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Background. Selective control in a population is the ability to control a member of the population while leaving the other
members relatively unaffected. The concept of selective control is developed using cell death or apoptosis in heterogeneous
cell populations as an example. Control of apoptosis is essential in a variety of therapeutic environments, including cancer
where cancer cell death is a desired outcome and Alzheimer’s disease where neuron survival is the desired outcome. However,
in both cases these responses must occur with minimal response in other cells exposed to treatment; that is, the response must
be selective. Methodology and Principal Findings. Apoptosis signaling in heterogeneous cells is described by an ensemble of
gene networks with identical topology but different link strengths. Selective control depends on the statistics of signaling in
the ensemble of networks, and we analyze the effects of superposition, non-linearity and feedback on these statistics. Parallel
pathways promote normal statistics while series pathways promote skew distributions, which in the most extreme cases
become log-normal. We also show that feedback and non-linearity can produce bimodal signaling statistics, as can
discreteness and non-linearity. Two methods for optimizing selective control are presented. The first is an exhaustive search
method and the second is a linear programming based approach. Though control of a single gene in the signaling network
yields little selectivity, control of a few genes typically yields higher levels of selectivity. The statistics of gene combinations
susceptible to selective control in heterogeneous apoptosis networks is studied and is used to identify general control
strategies. Conclusions and Significance. We have explored two methods for the study of selectivity in cell populations. The
first is an exhaustive search method limited to three node perturbations. The second is an effective linear model, based on
interpolation of single node sensitivity, in which the selective combinations can be found by linear programming optimization.
We found that selectivity is promoted by acting on the least sensitive nodes in the case of weak populations, while selective
control of robust populations is optimized through perturbations of more sensitive nodes. High throughput experiments with
heterogeneous cell lines could be designed in an analogous manner, with the further possibility of incorporating the
selectivity optimization process into a closed-loop control system.
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INTRODUCTION
Living cells carry out their functions, such as working, reproducing

and dying, by appropriate response to extracellular and in-

tracellular inputs to a complex network of signaling pathways.

Genes which code for the proteins in these pathways are controlled

by regulatory proteins which up-regulate or down-regulate these

genes, depending on inputs to the signaling network. The

enormous effort currently directed at understanding signaling

networks may be subdivided into two areas, firstly extracting

faithful wiring diagrams for the networks and, secondly developing

methods to understand and control the messages which pass

through them. In this contribution we develop the concept of

selective control in diverse cell populations, and introduce

computational methods which optimize selectivity for a particular

signal for a designated member of a cell population.

We introduce the concept of selective control or selectivity in

cell populations as the requirement of finding a set of inputs which

induce one member of the population to produce a desired

response while ensuring that the remaining members of the

population have a minimal response. In the case of apoptosis or

cell death, which we use as an illustrative example, we consider

a population of cells and seek methods to kill a selected member of

the population while ensuring the survival of the others in the

population. Control of apoptosis is essential in a variety of

therapeutic environments including cancer where cancer cell

death is a desired outcome[1–4] and Alzheimer’s disease where

neuron survival is the desired outcome[5–7]. However in both

cases these responses must occur with minimal response in other

cells exposed to treatment that is, the response must be selective.

Though striking progress is occuring in the extraction of

networks using a range of experimental data[8,9], knowledge of

signaling networks remains predominantly at the level of topology

rather than detailed knowledge of the rate constants and non-

linear message passing which occurs in the networks. Models to

distinguish between members of a population of cells, for example

different cancer cells and different normal tissue types, require

differences in message passing parameters and/or expression levels

of the genes in the network. Here, the computational procedures

Academic Editor: Mark Cookson, Laboratory of Neurogenetics, National Institutes
of Health, United States of America

Received March 28, 2007; Accepted May 9, 2007; Published June 20, 2007

Copyright: � 2007 Calzolari et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: The work was supported by the Burnham Institute and by Michigan
State University. The funders had no role in the work described in the manuscript
or in its preparation.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: duxbury@pa.msu.edu

¤ Current address: Bioinformatics Graduate Program, University of Michigan, Ann
Arbor, Michigan, United States of America

PLoS ONE | www.plosone.org 1 June 2007 | Issue 6 | e547



for selectivity in cell populations are elucidated using heteroge-

neous populations, where members of the population are

distinguished by having message-passing efficiencies drawn from

homogeneous random distributions.

Models of message passing in gene networks range from binary

models with discrete message passing rules[10–12] to non-linear

ordinary differential equations[13] and to stochastic spatio-

temporal models[14] which are simulated using partial differential

equations or Monte Carlo methods. Questions of interest also vary

greatly, from generic questions about the number of attractors and

their stability in random networks[15–19] to modeling the detailed

dynamics of gene concentrations in particular pathways[20–22],

and to the cellular response such as control of flagellar rotation in

bacteria responding to chemotaxis. Some of the tools developed

for the analysis of metabolic networks, both dynamically and using

steady state flux balance approaches, can be profitably extended to

signaling networks[23,24]. In the flux balance approach (FBA), the

ouput of a cell may be optimized with respect to an objective

function and subject to the constraints of flux balance at each node

in the network.

