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Abstract

Although predominantly associated with health benefits, the gut microbiota has also been shown 

to harbor genes that promote inflammation. In this work, we report a method for the direct 

detection and quantification of these pro-inflammatory bacterial genes by PCR and qPCR in DNA 

extracted from human stool samples. PCR reactions were performed to detect (i) the pks island 

genes, (ii) tcpC, which is present in some strains of Escherichia coli and (iii) gelE presented in 

some strains of Enterococcus faecalis. Additionally, we screened for the presence of the following 

genes encoding cyclomodulins that disrupted mammalian cell division: (iv) cdt (which encodes 

the cytolethal distending toxin) and (v) cnf-1 (which encodes the cytotoxic necrotizing factor-1). 

Our results show that 20% of the samples (N = 41) tested positive for detectable amounts of pks 

island genes, whereas 10% of individuals were positive for tcpC or gelE and only one individual 

was found to harbor the cnf-1 gene. Of the 13 individuals that were positive for at least one of the 

pro-inflammatory genes, 5 were found to harbor more than one. A quantitative version of the 

assay, which used real-time PCR, revealed the pro-inflammatory genes to be in high copy 

numbers: up to 1.3 million copies per mg of feces for the pks island genes. Direct detection of 

specific genes in stool could prove useful toward screening for the presence of pro-inflammatory 

bacterial genes in individuals with inflammatory bowel diseases or colorectal cancer.
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1. Introduction

The gut microbiota contains between 5 and 8 million active genes distributed over a great 

diversity of mostly uncultivable and novel species [1]–[3]. This complex community of 

bacteria has been shown to promote a healthy gut homeostasis as it is tasked with 

housekeeping functions like catabolism of complex polysaccharides, biosynthesis of 

vitamins and other essential nutrients, degradation of xenobiotics and the maintenance of 

serotonin levels in plasma [4]–[6]. Additionally, it is believed that a healthy commensal gut 

microbiota aids in the clearance of pathogenic bacteria and in the prevention of intestinal 

inflammation [7] [8]. Shifts in the composition of the resident microbiota, or microbial 

dysbioses, have been shown to lead to a variety of intestinal disorders [9] [10]. With the 

advent of powerful tools for parallel DNA sequencing, there has been a renewed interest in 

exploring the possible involvement of the gut microbiota in the development of intestinal 

disorders such as inflammatory bowel Disease (IBD), colorectal cancer (CRC) and gut-brain 

associated diseases [11]–[13].

Clinical correlations have been established that link chronic bacterial infections and 

intestinal disorders. For instance, the human pathogen Helicobacter pylori is widely 

recognized as a strong cofactor for the development of gastric adenocarcinoma [14]. 

Similarly, gut colonization with Clostridium difficile is followed by development of colitis, 

toxic megacolon and perforation [15].

In addition to the known gastrointestinal pathogens, there are the typically non-pathogenic 

members of the microbiota, which may harbor genes associated with inflammation. For 

instance, certain strains of commensal Escherichia coli have been found to harbor a genomic 

island encoding a colibactin polyketide synthase multienzyme (pks island) that induces DNA 

damage followed by the activation of DNA repair pathways [16]. The presence of the pks 

island induces mammalian chromosome instability in mouse and human colon cells in 

culture [17]. Strains of E. coli harboring the pks island were found in higher frequency in 

mucosal samples from individuals suffering from CRC and IBD compared with the control 

group [18].

Other pro-inflammatory gene products found in certain strains of E. coli include tcpC, which 

has been found to impair toll-like receptor (TLR) function and the cytotoxic necrotizing 

factor-1 (CNF-1), an activator of oncogenic Rho GTPases [19]–[21]. Additionally, there are 

certain strains of commensal Enterococcus species that are not pathogenic but contain a 

subset of the virulence genes including gelE—a gene encoding a collagen-degrading 

metalloprotease which has been found to induce inflammation in a mouse model [22].

It has been established that these pro-inflammatory genes promote the colonization of 

pathogenic strains of bacteria. Substantially less clear is the effect of these pro-inflammatory 

genes when harbored by non-pathogenic commensal bacteria in the microbiota over a period 

of time [23]. Additionally, the distribution and frequency of most of these pro-inflammatory 

genes in the human population are not known and methods have not been implemented for 

the quick and direct detection of these genes in easily obtained stool samples.
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In this work, we have developed a rapid assay for the detection of pro-inflammatory genes 

directly in a small stool sample (0.5 g). The assay can be performed in diagnostic format 

(classical PCR) or a quantitative format (rtPCR). Our results show that pro-inflammatory 

genes are highly prevalent (up to 20% of the samples tested) and in high enough copy 

number (up to 1.3 million copies per mg stool) for direct detection in a small stool sample. 

