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Background: Kaposi sarcoma-associated herpes virus (KSHV) is one of the most
common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The
virus has gained attention over the past few decades due to its remarkable pathogenic
mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as
polycistronic mRNAs and the functions of ORF71 and ORF72 in KSHV are already
reported in the literature. However, the function of ORF73 has remained a mystery. The
aim of this study is to conduct comprehensive exploratory experiments to clarify the role of
ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS
by bioinformatic approaches.

Methods and Results: We searched for homologues of ORF-73 and attempted to
predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing
Position-Specific Iterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and
KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to
help us identify potential markers with predominant hits and interactions in the KEGG
pathway associated with host apoptosis and cell arrest. The protein p53 is selected
because it is an important tumor suppressor antigen. To identify the potential roles of the
candidate markers at the molecular level, we used PSIPRED keeping the conserved
domains as the major parameters to predict secondary structures. We based the FUGE
interpretation consolidations of the sequence-structure comparisons on distance
homology, where the score for the amino acids matching the insertion/deletion (indels)
detected were based on structures compared to the FUGE database of structural profiles.
We also calculated the compatibility scores of sequence alignments accordingly. Based
on the PSI-BLAST homologues, we checked the disordered structures predicted using
PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further
applied these HMMs models based on the alignment of constructed 3D models between
the known structure and the HMM of our sequence. Moreover, stable homology and
January 2020 | Volume 10 | Article 13761

https://www.frontiersin.org/article/10.3389/fgene.2019.01376/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01376/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01376/full
https://loop.frontiersin.org/people/795733
https://loop.frontiersin.org/people/789865
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:guxf@sumhs.edu.cn
https://doi.org/10.3389/fgene.2019.01376
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01376
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01376&domain=pdf&date_stamp=2020-01-24


Zhang et al. Identification of AIDS-Associated Kaposi Sarcoma

Frontiers in Genetics | www.frontiersin.org
structurally conserved domains confirmed that ORF-73 maybe an important prognostic
marker for AIDS-associated KS.

Conclusion: Collectively, similar variants of ORF-73 markers involved in the immune
response may interact with targeted host proteins as predicted by our computational
analysis. This work also suggests the existence of potential conformational changes that
need to be further explored to help elucidate the role of immune signaling during KS
towards the development of therapeutic applications.
Keywords: herpesvirus, immune evasion, sequence homology, protein–protein interactions, AIDS, ORF-73
INTRODUCTION

Pre-existing human immunodeficiency virus (HIV) infections
affect the immune system increasing the risk for development of
Kaposi sarcoma (KS). Since the discovery of Kaposi sarcoma-
associated herpesvirus (KSHV), also termed human herpesvirus
8 (HHV8), the tumor development and oncogenesis were
associated with co-expression of different genes (Barré-Sinoussi
et al., 1983; Gelmann et al., 1983). KS is a common type of cancer
associated with blood vessels and lymph nodes. Soon after the
discovery of HIV-1, scientists discovered g-herpesvirus in KS
lesions (Chang et al., 1994). Now that the full KSHV genome has
been sequenced, it fulfils Koch's modern postulates linking the
KS cancer initiation to the oncogenic virus (Russo et al., 1996; zur
Hausen, 2001). KSHV is a key viral pathogen in cancer biology
affecting humans and its discovery promoted clinical and
epidemiological research into viral oncology (Chang et al.,
1994). However, many questions remain unanswered due to
the significant mortality and rapid morbidity of those affected by
HIV-1 and KSHV (Parkin, 2006; Sinfield et al., 2007; Dittmer
and Damania, 2019; Gaur et al., 2019).

In fact, KS was named after Dr. Moritz Kaposi, a prominent
Hungarian dermatologist, who described KS as an ‘idiopathic
pigmented sarcoma of the skin' in 1872 (Kaposi, 1872). The
evolved gamma-herpesviruses have been classified into many
subfamilies (Roizman et al., 1981) and produce many viral gene
products capable of subverting the normal cellular machinery
through processes involving apoptosis, cell cycle progression,
antiviral responses, and immune surveillance resulting in
alterations in master cell signaling pathways to establish a
persistent host infection. The double-stranded KSHV genome
(124–174 kb) is enclosed in an icosahedral capsid composed of
162 capsomeres with many of its ORFs being conserved in alpha-
and beta-herpesviruses, but absent from other herpesviruses.