Though there are conceptual similarities between the FBA and

our approach, there are also critical differences. Instead of flux

balance, we require message passing rules which describe how

a gene responds to the state of its neighbors. To illustrate the

effects of different rules, we use an important example from

systems biology, the apoptosis network. In particular we discuss the

statistics of death signals produced by continuum and discrete

message passing rules in this network. We also develop the concept

of selective control. Rather than optimizing the objective for one

cell or metabolic network, as occurs in FBA, we seek to optimize

the response of one cell in a population while minimizing the

response of other cells in the population. Selective control is

demonstrated using exhaustive search over drug combinations in

discrete models and using an approximate linear programming

approach. Though drugs affecting specifically every node of the

apoptosis network are not yet available, this is a very active field of

pharmacological research and it is probably one of the biological

networks where this ideal situation, from the control point of view,

is closest to reality[25]. Moreover, the network we use is probably

still an incomplete representation of the apoptosis network, both

for the topology and for the kinetic parameters. Nevertheless,

several authors have shown that useful results can be obtained

from partially characterized models of biological networks[26,27].

RESULTS

Statistics of signaling
We have modified the apoptosis network, hsa04210, of the Kegg

database to that presented in Fig. 1, where network complexes

consisting of several genes are split into individual nodes. Recent

work emphasizes the importance of positive feedback between

CASP3 and CASP8 denoted by the long dashed arrow in the

figure[20,22], though the importance of this feedback is not

universally accepted. There are 47 genes in Figure 1 and an

additional node which we label the output node. The 47 genes may

be catagorized (see Table 1) as: input genes (dashed circles in the

Fig. 1), which transmit signals to the network from the other parts of

the cellular network; membrane genes which code for membrane

proteins and complexes bound to membrane proteins; death genes

which signal onset and execution of apoptosis; life genes which

reduce apoptotic signals and are upregulated in many cancer cells;

and finally the remaining genes in the network. The output, or

‘‘death’’ node (48 in Fig. 1) is added to represent the cumulative effect

of many genes implicated in the onset of the cell death machinery.

We consider two types of models, those where the gene

activities, ai, are continuous and those with discrete gene activities,

mi. We use models with continuous activities to illustrate the

generic statistics of signal propagation in the apoptosis network,

while discrete models are more convenient for the exhaustive

search methods used in the selectivity studies. In the discrete

models the gene activity has discrete values up to a maximum

value M, so that ml = 0,1…,M. Binary networks, where M = 1 have

received the most attention, following the work of Kauffman[28].

We considered three discrete cases, M = 1,2,10, though here we

focus upon M = 10 which is closer to the non-linear continuous

behavior observed in experiment.

Figure 1. The human apoptosis network modified, as described in the
text, from that in the Kegg database (hsa04210). There are 47 genes in
the figure and an additional node which we label the output node. The 47
genes may be catagorized (see Table 1) as: input genes (dashed circles);
membrane genes; death genes; life genes; and finally the remaining genes
in the network. The output, or ‘‘death’’ node (48) is added to represent the
cumulative effect of many genes implicated in the onset of the cell death
machinery. In this figure, solid lines indicate promotion while short dashed
links indicate inhibition. The long dashed link between CASP3 and CASP8
adds the possibility of feedback in the apoptosome.
doi:10.1371/journal.pone.0000547.g001

Table 1. Typical roles of genes in the signaling network.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

life death membrane

BIRC2.. BAD FAS

BCL2L1 CASP6 FADD

BCL2 CASP3 TRADD

BCL2.. CASP7 TNF-R1

BAX RIPK1

DFFB TRAF2

AIF TRAIL-R

TP53 IL1R1

MYD88

IRAK1

NGFb

TrkA

IL3

IL-3R

doi:10.1371/journal.pone.0000547.t001..
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Each gene receives signals from the genes that it is connected to

in the signaling network of Figure 1. The signal arriving at a gene

depends on the strength of the connections to its neighbors in the

network. We define the strength of these connections to be vij

between the ith and jth genes. Since the network is directed, vij?vji.

The values of vij are poorly characterized even in metabolic

networks where they correspond to reaction rates. In the absence

of detailed knowledge about these connections we take them to be

random variables and in this way develop a generic understanding

of signal propagation in heterogeneous cell populations. The link

weights, vij, have positive random values for promotion links and

negative random values for inhibition links.

Continuous models
In the continuous models, the edge weights vij are uniform con-

tinuous random variables and each gene has activity ai which is a

continuous variable. The signal arriving at a gene is given by the sum,

sl~
X

j[n(l)

vjlaj , ð1Þ

where n(l) is the set of genes which send signals to gene l. The signal sl

arriving at gene l may be positive or negative, where a negative signal

implies inhibition. However, the activity of a gene must be positive or

zero so that a negative signal at a gene implies complete inhibition

and the gene is switched off, so that its activity is set to zero. This is

a basic non-linearity in signaling networks.

In addition, gene activity levels are often observed to depend in

a non-linear way on the signals arriving at the gene. A common

approximation to the nonlinear response in gene activity is the Hill

equation[29],

a(s)~
csb

1zdsb
, ð2Þ

where c/d is the saturation value of the gene activity, d determines

the onset of saturation and the exponent b is the cooperativity

index. The case, b = 1, is Michaelis-Menten behavior characteristic

of a chemical reaction in the presence of a substrate. The simplest

case b = 1, c = 1, d = 0 is the majority rule signaling procedure,

given by al = sl for sl positive and al = 0 for sl negative.