The assays described in this report could prove useful in future explorations of the 

relationship between the presence of these pro-inflammatory genes and intestinal diseases.

2. Materials and Methods

2.1. Stool Samples

Anonymous human stool samples were donated by a clinical laboratory (Laboratorio Clínico 

El Monte, San Juan, Puerto Rico, N = 41). Samples were stored at −80°C.

2.2. DNA Extraction

Bacterial DNA was extracted from 41 human stool samples using the QIAamp® DNA Stool 

Mini Kit (QIAGEN). Approximately 0.2 g stool was resuspended in 1.4 mL of ASL buffer. 

The bacterial DNA was extracted following the manufacturer’s protocol and eluted in 200 μl 

of the buffer included in the kit. A total of 5 μl of DNA extract was used as template for the 

ensuing PCR reactions.

2.3. Detection of Bacterial Genes by PCR

A volume of 5 ul of undiluted fecal DNA extract (from 0.2 mg stool) was used and the PCR 

conditions are summarized in Table 1. All PCR reactions begin with an initial denaturation 

of 1 minute at 94 C followed by 30 cycles of denaturation (30 seconds at 94°C), annealing 

(30 seconds at different temperatures shown in Table 1) and extension (3 minutes at 68°C). 

All reactions were finalized with a long extension step of 10 minutes at 72°C to ensure 

maximum detection. The detection of pks island genes was performed using the primer for 

the amplification of clbN genes that were described previously [23]. The detection of gelE 

was carried out using gelE-specific primers that were also described previously [24]. For the 

detection of tcpC and cnf-1, oligonucleotide primers were designed using the software 

Primer 3 (http://simgene.com/Primer3) on the nucelotide sequences for E. coli ECOR63 

(GenBank: GQ903014.1) and E. coli MS 153-1 (NCBI: ZP_16446903.1). For the detection 

of cdt, primers were designed using the cdtB subunit from Campylobacter jejuni subsp. 

jejuni 81–176 (GenBank: AAB06708.1).

2.4. Purification of PCR Products

The PCR products were separated on a 2% agarose gel and extracted from the agarose gel 

using the QIAquick Gel Extraction Kit (QIAGEN).

2.5. DNA Sequence Confirmation by the Sanger Method

The DNA sequence for the amplified fragments was verified using the Sanger method for 

DNA sequencing at the RCMI Center for Genomics in Health Disparities and Rare Diseases 

at the University of Puerto Rico. The purified amplicon was sent for sequencing using the 

forward oligonucleotide primer for each of the products.
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2.6. Estimation of Gene Copy Number by Quantitative PCR (qPCR)

In order to provide a quantitative estimate on the number of copies of each of the pro-

inflammatory genes, we measured the PCR reaction in real time and compared the results 

for the DNA extracted from stool samples with known amounts of DNA extracted from 

isolated bacteria known to contain the genes. The qPCR reaction was performed with 6.8 μl 

of stool DNA extract and the QuantiTect SYBR Green PCR kit (Qiagen) and was read on a 

Eppendorf Mastercycler Realplex.

2.7. Calibration Curve

A calibration curve was built for each gene by performing real-time PCR on the DNA 

extracts from a bacterial isolate known to contain at least a copy of the bacterial gene of 

interest. In order to identify strains that could serve as positive controls (or method 

calibrants) for the pks island, tcpC, and cnf genes, we screened a collection of clinical 

isolates of E. coli that were part of a nosocomial infection surveillance study [25] and found 

several E. coli isolates that tested positive for one of the genes. The DNA extracted from 

these strains was used as positive control in the PCR reaction, which was done in triplicate. 

The positive control for gelE was Enterococcus faecalis strain H32, an environmental isolate 

known to contain the gelE virulence gene and kindly donated by Dr. Luis Ríos-Hernández 

from University of Puerto Rico, Mayagüez Campus. The genome of E. coli contains 4.6 

million base pairs and weighs 5.1 × 10−15 g. The genome of E. faecalis, somewhat smaller, 

weighs 3.6 × 10−15 g. Thus, the DNA copy number conversion can be determined from a 

measurement of absorbance at 260nm according to the following relationship:

(1)

where A260 is the absorbance of the sample at 260 nm and GW is the weight in grams of the 

entire genome of the organism (5.1 × 10−15 g for E. coli and 3.6 × 10−15 g for E. faecalis).