The KSHV is closely related to the subfamily Rhadinoviridae
(gamma-2-herpesviruses), which is also close to the Herpes virus
saimiri (HVS); therefore, similarities between ORFs of KSHV
and HVS may influence the pathogenesis of KS (Schäfer et al.,
2003). The HVS genome exists as a stable non-integrated circular
episome in altered human and simian T cells. A group of genes,
ORF71, ORF72, and ORF73, are located at the right end of the L-
DNA and are expressed as polycistronic mRNAs (Fickenscher
et al., 1996). Initial studies discerned that both KSHV and HVS
ORF71 encode the anti-apoptotic FLICE inhibitory protein
2

(vFLIP) (Thome et al., 1997), although HVS ORF71 is not
mandatory for viral replication, transformation, or
pathogenicity (Glykofrydes et al., 2000). ORF72 produces a v-
Cyclin D homolog which is important for transformation of
human T lymphocytes (Ensser et al., 2001). However, the
function of ORF73 has remained a mystery. Therefore,
developing and conducting comprehensive exploratory
experiments to clarify the role of ORF73 in KSHV pathology
is important.

Typically, the phenotypic features of KS initially appear on
the face, legs, or feet as painless red spots but, in severe cases, the
lesions also appear in the lungs and digestive tract (Bhutani et al.,
2015; Yarchoan et al., 2015). KSHV is considered an oncogenic
human virus (Martin et al., 1998). People with weak immune
systems are more susceptible to HHV-8 infection (triggering KS
development). Even with the availability of the anti-retroviral
treatment [HAART], the prevalence of AIDS-associated KS has
not declined significantly (Nguyen et al., 2008). Although KSHV
infection is important for the onset of KS, additional factors must
be present to allow the establishment of the lesions. The chance
of infection is one in 100,000 among the general population, but
only around one in 20 among HIV-infected individuals (La Ferla
et al., 2013). The chance of acquiring the infection was one in
three among HIV-infected individuals before the introduction of
HAART (Beral et al., 1990; Gallo, 1998). Epidemiological
observations from incidence rates in endemic areas suggest
that HIV-negative individuals with KSHV infections never
develop KS due to the role of immunological host factors
including immune-response genes and genetic polymorphisms
of the inflammatory modulators (Cottoni et al., 2004; Gazouli
et al., 2004; Dorak et al., 2005).

KSHV infection of endothelial and/or hematopoietic
progenitors (Della Bella et al., 2008) alter their morphology
(Moses et al., 1999), growth rate, gene expression (Flore et al.,
1998; Ciufo et al., 2001), and glucose metabolism (Delgado et al.,
2010), leading to development of KS. Antibody titers specific for
KSHV correlate with its viral load. Among individuals with low
viral load, antibody titer concentrations may be too low for
current serological assays to identify them. Identification of
circulating biomarkers in KSHV-associated disease may help in
predicting clinical outcomes (Aka et al., 2015). Immune
modulatory and evasion proteins of KSHV modulate cellular
responses associated with complement activation, autophagy,
IFN family signaling, chemokines, natural killer cells, and
January 2020 | Volume 10 | Article 1376
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apoptosis (Liang et al., 2008). They are located in a region of the
viral capsid that is rich in a protein known as tegument. Six
tegument proteins have been identified: ORF21, ORF33, ORF45,
ORF63, ORF64, ORF73 and ORF75. Among these, the roles of
ORF63 and ORF64 in immune evasion have been elucidated
(Zhu et al., 2005; Gregory et al., 2011). We focused on the
identification of the role of ORF73 in KSHV. The ORF73 gene
encodes the HHV-LANA1 viral proteins that have been linked
with AIDS-associated KS, indicating an association between HIV
and ORF73. For our computational study, we hypothesized that
ORF-73 is a viral proliferation factor based on studies on KS and
on its interactions with the host gene p53 (Woodberry et al.,
2005). The importance of ORF-73 for cellular host apoptosis
through the p53 signaling pathway and p53 is in order of ORF-73
which illustrates the molecular mechanism of this key biomarker
associated with KS (Duus et al., 2004).

The variability in KS lesions observed in histopathological
assays include spindle cell hemangiomas, cutaneous
ang iosarcomas , vascu lar l e iomyomas , and fibrous
histiocytomas (Hunt et al., 2004). Endothelial biomarkers, such
as CD31 and CD34, bcl-2, c-kit, Ki-67, and p53, have been used
to distinguish nonvascular spindle sarcomas from angiosarcomas
(Weeden, 2002; Fukunaga, 2005). Hence, investigating the HHV-
latent associated nuclear antigen-1 (LANA-1) viral protein
encoded by ORF-73 is important to identify markers for
AIDS-associated KS. Also, studying its interactions may help in
the development of preventive strategies and therapeutic options
against KS. In this study, we used advanced bioinformatics tools
and approaches to identify KS markers Supplementary Figure 1.
MATERIALS AND METHODS

Selection of Markers
We used publicly available databases including the National
Centre for Biotechnology Information (NCBI), GeneCards
(Hou et al., 2017) and UniProtKB (Tang et al., 2013) to
identify potential markers of KS and selected the most specific
ones using “Kaposi's sarcoma” as a keyword. Human protein
markers were further ran through a BLAST search for homology
sequences. We extracted ORF-73 sequences from the NCBI
database search using the accession number AAC57158.1.
These are the exact URLs of the searched databases we used to
identify markers associated with KS : GeneCards https://
genecards.weizmann.ac.il/v3/index.php?path=/Search/keyword/
kaposi%20sarcoma%20markers/0/20; UniPortKB https://www.
uniprot.org/uniprot/?query=kaposi+sarcoma&sort=score; and
NCBI https://www.ncbi.nlm.nih.gov/protein/?term=ORF-73%
20kaposi%20sarcoma).