There are several procedures for simulating signal propagation

through networks. In binary networks there has been considerable

study of synchronous as opposed to asynchronous updates, where

in the former case the gene activity levels at time t are used to

update all of the activity levels at time t+1. In contrast

asynchronous methods update gene activity randomly, for

example one randomly chosen gene at a time, to model stochastic

behavior. The number of attractors found in binary networks

appears to depend on the update procedure 16]. In the absence of

the feedback link between nodes 42 and 28 in Fig. 1, the network

presented there has no loops. In this case signal propagation

through the network is deterministic and non-chaotic. Further-

more signal propagation through the loopless network can be

carried out in one sweep of the network by ordering the nodes

according to their distance from the inputs. The nodes are then

updated in order of their distance from the input, a procedure

which we denote the optimal signaling algorithm(OSA). As

described later, this procedure can be modified to take into

account the feedback[20,22] induced by the link between CASP3

and CASP8 in Fig. 1. In the absence of this link, the longest path

from the inputs to the output has 15 links and hence the OSA

algorithm is completed in 15 time steps.

We directly tested the effect of asynchronous, synchronous and

OSA procedures on signaling in the loopless apoptosis network

and found that they produce essentially the same results. This

result is at first counterintuitive as undirected random networks

show more complex behavior, such as chaos, and larger sets of

attractors. However directed networks are deterministic so that for

a given set of inputs in a network with fixed edge weights, and

using deterministic message passing rules, there is a unique output.

Statistical variations do occur however when the link weights are

varied or stochastic noise is added to the message passing rules.

Since we are interested in heterogeneous populations, which are

analogous to quenched disorder, we consider variations in

signaling due to variations in the edge weights.

Typical statistical behavior of signals passing through the

loopless apoptosis network are presented in Fig. 2 for an important

gene, NFkB, in the interior of the network and also for the

cumulative death signal at the output. These distributions are

found by simulating 50000 different networks, where each network

Figure 2. The distribution of gene activities in heterogeneous cell
populations with a population size of 50,000. These distribution are
for majority rule signaling with positive and continuous gene activities.
a) The activity of the output node is close to a normal distribution due
to many pathways arriving at the output node; b) Signal statistics at the
gene NFkB, which is an internal node lying at the end of a chain of links
(see Fig. 1), is close to log-normal. (see discussion in the text).
doi:10.1371/journal.pone.0000547.g002
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has links (values of vij) having weights drawn from a uniform

distribution on the interval [0,1]. These simulations were carried out

for a model with continuous activities ai, where Eq. (1) is used to find

the total signal arriving at a gene and we use the linear relation ai = si

for positive signals and ai = 0 for negative signals. The input genes in

the network were assigned random values on the interval [0,1].

Positive values of the signal arriving at the output node indicate cell

death, while negative values denote life. Although the output node

statistics (see Fig. 2a) is somewhat skew it is not too far from a normal

distribution, however the statistics at NFkB (Fig. 2b) is highly skew

and is almost lognormal. We now provide a simple explanation for

the contrasting statistical behavior occurring for NFkB (34 in Fig. 1)

and the output node (48 in Fig. 1).

Simplified models elucidating the origin of the signaling statistics

observed in Fig. 2 are presented in Figs. 3 and 4. Many paths enter

the death node (48) and this is simplified to a set of independent

parallel paths in Fig. 3. According to Eq. (1), the death signal is

then a sum of random variables and it is well known in that case

that the statistics of the signal should be a normal distribution, in

the asymptotic limit. The observed near normal behavior observed

for the death node is then due to the fact that many parallel paths

enter the death node. Deviations from the ideal normal

distribution are expected for several reasons, including the fact

that the activities cannot be negative, the presence of correlations

in the signals entering the death node, and due to the fact that we

are far from the asymptotic limit.

In contrast, NFkB is at the end of a chain of connections (see

Fig. 1) and a simplified model of this connectivity is illustrated in

Figure 4. In this case Eq. (1) yields,

aout~P
n

‘~1
v‘a‘: ð3Þ

This is a random multiplicative process, so that if the link variables

v have random noise, then the output signal, aout asymptotically

obeys log-normal statistics. The log normal distribution, in the

variable x, is given by,

p(x)~
1

(2p)1=2xs
e{( ln (x){m)2)=2s2

, ð4Þ

which is typically highly skew and exhibits large fluctuations. Here

s, m are parameters in the distribution. The statistical variations of

signals arriving at genes in complex networks clearly varies a great

deal depending on the local connectivity of the genes. In cases

where there are mostly linear pathways, as is believed to occur in

some cancer cells, there is a greater potential for strong

fluctuations in signaling statistics.

Non-linearity is a hallmark of genetic response and we have

studied the effect of a variety of non-linear activity-signal behaviors

on signaling in the apoptosis network. We tested the effect of

various Hill equation parameters on the activity statistics of the

apoptosis network. In these calculations, each gene has the same

non-linear behavior given by Eq. (2). We found that the generic

behavior was similar to that presented in Fig. 2. One example,

where we used the Michaelis-Menten limit of Eq. (2), is presented

in Fig. 5. The statistics of the death node (Fig. 5a) remain close to

a normal distribution, while the statistics of NFkB remains close to

log-normal. The geometry of the network thus controls the

signaling statistics even in the presence of non-linearity.