For example, the pks island gene standards were made with known amounts of E. coli DNA. 

Samples containing 384 ng/μl (75,294,120 copies per μl), 100 ng/μl (19,607,843 copies per 

μl), 10 ng/μl (1,960,784 copies per μl), 1 ng/μl (196,078 copies per μl) and 0.1 ng/μl (19,607 

copies per μl) were used as templates of the qPCR reaction monitored in real time.

The correlation coeffcient (χ2) for each calibration curve was determined by the least 

squares method and the percentage efficiency of the PCR reaction calculated by 

implementing the equation:

(2)

Typical positive values for the pks island range between 2800 – 1,300,000 copies per μl.
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3. Results

3.1. Detection and Prevalence of Pro-Inflammatory Genes in Stool Samples

A total of 41 anonymous human stool samples were analyzed for the presence of the genes 

for pks island, tcpC, gelE, and cnf-1. The presence of bacteria was confirmed in all of the 

samples by amplification of the 16S-rRNA gene (data not shown). The presence of the pks 

island genes was established by the amplification of a DNA fragment of 733 bp (Figure 

1(a)). A total of 8 samples out of 41 were found to contain the gene for pks island (20%). 

The other pro-inflammatory gene, tcpC, was detected in a total of 7 samples (17%) as 

evidenced by the presence of a band of 216 bp (Figure 1(b)) and the enterococcal gelE was 

found in 3 samples easily detected by a band of 213 bp (7%). The gene for cytotoxic 

necrotizing factor-1 (cnf-1) was only found in a single sample while the gene for the 

cytolethal distending toxin (cdt) was not found in this group of samples. The results from the 

PCR screens are summarized in Table 2.

A total of thirteen (13) samples were found to contain at least one of the four pro-

inflammatory genes. Of these 13 samples, a total of eight (8) samples were found to contain 

only one of the genes and four samples were found to contain two pro-inflammatory genes. 

One result, corresponding to anonymous sample “Hu037” was found to contain three genes: 

pks island, tcpC and gelE (Table 3). Future work will be aimed at establishing whether these 

individuals harboring multiple pro-inflammatory bacterial genes have a higher risk of 

developing intestinal disorders.

The DNA sequences for the PCR amplified pro-inflammatory bacterial genes were 

confirmed by performing Sanger sequencing on the gel-purified PCR products. By 

comparing the DNA sequences found in individual samples, we were able to make a 

preliminary assessment of the sequence variability for the pro-inflammatory bacterial genes. 

While the DNA sequences for the amplicons generated from tcpC and gelE were exactly the 

same in all positive stool samples, the DNA sequence for the pks island amplicon showed 

variability around sequence positions 8312 and 8383 (numbering according to GeneBank 

accession No. AM229678). The amplicon generated from the pks island in samples Hu033, 

Hu037, Hu038 contains three distinct variants (Figure 2). Stool sample labeled Hu033 

features A and G in positions 8312 and 8383, respectively. Meanwhile, the stool samples 

Hu037 and Hu038 have a G-A and A-A in those positions.

3.2. Quantification of Pro-Inflammatory Genes in Stool

From the PCR results visualized on an agarose gel, it was clear that some samples registered 

a more intense band than others, raising the possibility that some individuals harbor a higher 

content of bacterial pro-inflammatory genes than others. In order to provide a quantitative 

estimate of the number of copies of the pro-inflammatory genes per patient, we performed 

the PCR assay with real-time detection (Figure 3). A standard curve that was made with 

known amounts of DNA copies as described in the methods section, enabled the 

quantification of DNA copy number for each of the genes in the 41 stool samples. The 

number of copies of pks island among those who tested positive fluctuated between 2800 

and 1.3 million copies per mg of stool analyzed and the number of gelE copies fluctuated 
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between 6000 – 260,000 copies per mg of stool. The amount of tcpC DNA was less variable 

fluctuating between 100,000 – 800,000 copies per mg of stool. Future work will be aimed at 

establishing whether a correlation exists between a high copy number for these pro-

inflammatory genes and a higher risk of developing gastrointestinal disorders.

