Hospital of Xi’an Jiaotong University, including three ccRCC, 
one breast cancer and one papillary thyroid carcinoma. Ethical review and approval of the study was provided by 
the First Affiliated Hospital of Xi’an Jiaotong University. The reference number is KYLLSL-2021-420. Informed 
consent had been waived before the research was carried out. The data of the patients included in the study were 
de-identified and do not contain any protected health information or label text.

All of the exemplar HistoML representations were constructed manually by the expert team of pathologists 
co-working with an informatician. The representations were constructed based on the definitions of these phe-
notypes obtained from the pathology textbooks36,37, and the WHO guideline31,41.

Query of Histopathological Features Encoded in HistoML.  Users could query HistoML representa-
tions using SPARQL. By further mapping HistoML representations to the annotations on the slides, the visual 
characteristics of the features are accessible. We used scikit-image42 libraries to analyze visual characteristics (e.g. 
calculation of area and circularity).

Data availability
All of the HistoML representations, as well as the ontology specification and documentation of HistoML, are 
freely available at GitHub (https://github.com/Peiliang/HistoML) and figshare43.

Code availability
The source code of this work can be downloaded from https://github.com/Peiliang/HistoML.
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