Figure 3. A parallel combination of signaling pathways with no series
connections. For a large number of parallel connections, the output
activity aout is normally distributed (see text).
doi:10.1371/journal.pone.0000547.g003

Figure 4. A signaling pathway with four steps in series and with no
parallel connections. If the number of steps in the pathway is large, the
ouput activity aout obeys log-normal statistics (see text).
doi:10.1371/journal.pone.0000547.g004

Figure 5. Majority rule signaling with non-linearity. The distribution of
signals in heterogeneous cell populations with a population size of
50,000. These distribution are for majority rule signaling with positive,
continuous gene activities calculated from the signal by using the
Michaelis-Menten law a = s/(1+s). a) Signal statistics at the output node
is similar to a normal distribution; b) Signal statistics at the gene NFkB
remains close to log-normal despite the non-linear dependence of the
activity on the signal.
doi:10.1371/journal.pone.0000547.g005
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An important feature absent from the Kegg apoptosis network is

feedback. The heavy dashed connection between CASP3 and

CASP8 (nodes 42 and 28) produces feedback which has recently

been found to be important in the apoptosome[20,22]. This link

leads to feedback as illustrated in the subgraph of Fig. 6. To

elucidate the effect of feedback on signaling in the apoptosis

network, we studied the response of the network in Fig. 6 with

random weights on the edges and a range of signal strengths

arriving at CASP8 (a1 in Fig. 6).

The equations for the signals, si(t+1), arriving at time t+1 at the

five genes in Fig. 6 are,

s1(tz1)~Szv51a5(t) ð5Þ

s2(tz1)~v12a1(t) ð6Þ

s3(tz1)~v23a2(t) ð7Þ

s4(tz1)~v34a3(t) ð8Þ

s5(tz1)~v15a5(t)zv45a4(t) ð9Þ

In this equation S is the input signal and vij is the strength of the

signaling between nodes i and j. In heterogeneous population

studies these links are taken to be random. The activity of each

gene at time t+1 is found using a non-linear relation to the signal

si(t+1), given by the Hill equation,

ai(tz1)~
c(si(tz1))b)

(1zd(si(tz1))b)
, ð10Þ

where b,c,d are model parameters. The typical activities of the five

genes, ai(t), as a function of the input signal strength, S, are

presented in Fig. 7 for three types of Hill equation parameters,

linear (top figure), Michaelis-Menten (middle figure) and co-

operative (bottom figure). As observed in modeling using

ODE’s[20], co-operative signaling leads to new behavior and

a sharp onset of a transition between a low activity state and a high

activity state. The behavior of Fig. 7c is typical of the co-operative

case, and the location of the jump discontinuity and the values of

the gene activities depend on the parameter values used in the

simulations. One example is presented in this figure. We found

that for each parameter set there is a steady state response at long

times and this is the value that is plotted in the figures.

We have also studied the effect of feedback on signaling statistics

in heterogeneous cell populations using the full apoptosis network,

Fig. 1. Signaling in this network is carried out by using the OSA

procedure in combination with full iteration of the loopy sub-

graph of Fig. 6. In the linear and Michaelis-Menten cases

illustrated in the top two figures of Fig. 7, feedback amplifies the

signal, but does not qualitatively change the statistics of death

Figure 6. Feedback loop in the apoptosis network, following [20].
doi:10.1371/journal.pone.0000547.g006

Figure 7. The steady state activity of genes in the feedback loop
illustrated in Fig. 6. The top figure is the case of linear signaling (d = 0,
c = b = 1 in Eq. (10)), the middle figure is for the Michaelis-Menten case
(b = c = d = 1 in Eq. (10)), and the bottom figure was found using Eq. (10)
with c = 2, d = 1 and b = 2 corresponding to co-operative non-linearity. In
the top figure the link weights are v12 = 0.367, v23 = 0.864, v34 = 0.754,
v45 = 0.617, v51 = 0.718, v51 = 0.828. In the middle and bottom figures the
weights used were (0.417,0.847,0.287,0.456,0.614,0.521) and (1.812,1,207,
0.971,1.158, 1.924,1.489) respectively. The link weights were chosen to be
random on the interval [0,c].
doi:10.1371/journal.pone.0000547.g007
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signals. However in the case of co-operative non-linearity where

bi-stability and strong sensitivity to the input signal occurs (see

Fig. 7c), the statistics of the death signal can become bimodal, as

illustrated in Fig. 8. The signaling statistics can then be controlled

by controlling the feedback and non-linearity in the network.

Discrete models
Discrete models enable exhaustive search over the activity states of

the genes and, as elucidated below, identification of the optimal

combinations for selective control. In these models we discretize the

weights and the activities into the same number of discrete levels, so

that mi = 0,1,…M and |vij| = 1,…M, for a model where the activity

level of a gene has a maximum integer value of M. We find that the

generic behaviors for large values of M are similar to that of the

continuous models of the last subsection. On the other hand, for

binary networks where each gene has activity zero or one, the

behavior is quite different, with a key novelty the fact that many

genes have zero incoming signal and hence a decision must be made

about their activity in this case. Using the momentum rule, where the

state is maintained unless changed by an incoming signal, leads to

a strong dependence on initial conditions as the initial state is

unchanged unless a signal is received to change it. As in Eq. (1), the

signal, sl arriving at gene l is a linear superposition given by,

sl~
X

j[n(l)

vjlmj , ð11Þ

where n(l) is the set of genes which signal directly to gene l. In the

discrete models, the signal, sl, produced by the superposition rule

above is then normalised to sl/n(l) where n(l) is the number of

neighbors of gene l. We use several different linear and non-linear

relations to find the discrete activity of a gene, ml, from the

normalized signal sl/n(l), as described below. In all cases, if the signal

arriving at a gene is negative, the gene is completely inhibited and

ml = 0, which is a basic non-linearity in both continuous and discrete

signaling models.