4. Discussion

The elucidation of the role of the gut microbiota in human health is an active area of 

research [26]–[28]. A number of efforts worldwide have served to elucidate important 

associations between the microbiota and health [29]–[31]. For instance, an unequivocal link 

has been established between the gut microbiota and obesity [32] [33]. Additionally, the 

presence of pathogens such as Helicobacter pylori and Clostridium difficile has been found 

to correlate with inflammation and ultimately with the development of gastric cancer [14] 

[15]. More recently, there have been reports that the gram-negative bacterium of the genus 

Fusobacterium is more highly represented in colorectal tumor tissue than in normal mucosal 

tissue from the same patients [34] [35].

In this report, instead of focusing on the presence of bacterial species, we have developed a 

quantitative assay to detect specific bacterial genes that have been associated with 

inflammation, directly in a small stool sample. Some of these genes in this report were found 

to be present in as many as 20% of the stool samples and in copy numbers as high as 1.3 

million copies per mg of stool. The assay described in this report provides a quick method 

for the screening of stool samples to ascertain the presence of pro-inflammatory genes in 

case-control studies involving individuals with colorectal cancer or inflammatory bowel 

diseases. The genes in this report, namely pks island, tcpC, cnf-1, gelE and cdt, have all been 

the subject of scrutiny for their possible crosstalk with inflammatory processes. Here we 

discuss each of them separately:

pks Island

Of the genes tested, the pks island was the most prevalent and was found in high copy 

numbers (>106 copies per mg stool). The pks genomic island encodes a number of 

multidomain enzymes termed polyketide synthases that typically synthesize secondary 

metabolites in numerous microbial species, although the actual compound made by this 

multienzyme has not been chemically characterized [16]. The pks island has been found in 

pathogenic and in non-pathogenic strains of E. coli [23]. Although the pks island is not pro-

inflammatory per se, the presence of this genomic island in some strains of E. coli has been 

implicated in the formation of colorectal tumors in inflammation-prone mice, which lack the 

inteleukin-10 gene [18]. That study also reported that the pks island was more highly 

represented in the intestinal mucosa from colorectal cancer (CRC) patients than in non-CRC 

controls [18]. In the present study, the pks island genes were found in 20% of the stool 

samples analyzed, a frequency consistent with previous findings reporting the pks island to 

be present in 20% of strains isolated from human mucosa samples from non-cancer donors 

[18] and in 32% of E. coli strains isolated from the feces of hospitalized veterans [23]. 

Although our assay is carried out on total DNA isolated from a stool sample, without strain 

isolation or cultivation, our results are similar to those obtained using the more conventional 

culture-dependent method.
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tcpC

Similarly, the tcpC gene has been found in strains of E. coli associated with severe kidney 

infection [36]. tcpC subverts toll-like receptor-dependent inflammation by binding directly 

to the receptor, resulting in the formation of kidney abscesses in mice infected with strains 

of uropathogenic E. coli [19]. However, there are no reports of the tcpC gene in the 

commensal E. coli strains that inhabit the GI tract. Much to our surprise, seven (7) of our 

fecal samples were found to harbor the tcpC gene in high enough copy number to detect by 

PCR.

cnf-1

The cnf-1 gene encodes an enzyme, the cytotoxic necrotizing factor-1, which is found in 

strains of E. coli commonly associated with urinary tract infections [37]. The Cnf enzyme 

deaminates Rho GTPase in glutamine 63 causing it to be locked in the active GTP-bound 

state. Although the cnf-1 gene has been found in bacterial isolates from feces of children 

with diarrhea, this is the first report of this gene in high enough copies to be detected 

directly in stool [38]. Only one (1) sample in the present study was found to contain the 

cnf-1 gene.

gelE

GelE gene encodes a metallo-collagenase from the genus Enterococcus. The GelE 

collagenase has been found to promote chronic inflammation in mice lacking the 

interleukin-10 gene [22]. More recently, gelE gene was found in higher frequency in 

bacterial isolates from the feces of children with IBD vs. children without IBD [39]. Here 

we report 3 stool samples with detectable levels of gelE gene directly in stool.