Bioinformatics: Sequence
Computational Analysis
We used publicly available internet-based protein search tools
and bioinformatics programs with default settings, unless
otherwise stated in the text, for the analysis. We tested selected
protein sequences to identify conserved domains from NCBI and
Frontiers in Genetics | www.frontiersin.org 3
BLAST algorithms, and we used the PSIPRED program to
predict the secondary structure of proteins based on the
conserved domain sequences. We further executed a position
specific iterative BLAST (PSI-BLAST) search to build a PSSMs
(position specific score matrix), which could predict the
secondary structure of the input sequences (Majerciak et al.,
2015) to predict secondary structures of the selected conserved
domains based on multiple sequence alignment related proteins
spanning a variety of organisms to reveal sequence regions
containing the same, or similar, patterns of amino acids. We
submitted the primary sequence of ORF-73 to FUGUE to show
the sequence-structural homology by identifying distant
sequence-structure homologues and alignments comparing
amino acid insertions/deletions (Shi et al., 2001). We used
BLASTp and PSI-BLAST (non-redundant protein databases)
for pattern specific profiling (Bujnicki and Rychlewski, 2001).
Gene Ontology and Pathway
Enrichment Analysis
We chose the ORF-73 target effector to perform a Gene Ontology
(GO) search, is a hierarchical graph-based annotation system
where the terms closer to the root describe more general
information while those away from the root provide more
specific information about a given GO category and all the GO
terms associated with a protein sequence were obtained from the
GO database. The KEGG network pathway enrichment analysis
by collecting data of related genomes and their pathways
associated with diseases (Yan et al., 2013) and we set a P value
<0.05 as the cut-off criterion.
Protein–Protein Interaction (PPI)
Network Analysis
We used the online Search Tool for the Retrieval of Interacting
Genes (STRING) (Franceschini et al., 2013) and GeneMania
(https://genemania.org/) to analyze interactions associated with
KS among the proteins encoded by the DEGs. The two parts of
GeneMania algorithm consists of an algorithm based on linear
regression to calculate functional association from multiple
networks from different data sources; and a label predicting
gene function of composite network. We employed keywords
such as—ORF73 to determine interacting partners. This was
pursued using downstream regulator p53 as an apoptosis marker
during pathogenesis in the host. Moreover, the marker protein
was used for transient interaction study.
PPI Biochemical Analysis
We immobilized His-tag, GST-tag, or biotin-tag bait proteins to
an affinity resin and incubated them with solution expressed
proteins as prey proteins. We then captured the bound bait and
pulled down the cell lysate flow through. Subsequently, we used
mass spectrometry (MS) or Western blots to confirm
interactions. Using this technique, we determined interacting
protein partners of relevant proteins (Einarson, 2001;
Arifuzzaman et al., 2006).
January 2020 | Volume 10 | Article 1376
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RESULTS

Homology Search and KS Marker
Identification
Annotations used to search for the KS-associated markers in the
UniProtKB database quoted about 137 entries, which we then
screened to find those with computationally annotated data.
Search engine GeneCards reported about 369 KS markers with a
relevance score. Table 1 lists the markers with the top ten scores.

We found61 ORF-73 marker homologous hits related to the
family of human gamma herpes virus 8 with varied E-values. Out
of these, we used only the most identical sequence (based on
sequence identity was measured by matched by dividing the
length of region aligned match), AAC57158.1, for our
computational analyses. A search for proteins similar to the
selected marker ORF-73 resulted in8 protein accessions (ORF21,
ORF33, ORF45, ORF63, ORF64, and ORF75), and 2 CDS regions
(accession numbers AAC57158.1 and AAC55944.1).

Domain Prediction and Structural Profile
We looked for conserved domains in the marker protein ORF-73
based on hypothetical domain sequences using literature
recapitulation NCBI's Conserve Domain Database (CDD). To
identify potential marker roles at the molecular level, we focused
on its predicted secondary structure. Therefore, we searched for
hypothetical protein having conserved domain and used
accession number AAC5744 of gi.1633572 in an NCBI domain
search and found only one significant hypothetical conserved
domain (PHA03169) with the same accessison number (Figure
1). We then used PSIPRED to predict the secondary structure,
noted the conserved domains (Figure 2) and highlighted the
regions with different markers to predict the secondary
structures. FUGE interpretation consolidations of the
sequence-structure comparison were based on distance
homology, where the score for the amino acids matching the
insertion/deletion (indels) detected were based on structures
compared to the FUGE database of structural profiles and we
calculated the compatibility scores of sequence alignment
accordingly (Table 2).
Frontiers in Genetics | www.frontiersin.org 4
TABLE 1 | GeneCards and UniPortKB databases used to choose the top-most
scored identities of markers associated with KS.