In the linear rule, the discrete activity is found from the

normalized signal using,

ml~qc1
sl

n(l)M
r, ð12Þ

where c1 is a constant which we usually take to be c1 = 1. qxr is the

ceiling function, which raises a floating point number, x, to its next

largest integer value. For the logarithmic rule the discrete activity

is given by,

ml~qc2 ln sl=n(l)ð Þr, ð13Þ

where the constant c2 is chosen so that the maximum signal

corresponds to ml = M. In our case with M = 10, we take c2 = 2.17.

The sigmoidal rule is given by,

ml~q
M

exp½{(sl=n(l){a)=b�z1
{0:5r, ð14Þ

with the parameters a = 20 and b = 10. This has a form similar to

the Fermi function in physics and to dose-response curves in

radiation therapy. For M = 10 the maximum normalized signal

which can arrive at a gene is 100. The functions (12–14) are

constructed so that for small signals the gene activity is one, while

signals of maximum value yield gene activity 10, ensuring that all

possible relations between signal and activity are represented.

These behaviors are presented in Fig. 9a.

The death statistics resulting from these discrete models are

presented in Figs. 9b–d. The discrete linear model leads to

unimodal statistics, however the sigmoidal and logarithmic

functions lead to bimodal statistics. This is due to the fact that

the latter functions amplify small signals, as is evident in Fig. 9a. In

the next section we use these three discrete models in studies of

selective control.

Statistics of selective control
Selective control aims at changing the life/death signal of one

member of a population with a minimal change of the remaining

members of the population. We address in this section the question

of how network topology and general signal propagation

properties can be used to design strategies for selective control.

The control of the life/death signal is realized by acting with

external perturbations (drugs) on the nodes and on the signaling

flow. As we have seen in the previous sections, the characteristics

of the signaling through the network can be strongly dependent on

the OSA rule. We will see below how strategies for selectivity are

affected by these rules. General strategies for selectivity can be

inferred by analyzing the statistics of the nodes involved in

selective perturbations. For a given network topology, we can

identify the nodes that are more likely to appear in a selective

perturbation, and analyze their correlations. Important insight,

such as the role of balancing pro-apoptosis and anti-apoptosis

perturbations in selectivity, can be obtained from this analysis.

Moreover, the correlation analysis revealed that for robust

populations selective nodes tend to be the ones that produce the

stronger change in the output signal. The opposite is true in the

case of weak populations, for which selectivity is improved by

acting on nodes that produce weak signal changes in the output.

Exhaustive search in discrete models
In this subsection we carry out an exhaustive search of selective

perturbations by discretizing the control parameters and signaling

variables. In the next section, we will show how some of the key

features of selectivity statistics can be captured with a simplified

method based on linear programming optimization, which is less

demanding from a computational point of view.

We start by generating a population of different apoptosis

networks with the same topology, but random values for the initial

Figure 8. Death statistics in a heterogeneous population of 50,000
cells with co-operative non-linearity and feedback. The non-linearity
parameters used in Eq. (10) were c = 1.8, d = 1, b = 2 and all of the link
weights were chosen to be random on the interval [0,c].
doi:10.1371/journal.pone.0000547.g008
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gene expressions m0
i (t~0)[½0,M� and random strength of the links

vijM[2M,21] for inhibition, and vijM[1,M] for stimulation (M = 10

in the numerical calculations). The chosen population needs to

represent living cells, i.e. it must have the property

so,lvso; Vl, ð15Þ

where s̄o is the signal life/death threshold value, l is the index

labeling individuals in the population, and so,l is the output node

signal. We take homeostasis into account by adding the constraint

that each individual l remains alive under fluctuations on the

input nodes. After so,l has been calculated for a given input, we let

the input nodes fluctuate and we recalculate its value. If the output

of a network is less than a threshold value, that is so,l,s̄o, for ten

random fluctuations of the input nodes, then we keep the

individual l in the living population. In the analysis of selectivity,

described below, a population of 100 was chosen as the number of

different cell types in the human body is of this order. Preliminary

studies indicate that, as expected, selective control is easier for

smaller populations, provided the number of control nodes is fixed.

Once we have created a living population, we can start to study

the effect of external perturbations on the nodes. These

perturbations represent the effect of drugs that stimulate or inhibit

one or more gene. We will therefore represent the effect of the

drug by changing the gene expression levels in the nodes by dmi.

We will say that an individual l̄ can be selectively controlled if we can

find a perturbation on the gene expression levels dmi with the

property

so,�llw�sso; ð16Þ

so,lv�sso; Vl=�ll ð17Þ

Though there are 48 nodes, 11 are input nodes and one is the

output node, so there are 36 control nodes in the network. There

are M21 possible perturbations on each control node so the total

number of possible perturbations on all the nodes, (M21)36, which

is too large to be explored exhaustively. Therefore, we considered

perturbations that act only on k-subsets of all possible perturba-

tions. For k = 1 this means that we are considering only single node

perturbations, which requires a search over 36(M21) possibilities.

For k = 2 we are considering pairs of nodes, with 630(M21)2

perturbation combinations. For an arbitrary k-subset the number

of combinations is C36
k (M{1)k.

In Table 2 we present the selectivity results for ten different

populations with 100 individuals each and three different OSA

rules. The columns in the Table 2 represent different k-subsets for

the three different rules. The value for the threshold s̄o was set to 1.