With the growth of affordable parallel sequencing methods, scientists have gained a whole 

new view of the diversity of bacterial species (or taxa) in a complex community such as the 

gut microbiota [40] [41]. One important line of experimentation centers on building a 

comprehensive list of bacterial species present in the community for comparison between 

disease cases and controls. However, most community profiling efforts rely on molecular 

markers (such as the 16S rRNA gene) and do not necessarily detect additional genes that 

may have been acquired in time. For instance, the bacterial community profile for any stool 

sample would likely reveal the presence of E. coli, but it would not necessarily show 

whether the E. coli strains in the sample contain pro-inflammatory genes (tcpC, pks island, 

etc.). In addition, E. coli is not the only species that harbor the pks island, as the genes can 

also be carried by other bacteria, such as Klebsiella pneumoniae, Enterobacter aerogenes 

and Ci-trobacter koseri [42].

The assay described in this report is meant to complement ongoing efforts, whether by 

bacterial community profiling or by shotgun metagenomics, to ascertain the presence of 

harmful or protective genes, in fecal samples regardless of which species carries the genes. 

Clearly, other complementary assays will have to be developed to determine whether the 

pro-inflammatory bacterial genes are being transcribed in the gut, or whether the gene 

products are being synthesized in active form. But the development of a quick and 

quantitative assay for the detection of pro-inflammatory genes in stool samples is a first step 
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toward the quick interrogation of stool samples in large-scale case-control studies involving 

IBD and CRC patients.

5. Conclusion

We report the detection, directly in DNA extracted from a fecal sample, of several genes of 

bacterial origin which had been previously associated with inflammation. Although the 

presence of these genes had been ascertained in strains of bacteria known to colonize other 

tissues, this is the first report of these genes being found in the normal commensal flora. The 

assay described in this report provides a quick and inexpensive method for the analysis of a 

large number of samples from case-control studies involving patients of IBD or CRC.
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Figure 1. 
PCR amplification of the pks island genes was visualized on a 2% agarose gel in which the 

first four lanes contain the DNA size marker, a positive control (+), a negative control (−) 

and a blank (0), respectively. The DNA size markers used for samples 1 – 24 is 1kb Opti-

DNA Marker from ABM band for sample 25 – 41 the 100 bp Opti-DNA Marker by ABM. 

The presence of the pks island gene can be established by the presence of a band at 733 bp 

(black arrows). The data for the 41 samples is shown in two different gels with eight 

positives (3, 7, 8, 13, 14, 26, 36 and 41).
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Figure 2. 
The DNA sequences for all the fragments generated in this study were confirmed by the 

Sanger method. Interestingly, three distinct variants of the pks island sequence were 

identified in three different samples (Hu033, Hu037 and Hu038). The sequencing 

chromatograms corresponding to regions 8300 – 8322 and 8372 – 8392 of the pks island 

gene sequence (Ge-neBank Accession No. AM229678) are shown for all three samples. 

Sequence variability was observed in positions 8312 and 8383 of this amplicon.
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Figure 3. 
For the quantification of DNA copy number, a standard curve was generated for each of the 

pro-inflammatory genes as described in the methods section. Standards containing 393 ng/μl 

(77,058,825 copies per μl), 100 ng/μl (19,607,843 copies per μl), 10 ng/μl (1,960,784 copies 

per μl), 1 ng/μl (196,078 copies per μl) and 0.1 ng/μl (19,607 copies per μl) were used to 

make the calibration curve. Typical copy number estimates for tcpC-positive samples ranged 

from 100,000 – 800,000 copies per μl. In this figure we show (a) the agarose gel 

electrophoresis for the PCR amplification of tcpC gene using different known amounts of E. 
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coli DNA in the reaction mixture, (b) the qPCR reaction for the standards monitored in real 

time and (c) the calibration curve for the quantification of tcpC copies.
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Table 1

Summary of PCR conditions for the detection of a panel of pro-inflammatory bacterial genes.

Bacterial Gene Annealing Temp Primer Sequences (5′ to 3′) Product Size (bp)

pks island 63°C F: TCGATATAGTCACGCCACCA
R: GTCAAGCGAGCATACGAACA 733

tcpC 56°C F: TCGGCGATAGCTTAAGGAGA
R: CCGCCAAATAATGGCTGTAT 216

gelE [24] 56°C F: TATGACAATGCTTTTTGGGAT
R: AGATGCACCCGAAATAATATA 213

cnf-1 56°C F: AGCGTGCAATCTATCCGTATTT
R: TGGAATTTCCCCAGTATAGGTG 173

cdt 50°C F: AGATATCTTAATGATACAAGAAGCA
R: TGAAACTATAGCTAAATTTACACG 196
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