GeneCard database

Sl.
No

Symbol Description GC id Score

1 KRT15 Keratin 15 GC17M039675 1.58
2 OSM Oncostatin M GC22M030658 1.58
3 TAT Tyrosine aminotransferase GC16M071599 1.27
4 MKI67 Marker of proliferation Ki-

67
GC10M129894 1.14

5 CD34 CD34 molecule GC01M208057 1.11
6 PTX3 Pentraxin 3, long GC03P157154 1.09
7 PECAM1 Platelet/endothelial cell

adhesion molecule 1
GC17M062399 1.01

8 FLI1 Fli-1 proto-oncogene,
ETS transcription factor

GC11P128596 1.01

9 IFNA2 Interferon, alpha 2 GC09M021374 1.01
10 ACTC1 Actin, alpha, cardiac

muscle 1
GC15M035080 0.99

Uniport KB database
Sl.
No.

Entry name Protein name Entry Gen name

1 MIR1_HHV8P E3 ubiquitin-protein ligase
MIR1

P90495 K3

2 MIR2_HHV8P E3 ubiquitin-protein ligase
MIR2

P90489 K5

3 GB_HHV8P Envelope glycoprotein B F5HB81 gBORF8
4 ARBH_HHV8P Apoptosis regulator Bcl-2

homolog
F5HGJ3 vBCL2

ORF16
5 SCAF_HHV8P Capsid scaffolding protein Q2HRB6 ORF17
6 OX2V_HHV8P OX-2 membrane

glycoprotein homolog
P0C788 K14

7 GN_HHV8P Envelope glycoprotein N F5HFQ0 gN ORF53
8 GM_HHV8P Envelope glycoprotein M F5HDD0 gM ORF39
9 ORF45_HHV8P Protein ORF45 F5HDE4 ORF45
10 VMI2_HHV8P Viral macrophage

inflammatory protein
Q98157 ORF K4

11 VIRF1_HHV8P VIRF-1 F5HF68 vIRF-1
12 ICP27_HHV8P mRNA export factor

ICP27 homolog
Q2HR75 ORF57

13 GH_HHV8P Envelope glycoprotein H F5HAK9 gH ORF22
14 AN_HHV8P Shutoff alkaline

exonuclease
Q2HR95 ORF37

15 LANA1_HHV8P Protein LANA1 Q9QR71 LANA1
ORF73
January 202
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FIGURE 1 | Conserved hypothetical protein domain of PHA03169 in reference to the ORF-73 of Human gamma herpesvirus 8,E-value 38e−18.
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Using PSI-BLAST, we confined the search of HHV-latency-
associated nuclear antigen homology to ORF-73 homologs. The
DNA binding of viral protein associated with HHV-8 LANA
sheltered 134 residues covering 12% of the sequence with 100%
confidence based on the single highest scoring template of c4k2jB
(Figures 3 and 4). 598 residues covering 51% could be modelled at
>90% confidence using multiple-templates. We submitted the top-
ranking model of the protein (c4k2jB, 100.0% confidence) to the
3DLigandSite (Wass et al., 2010) server to predict potential binding
sites. Based on PSI-BLAST homologues, the predicted disordered
structures were checked using PSI-Pred (Jones, 1999) and DISO-
Pred (Jones and Cozzetto, 2015) for generating a hidden Markov
model (HMM). The models were based on the alignment of the
Frontiers in Genetics | www.frontiersin.org 5
constructed 3D models between the known structure and the
HMM of our sequence predicting the3-states—a-helix, b-strand
or coil (“SS” indicates the predicted confidence; middle orange,
yellow, and green indicate the confidence of prediction).