Figure 9. Discrete signal death statistics. a) Relations between the normalized signal, sl/n(l), arriving at a gene and it’s discrete activity, from the top
the behaviors are for the logarithmic function, Eq. (13), the sigmoidal function, Eq. (14) and the linear function, Eq. (12). The death statistics for these
three models: b) linear function; c) sigmoidal function; d) logarithmic function. It is clear that the distribution of death activities becomes bimodal and
broader as we go from the linear function to the logarithmic function.
doi:10.1371/journal.pone.0000547.g009
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In the linear case, the average percentage of individuals that can be

selectively killed within the k = 3 subset is about 63%. We have found

that this average depends strongly on the value of the threshold, and

it decreases for higher threshold values. For instance, by setting the

threshold at s̄o = 7 the average selectivity (within the k = 3 manifold) is

reduced to 8.3%. The logarithmic and sigmoid rules give a overall

higher selectivity, with an average selectivity of 63.5% and 73.6%,

respectively, for death threshold s̄o = 1.

We have studied the statistics of nodes entering in selective

combinations. In the linear case, single-node selectivity is obtained

by acting on BAD (30), IkBa (33), NFkB (34), BAX (40), CASP3

(42), CASP7 (43) or TP53 (44). These nodes can be divided into

those that are pro- and anti-apoptosis, based on their average

effect on the output signal. Single drug selective apoptosis is

generally induced by stimulating a pro-apoptosis node, or by

inhibiting an anti-apoptosis node. For instance, nodes IkBa (33)

and NFkB (34) have on average an anti-apoptosis behavior, so they

are mainly associated with negative dm. The dotted line in Fig. 10

shows the distribution of nodes entering in all the selective

combinations found using the linear OSA rule. Notice the peaks

corresponding to the same nodes that can induce single-drug

selectivity discussed above. In the figure, we also plot the

distribution of nodes for the sigmoid (dashed line) and the

logarithmic (solid line) rules. The sigmoid and the linear rule

identify a very similar set of nodes that are more likely to enter in

selective perturbations. Both BAD (30) and CASP3 (42) are

strongly present in the linear and sigmoid model. The sigmoid rule

slightly enhances the number of combinations in which the

inhibition of anti-apoptosis genes represents the mechanism for

selectivity, see e.g. CHUCK (32), IkBa (33), NFkB (34), BIRC2

(35) and BCL2 (37). Both linear and sigmoid rules suggest that

selectivity might be better achieved by a direct up-regulation of

caspases, or by acting on pro- or anti- apoptosis proteins of the

BCL2 family. The logarithmic rule results in a different distribu-

tion, suggesting a different strategy for selectivity. Most of the

selective combinations in the logarithmic case involve nodes

upstream in the signaling network, indicating that the best strategy

for selectivity is an action on cell-membrane FAS or TNF

pathways.

Interesting correlations can be observed between the statistics of

selective and mortal perturbations. Any perturbation that kills at

least one member of the population is defined as mortal. Selective

perturbations are mortal perturbations, but there are many more

nonselective mortal combinations which kill more than one

individual in the population. Fig. 11 shows the distribution of

nodes entering in selective and mortal combinations in the case of

linear (top panel) and logarithmic OSA rules (lower panel). The

linear rule shows a strong correlation between nodes that appear

in selective combinations and nodes that appear in mortal

combinations. The correlation between the mortality and and

selectivity distribution is 0.88. The logarithmic case is completely

different (lower panel) and exhibits a strong anti-correlation

between selectivity and mortality (20.80). The anti-correlation in

the logarithmic case can be reduced by increasing the threshold,

and switches to correlation for values of the threshold larger than

the average value of the output signal. This behavior can be

understood in the following way. For a very high life/death

threshold it is very difficult to find individuals that can be killed. In

that case we can say that the population is very robust with respect

to external perturbations. Therefore, if one individual can be

killed, the perturbation that kills that individual is very likely to be

selective. We have observed that by pushing the threshold to very

high values the correlation between selectivity and mortality

approaches one. The nodes that are involved in this case are the

ones that are able to produce the strongest change in the output,

and are the same nodes usually involved in many mortal

combinations. On the other hand, if the population is weak,

nodes that are highly mortal are likely to kill more than one

individual at the same time, therefore selectivity is associated with

nodes that are less mortal, i.e. those that produce small changes in

the output signal. The robustness or weakness of a population is

determined not only by the value of the life/death threshold, but

also by the OSA rules giving different signaling statistics as

discussed in the previous section. In fact, the behavior in Fig. 11

was obtained using the same threshold (s̄o = 1). There, the

correlation/anticorrelation is a consequence of the higher

sensitivity of the logarithmic rule to external perturbations, which

implies that the population is much weaker compared to the linear

case.