Gene Expression and Pathway Prediction
The exclusive over-expression of HHV-8 LANA-1 in KS confirms
significant sensitivity and specificity. The domain is conserved in
the HHV-8 and ORF-73, suggesting its expression during viral
latency and allowing it to interact with p53, thereby inducing the
apoptosis pathway. The evidence from another study indicates
abnormal expression of p53 in the nodular region and metastatic
lesion of angiosarcomas (rather than in the primary lesion) (Yee-
Lin et al., 2018). To account for this, the lead p53 in KS was taken
with reference to the database for a herpes virus-associated infection
model so as to understand the immune evasion with a detailed
pathway demonstrating the dominant role of a p53 oncogene in
KSHV- (Figure 5). The tumor suppressor antigen p53 depends on
cellular conditions inducing arrest of the cell growth and controlling
cell division. This process inhibits cyclin-dependent kinases
mediated by the expression of BAX and FAS antigens or by the
repression of the Bcl-2expression (Kanashiro et al., 2003).
Addressing the markers involved in the cell-cycle arrest is
important to understand the molecular evolution of KS and for
work towards its eradication. We examined PPIs to explore the
complex biochemical interactions and molecular functions of
proteins of interest with cellular components, as reported in
Table 3. Table 3 also presents the functional enrichment of p53
including its biological process, molecular functions, and cellular
components. The effector p53 is directly involved in the arrest of the
FIGURE 2 | Overview of the ORF-73 secondary structure prediction. The predicted structural positions incorporate two feed-forward neural networks obtained from
PSI-BLAST.
TABLE 2 | Structure of Kaposi sarcoma marker ORF-73 predicted based on an
environmental-specific substitution table and its structure-dependent gap
penalties.

Sl. No. Profile Hit PLEN RAWS RVN ZSCORE

1 hs4blga 121 −755 247 24.21
2 hs2ap3a 191 215 8 17.29
3 hs2qiha 136 −822 10 16.57
4 hs2p03a 323 249 21 14.78
5 hs1i4da 188 157 33 14.61
6 hs4cgka 351 325 115 13.67
7 hs2eqbb 93 −880 5 13.53
8 hs1fxka 103 168 19 13.45
9 hs1owaa 156 166 6 13.28
10 hs4hpqc 396 −555 5 12.92
PLEN, Profile length; RAWS, Raw alignment score; RVN, (Raw score)-(Raw score for
NULL model); ZSCORE, Z-score normalized by sequence divergence (evolutionary rela-
tionship associated with a score >5.0 to the sequences are compared to each other);
ZORI, Original Z-score (before normalization).
January 2020 | Volume 10 | Article 1376

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. Identification of AIDS-Associated Kaposi Sarcoma
G1/S cell-cycle progression from normal to cancerous cells (Chen,
2016). Analysis of PPI with STRING showed an enriched p-value of
1.31e−05 with respect to the network having significantly more
interactions than expected with 11 nodes, 47 edges, an average node
degree of 8.55 and an average local cluster coefficient of 0.919
(Figure 6). The functions of the protein p53, a tumor protein, are
associated with various expression levels during oncogenesis.
GeneMania predicted various valuable functions of the query
protein and interacting partners associated with it (Figure 7).

Pulldown Strategy and Protein Interaction
Prediction for Biomarker Selection
Pull-down assays serve as a complementary method to further
validate the predicted interactions in a quantitative manner
towards understanding their dissociation constants and relative
bindings of proteins and their direct binding sites. However, this
is beyond the scope of this study. We believe the following
recommendations should be followed by researchers
investigating transient protein interactions: First, determining
Frontiers in Genetics | www.frontiersin.org 6
the protein solubility is essential. If the prey protein is at a too-
high concentration, it will not be sufficiently soluble. Second,
shortening the time and adjusting buffer conditions of
incubation help prevent prey protein degradation. Third,
checking the prey protein with beads if bait protein is not
bound should be done as a control. Fourth, conducting all
assays at a constant temperature of 4 °C should be considered
if a variation in Kd is found between repeated experiments.

The tumor suppressor antigen p53 depends on specific
cellular conditions to induce arrest of cell growth and to
control cell division (Pucci et al., 2000; Chen, 2016).

Our network analysis (entry N00170, class nt06164) showed
involvement of LANA and other effector markers in KS
conditions and helped elucidate their mechanisms of action
(Figure 8, Table 4). Therefore, we suggest that ORF-73 is an
important protein that may be a useful biomarker for AIDS-
related KS. Studies have suggested a linkage between ORF-73 and
host apoptosis through p53 signaling pathways (Tornesello et al.,
2018), that could represent a molecular mechanism for the
predicted markers associated with KS. Our study discovered
KS-associated markers which trigger cancer. ORF-73 encodes
LANA-1 virtual proteins of KSHV, linking them with AIDS-
associated KS, by their interaction with several cellular processes
which include cell apoptosis (through p53) and inhibition of
downstream transcriptomic performance. The association
between HIV and ORF73 can be inferred by these findings.
DISCUSSION

Many viral genes are homologous to host cellular genes in KSHV
(Swanton et al., 1997). The PubMed, Google Scholar, and Scopus
searches confirmed the key diagnostic markers for KS based on the
available literature. Our computational study on them revealed
their importance and evolutionary role in human cancer biology.
LANA-1 imparts important immunogenic effects to KSHV, and it
specifically interacts with many cellular pathways, including that
of cell apoptosis (through its interaction with p53, and repression
of downstream transcripts; see Table 4). This induces oncogenesis
by targeting the protein-E2F transcriptional regulatory pathway
(Radkov et al., 2000). The protein homologues identified through
our search were structurally different from each other. Therefore,
we analyzed selected proteins and compared them using
homology searches for the selected domains to prove
FIGURE 3 | Highest scored template c4k2jB chain B structure.
FIGURE 4 | Decameric ring structure of KSHV HHV-LANA DNA binding
domain with dimensions (X:40.909, Y:43.389, and Z:44.674).
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interactions with other host proteins that trigger and induce
cancer in individuals with immunosuppression (Kersse et al.,
2011). Hyper mutation and conserved structural sequence
similarities help to maintain key aspects of secondary and
tertiary structures, which were consistent with the
computational analyses in our study (Huang et al., 2002). Figure
5 shows the KSHV infection pathway from KEGG. We
highlighted the reference pathway using a red box that shows
that LANA is associated with the p53 signaling pathway. A BLAST
homology search confirmed an ORF-73 marker interaction during
herpesvirus pathogenesis. The results of STRING and KEGG
searches suggested ORF-73 interacts with the host p53.

ORF-73 is not the only protein marker implicated in KS
pathology, but much about it remains unknown. It is used as a
marker for KSHV; especially, its protein folding and motifs are
important for the marker assessment observed in the pattern of
structural domains in the selected sequence analyzed with PSI-
PRED. The pathogenic interactions in the network-based analysis
between LANA and the host p53 suggest that LANAwas confirmed
by STRING and FUGUE tools. The predicted sequence motifs give
detailed interactions that are conserved in the subfamilies of the
herpesviruses as discussed in detail on the KEGG pathway with
Frontiers in Genetics | www.frontiersin.org 7
notable mechanisms described in the literature (Schulz, 2000;
Direkze and Laman, 2004; Sharma-Walia et al., 2004; Mesri et al.,
2010). However, the markers associated with KS need to be
incorporated into comprehensive clinical cohort studies, designed
using differential protein purification techniques and evidence-
based knowledge on protein interactions with bait proteins to
develop practical medical applications in the future.

Many PPIs have been elucidated using pull-down assays to
map the genomes of many organisms, such as yeast (Valente
et al., 2009), Escherichia coli (Arifuzzaman et al., 2006)
Caenorhabditis elegans (Remmelzwaal and Boxem, 2019).

Like all other herpesviruses, KSHV displays latency and a lytic
life cycle replication that are characteristic of some viral gene
expressions. The genes LANA, v-FLIP, v-cyclin, and Kaposins A, B,
and C for latency facilitate the establishment of life in its host and
survival against host immune mechanisms. During latency,
proteins expressed as K1, K15, vIL6, vGPCR, vIRFs, and vCCLs
participate in inflammatory and angiogenic processes evident in KS
lesions. Many other lytic and latent viral proteins are involved in
the transformation of KSHV host cells into malignant cells. Also,
Bcl-2 is one of the major KS progression factors, and TP53 and c-
myc have a role in the progression of disease. KS pathology is
FIGURE 5 | The Kaposi sarcoma-associated herpesvirus infection pathway from KEGG. Reference pathway highlighted using red box shows that LANA is
associated with p53 signaling pathway which confirms the predictable role of the ORF-73 protein in the KS associate marker protein.
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interconnected with immune modulation effects such as cell cycle
arrest in the host cell, which is required for pathogenic conditions
and is mitigated by modulating key factors such as LANA.

Likewise, measuring the expression level and identifying the
function of the encoded protein products is important to
understand the pathogenesis of KS. We used a methodology
similar to that in co-immunoprecipitation (Co-IP) experiments
because of our ligand's affinity to capture the strongest interacting
proteins (Lapetina and Gil-Henn, 2017). MS identifies subunits
and helps explore the structural information associated with the
protein of interest (Byrum et al., 2012). Dynamic PPI machines
assemble or disassemble the ever-changing inter-, intra-, and
extracellular influx cues as a preliminary step towards
understanding the structure of proteins and to determine their
functions to identify the relevant pathways of interacting proteins
(Einarson, 2001; Vikis and Guan, 2004; Einarson et al., 2007). The
role and important reason to select ORF-73 in the study is that
TABLE 3 | Functional enrichment of p53.