We have analyzed correlations between two nodes appearing in

selective combinations. For the linear rule, this is shown in Fig. 12

using a correlation matrix plot. Darker dots indicate a higher

number of selective combinations containing the two nodes given

by the row and column of the matrix. Notice the strong presence

Table 2. Number of individuals that can be selectively
controlled in 10 populations with 100 individuals each.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Linear Sigmoid Logarithmic

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

4 22 58 1 32 76 9 30 64

2 25 61 4 35 71 9 34 62

2 21 67 4 31 77 9 28 64

3 36 68 1 37 66 10 29 58

2 30 68 3 28 74 8 32 63

2 39 71 2 33 74 9 34 62

1 26 53 3 37 76 4 30 68

1 28 60 5 31 66 10 33 63

1 28 66 3 37 76 4 30 68

1 23 57 5 37 80 10 33 63

The different columns refer to different k-subsets and different OSA rules, and
with the death threshold s̄o = 1.
doi:10.1371/journal.pone.0000547.t002..
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Figure 10. Distribution of nodes entering in selective combinations
for the Linear (dotted), Sigmoid (dashed), and Logarithmic (solid)
OSA rules.
doi:10.1371/journal.pone.0000547.g010
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of the mitochondrial BAD (30) and BAX (40), and the caspases

CASP3 (42) and CASP7(43). However, these nodes often appear

in combination with other nodes, many of which have an anti-

apoptosis character. The balance of pro and anti-apoptosis

perturbations is the key element which increases the selectivity

from 1.5% in the k = 1 case to the 63% in the three-node

perturbation. Notice also that in this linear case the nodes involved

in selective combinations are often downstream (i.e. close to the

output node) in the signaling network. We show in Fig. 13 and

Fig. 14 the same correlation matrices in the case of the sigmoid

and logarithmic OSA rules. In these models more nodes are

involved in the selective combinations. The correlation pattern for

the sigmoid rule shows strong similarities to the linear case.

However, the logarithmic rule results in a qualitatively different

pattern in the correlation matrix. Notice for instance that the role

of BAD (30), which was dominant in the linear and sigmoid rule, is

strongly reduced in this case. In contrast to the linear and sigmoid

case, nodes in long pathways dominate in the selective combina-

tions. Overall, the presence of nonlinearity in the OSA rules seems

to enhance the possibility of selective control. This is also

confirmed by the trend in the total number of k = 3 selective

combinations, being 96106, 116106, and 266106 for the linear,

sigmoid and logarithmic OSA rules, respectively.

Linear programming methods
The exhaustive search method, discussed in the previous sub-

section, for selective combinations becomes very demanding when

combinations with a large number of drugs are involved. A

different approach consists in defining an effective model for the

dependence of the output signal on the perturbations. The

Figure 12. Correlation matrix for nodes appearing in the same
selective perturbation in the linear OSA rule. Darker dots indicate that
the two nodes given by the row and column of the matrix appear more
often in the selective drug combinations.
doi:10.1371/journal.pone.0000547.g012

Figure 11. Distribution of nodes appearing in selective and mortal
perturbations in the linear (top panel) and logarithmic (lower panel)
OSA rules. The life/death threshold is set to s̄o = 1 for the two rules. The
correlation between the mortality and selectivity distributions is 0.88 for
the linear case and 2.80 for logarithmic case.
doi:10.1371/journal.pone.0000547.g011

Figure 13. Correlation matrix for nodes appearing in the same
selective perturbation in the sigmoidal OSA rule. Darker dots indicate
that the two nodes given by the row and column of the matrix appear
more often in the selective drug combinations.
doi:10.1371/journal.pone.0000547.g013
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effective model is derived from the original OSA approach using

a sensitivity analysis, and some of the selective perturbations found

with the effective model are also selective perturbations for the

original OSA problem. The advantage of the effective model is

that selective combinations can be efficiently obtained by linear

programming methods[30]. We will analyze below the statistics of

the selective combinations for the linear OSA method obtained

through the effective model. The form of the solutions in many

cases involves a number of nodes larger than three, in contrast to

the exhaustive method discussed in the previous section. The

effective method therefore provides a different sampling of the full

space of selective combinations. However, we will see that this

different sampling leads to very a similar statistics for the selective

nodes.

The output signal from a OSA can be written as

so,l(dm12,dm13,::::dm47), ð18Þ

and depends in a nonlinear way on the perturbations of the

internal nodes. A typical single node dependence is shown in

Fig. 15 for a pro-apoptosis BAD (30) and an anti-apoptosis IkBa

(33) node for two different individuals (solid and dashed lines) as

a function of the strength of the single node perturbation. Notice

that the single drug dependence follows a step-like dependence as

a consequence of the discreteness of the gene expression levels.

Moreover, due to the constraint that the activity must remain

positive, there are regions in which the dependence on the external

perturbation saturates. The effective linear model can be defined

as

so,l(dm12,dm13,:::dm47)*so,l(0)z
X47

i~12

cl,idmi ð19Þ

where the coefficient cl,i can be estimated by approximating the

single drug dependence such as the ones in Fig. 15 with a linear

dependence using interpolation methods. The linear interpolation

works well only for some nodes and individuals, since in many

cases the dependence is non-monotonic and highly nonlinear.

Moreover, notice that we are neglecting higher order many-node

effects that are included in the OSA approach. However, we will

see below that this does not affect considerably the statistics of the

genes that are more likely to appear in selective combinations. The

interpolation method also allows us to identify nodes that lead to

the highest variations of the output, and the selective combinations

can be restricted to nodes within that set. The smallest coefficients

cl,i can therefore be neglected. The reduction of the control

parameter phase space by sensitivity analysis is often a key element

in global optimization problems. This was shown explicitly in the

case of parameter identification in biochemical reaction net-

works[31,32]. Once the coefficient cl,i and the threshold value s̄o

have been fixed, the selectivity problem can be recast in the form

of a linear programming optimization problem where we

minimize the cost function

J(dm12,::::,dm47)~
X47

i~12

jdmij ð20Þ

on the polytope defined by the constraint equations

X47

i~12

cl,idmiv�sso ð21Þ

X47

i~12

c�ll,idmiw�sso: ð22Þ

The solution provided by the linear programming method is

optimal in the sense that it gives the global minimum of the

function in Eq. (20) [30].