Biological process (GO)

Sl.
No

GO-term Description Count in
gene set

False
discovery

rate

1 GO:0016579 Protein deubiquitination 10 of 275 3.83e−15
2 GO:0007249 I-kappaB kinase/NF-kappaB

signaling
8 of 70 3.83e−15

3 GO:0035666 TRIF-dependent toll-like receptor
signaling pathway

6 of 24 8.43e−13

4 GO:0051092 Positive regulation of NF-kappaB
transcription factor activity

5 of 2142 6.64e−11

5 GO:0070423 Nucleotide-binding
oligomerization domain

5 of 27 4.65e−10

Molecular function (GO)

1 GO:0031625 Ubiquitin protein ligase binding 5 of 311 4.44e−05
2 GO:0042975 Peroxisome proliferator activated

receptor binding
2 of 10 0.00062

3 GO:0019899 Enzyme binding 7 of 2197 0.0012
4 GO:0042802 Identical protein binding 6 of 1754 0.0032
5 GO:0032813 Tumor necrosis factor receptor

superfamily binding
2 of 46 0.0052

Cellular components (GO)

1 GO:0043657 Host cell 4 of 29 2.76e−07
2 GO:0030666 Endocytic vesicle membrane 5 of 152 2.90e−07
3 GO:0098805 Whole membrane 8 of 1554 3.85e−06
4 GO:0012506 Vesicle membrane 6 of 743 1.69e−05
5 GO:0005741 Mitochondrial outer membrane 4 of 181 3.05e−05
KEGG pathway

1 hsa04668 TNF signaling pathway 4 of 108 1.27e−05
2 hsa04064 NF-kappa B signaling pathway 4 of 93 1.27e−05
3 hsa05160 Hepatitis C 4 of 131 1.60e−05
4 hsa04210 Apoptosis 4 of 135 1.60e−05
5 hsa05167 Kaposi's sarcoma-associated

herpesvirus infection
4 of 183 3.53e−05

Reactome pathways

1 HSA-5357956 TNFR1-induced NFkappaB
signaling pathway

9 of 30 3.98e−21

2 HSA-5357905 Regulation of TNFR1 signaling 9 of 32 3.98e−21
3 HSA-5689880 Ub-specific processing proteases 10 of 202 1.94e−17
4 HSA-6804757 Regulation of TP53 Degradation 7 of 35 2.30e−15
5 HSA-5675482 Regulation of necroptotic cell

death
6 of 17 2.63e−14

UniPort keywords

1 KW-0832 Ubl conjugation 9 of 2380 1.28e−05
2 KW-0013 ADP-ribosylation 4 of 100 1.28e−05
3 KW-1017 Isopeptide bond 7 of 1713 0.00017
4 KW-0945 Host–virus interaction 4 of 432 0.00094
5 KW-0963 Cytoplasm 9 of 4972 0.0015
PFAM Protein Domains

1 PF14560 Ubiquitin-like domain 4 of 14 3.12e−09
2 PF11976 Ubiquitin-2 like Rad60 SUMO-like 4 of 21 6.44e−09
3 PF00240 Ubiquitin family 4 of 46 7.76e−08
4 PF02201 SWIB/MDM2 domain 2 of 5 2.86e−05
5 PF00641 Zn-finger in Ran binding protein

and others
2 of 16 0.00017

INTERPRO Protein Domains and Features

1 IPR019956 Ubiquitin 4 of 12 1.83e−09
2 IPR019954 Ubiquitin conserved site 4 of 10 1.83e−09
3 IPR000626 Ubiquitin domain 4 of 57 3.14e−07
4 IPR016495 p53 negative regulator Mdm2/

Mdm4
2 of 2 1.46e−05

5 IPR029071 Ubiquitin-like domain superfamily 4 of 184 1.75e−05

(Continued)
TABLE 3 | Continued

Biological process (GO)

Sl.
No

GO-term Description Count in
gene set

False
discovery

rate

SMART Protein Domains

1 SM00213 Ubiquitin homologues 4 of 45 6.77e−08
2 SM00005 DEATH domain, found in proteins

involved in cell death
2 of 27 0.00035

3 SM00184 Ring finger 3 of 308 0.0012
January 2020 | V
olume 10 |
FIGURE 6 | Protein–protein interactions (PPI) between cell arrest marker p53
of cancer cell and Ubiquitin Specific Peptidase 2 (USP2). TNF receptor-
associated factor 2 (TRAF2), tumor necrosis factor receptor superfamily
member 1A (TNFRSF1A), polyubiquitin-C (UBC), protein Mdm4, E3 ubiquitin-
protein ligase Mdm2, ubiquitin-40S ribosomal protein S27a, polyubiquitin-B
(UBB), NF-kappa-B essential modulator (IKBKG), receptor-interacting serine/
threonine–protein kinase 1 (RIPK1), and Ubiquitin-60S ribosomal protein L40
(UBA52) play important roles in the regulation of cell survival and apoptosis.
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encoding LANA protein distinct domain induces a putative
nuclear localization signal (NLS), which product shown
interacting with many co-cellular p53, pRb, and ATF4/CREB2.
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LANA also modulates transcriptional activity of HIV-1 long
terminal repeat and to understand the how ORF-73 appears to
prevent activity of KS-associated genes was new to know to make
FIGURE 7 | (A) Tumor protein 53 (TP53) network analysis and (B) members of the complex pathway and genes with co-expression, co-localization, genetic
interactions and specific functions.
FIGURE 8 | Network map of KEGG for the selected KS protein marker LANA. Protein downstream effect in the cell cycle of disease progression with pooled
effectors in cell cycle arrest at G1/S and KS activating mechanisms.
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preventive strategy (Schäfer et al., 2003). Our findings may help
researchers planning cancer prevention strategies, but we used
common computational analyses alone, and future studies with
expression and interaction analyses should be used to confirm our
results and generate treatment options for KS.

CONCLUSION

Our computational studies found that ORF-73 is involved in host
apoptosis through p53 signaling pathways and is a key marker
associated for Kaposi Sarcoma. This study also identified
potential KS-associated genes which are reported to trigger
cancer and suggested mechanisms of interaction that may help
researcher developing prevention strategies.
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TABLE 4 | Identities of associated markers, downstream signaling candidates,
and linked pathways during Kaposi sarcoma pathogenesis.

Sl.
No

Entry Description

1 N00216 HGF-MET-RAS-ERK signaling pathway
2 N00160 KSHV K1 to RAS-ERK signaling pathway
3 N00188 IL1-IL1R-JNK signaling pathway
4 N00189 KSHV K15 to JNK signaling pathway
5 N00186 IL1-IL1R-p38 signaling pathway
6 N00187 KSHV Kaposin B to p38 signaling pathway
7 N00182 IGF-IGFR-PI3K-NFKB signaling pathway
8 N00179 KSHV K1 to PI3K-NFKB signaling pathway
9 N00030 EGF-EGFR-RAS-PI3K signaling pathway
10 N00159 KSHV K1 to PI3K signaling pathway
11 N00056 Wnt signaling pathway
12 N00175 KSHV LANA to Wnt signaling pathway
13 N00053 Cytokine-Jak-STAT signaling pathway
14 N00181 KSHV vIL-6 to Jak-STAT signaling pathway
15 N00147 EGF-EGFR-PLCG-calcineurin signaling pathway
16 N00180 KSHV K1 to PLCG-calcineurin signaling pathway
17 N00172 KSHV K15 to PLCG-calcineurin signaling pathway
18 N00148 TLR3-IRF7 signaling pathway
19 N00162 KSHV vIRF3 to TLR3-IRF7 signaling pathway
20 N00163 KSHV KIE1/2 to TLR3-IRF7 signaling pathway
21 N00149 TLR3-IRF3 signaling pathway
22 N00161 KSHV vIRF1/2 to TLR3-IRF3 signaling pathway
23 N00463 Alternative pathway of complement activation
24 N00213 KSHV Kaposin to alternative pathway of complement activation
25 N00150 Type I IFN signaling pathway
26 N00261 KSHV vIRF2 to IFN signaling pathway
27 N00151 TNF-NFKB signaling pathway
28 N00174 KSHV vFLIP to TNF-NFKB signaling pathway
29 N00173 KSHV K15 to TNF-NFKB signaling pathway
30 N00171 KSHV vFLIP to NFKB signaling pathway
31 N00152 CXCR-GNB/G-ERK signaling pathway
32 N00157 KSHV vGPCR to GNB/G-ERK signaling pathway
33 N00153 CCR/CXCR-GNB/G-PI3K-RAC signaling pathway
34 N00462 KSHV vCCL1/2/3 to CCR signaling pathway
35 N00212 KSHV vCCL2 to CCR signaling pathway
36 N00178 KSHV vGPCR to GNB/G-PI3K-JNK signaling pathway
37 N00154 CXCR-GNB/G-PI3K-AKT signaling pathway
38 N00158 KSHV vGPCR to GNB/G-PI3K-AKT signaling pathway
39 N00363 Antigen processing and presentation by MHC class I molecules
40 N00184 KSHV MIR1/2 to antigen processing and presentation by MHC

class I molecules
41 N00185 KSHV MIR2 to cell surface molecule-endocytosis
42 N00155 Autophagy-vesicle nucleation
43 N00177 KSHV vBCL2 to autophagy-vesicle nucleation
44 N00156 Autophagy-vesicle elongation
45 N00176 KSHV vFLIP to autophagy-vesicle elongation
46 N00066 MDM2-p21-Cell cycle G1/S
47 N00167 KSHV vIRF1/3 to p21-cell cycle G1/S
48 N00169 KSHV LANA to p21-cell cycle G1/S
49 N00168 KSHV vCyclin to cell cycle G1/S
50 N00170 KSHV LANA to cell cycle G1/S
51 N00146 Crosstalk between extrinsic and intrinsic apoptotic pathways
52 N00166 KSHV vFLIP to crosstalk between extrinsic and intrinsic

apoptotic pathways
53 N00164 KSHV vBCL2 to crosstalk between extrinsic and intrinsic

apoptotic pathways
54 N00165 KSHV vIAP to crosstalk between extrinsic and intrinsic

apoptotic pathways
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