We show in Fig. 16 the statistics of the nodes found in the linear

programming optimization (solid line) compared to the same

statistics obtained with the exhaustive search described in the

previous section (dotted line for linear, dashed line for sigmoid).

The two approaches identify basically the same nodes as the ones

that are more likely to be present in selective combinations. Notice

the strong presence of BAD (30), BAX (40) and Caspases (42–44)

Figure 14. Correlation matrix for nodes appearing in the same
selective perturbation in the logarithmic OSA rule. Darker dots
indicate that the two nodes given by the row and column of the matrix
appear more often in the selective drug combinations.
doi:10.1371/journal.pone.0000547.g014

Figure 15. Output signal as a function of the perturbation strength
on a pro-apoptosis (BAD, red increasing line) and anti-apoptosis
node (IkBa, green decreasing line). The dashed line and the solid line
refers to two different individuals.
doi:10.1371/journal.pone.0000547.g015
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in the three approaches. Also, the relatively strong peaks at IL-3R

(17), PI3K (20), and AKT3 (26) are captured by the effective

approach. These peaks suggest the possibility of selective control

by acting on the AKT signaling pathway.

We also have used the optimal control parameter dm�i obtained

with the linear programming on the original nonlinear OSA and

checked the system for selectivity. Typically, we found that the

linear programming solution is only partially selective for the

original OSA rule. The drug combinations found from the linear

programming method can selectively kill only 20% of the 100

individuals in the survivor population, which is considerably

smaller than that found using exhaustive search. However, many

selective combinations found by the linear programming approach

are quasi-selective, in the sense that they kill two/three individuals in

the population rather than one which is requirement for

selectivity. This quasi-selectivity captured by the linear pro-

gramming method is at the origin of the strong similarity in the

distributions of Fig. 16.

DISCUSSION
Analysis of the statistical behavior of genes in the apoptosis

network illustrates the importance of local connectivity on gene

activity variations. Genes which receive signals from many parallel

paths exhibit normal statistics while genes which lie at the end of

a single pathway are prone to large statistical variations and highly

skew statistics. Though non-linearity alone does not alter these

broad conclusions, the combination of non-linearity and feedback

may lead to bimodal statistics. This bimodality occurs due to

combination of feedback and bistability[20], which in our

signaling models is reflected in a sharp rise in activity with signal

strength.

The concept of selective control in heterogeneous cell popula-

tions was developed, using the apoptosis network as an illustrative

example. Selective control within a heterogeneous cell population

is the ability to control one member of the population while

leaving the other members relatively unaffected. General selective

control strategies that are only dependent on the topology of the

network and signaling rules can be inferred from analysis of

networks with random link weights. For instance, linear and

sigmoid rules identify the same set of nodes that are most efficient

in selective control. These nodes can lead to a high degree of

selectivity within a given population, especially by balancing pro-

and anti- apoptosis perturbations. We have explored two methods

for the study of selectivity. The first is an exhaustive search method

limited to three node perturbations. The second is an effective

linear model, based on interpolation of single node sensitivity, in

which the selective combinations can be found by linear

programming optimization. The two approaches identify the

same strategies for selectivity. We have also identified a general

rule that relates the life/death switching robustness of a population

to the optimal selectivity strategy. Selectivity is promoted by acting

on the least sensitive nodes in the case of weak populations, while

selective control of robust populations is optimized through

perturbations of more sensitive nodes. More generally selective

control is a computational challenge in a broad range of systems

biology problems where intervention needs to be directed at

subsets of a diverse population.

At a more practical level, high throughput experiments with

heterogeneous cell lines could be designed in such a way that the

selectivity optimization process is part of a closed-loop control

system[33]. Single drug measurements could be used to obtain

directly the sensitivity in a given heterogeneous cell population.

The linear programming optimization method can then use the

sensitivity measurements to identify selective combinations in

a model free way. The sensitivity/selectivity optimization can then

be improved through iterated experiments in which various

computational algorithms and experimental protocols are in-

tegrated.

METHODS
Two programs were used to generate the signaling statistics and to

analyse selectivity. One procedure was written in Mathematica

and the other in C++. These independent programs were used to

check the accuracy of the numerical analysis of the signaling

procedures and the signaling statistics.

The software used to run the exhaustive search tests is written in

C++ and compiled for both the Linux 32 bit and 64 bit operating

systems. We used two clusters, available at the Burnham Institute

for Medical Research, Falcon and Bsrc. Both of them are Portable

Batch System (PBS) clusters, so that they have a native

implementation of queues management enabling submission of

the same program multiple times to achieve virtual parallelism.

Falcon has 128 CPUs organized in 64 nodes and each of them is

a x86 32 bit 2.4 GHz with 1 GB of private memory; Bsrc has 128

CPU organized in 32 nodes and each of them is a x86 64 bit

2.0 GHz with 2 GB of private memory. Exhaustive search

requires an exponential computational time in the number of

nodes and projecting from the time needed for combinations of

1,2,3 nodes, that is respectively 1 minute, 1.5 hours and 7.5 hours,

we estimate that around 90 days would be needed to study all the

combinations of 4 drugs. The calculations on the continuous

models and the linear programming optimization were imple-

mented using Mathematica on a personal computer. The

NMinimize function in Mathematica finds the global minimum

when the objective function and constraints are linear.
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