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Patients of the same cancer may differ in their responses to a
specific medical therapy. Identification of predictive molecular
features for drug sensitivity holds the key in the era of precision
medicine. Human cell lines have harbored most of the same ge-
netic changes found in patients’ tumors and thus are widely
used in the research of drug response. In this work, we formu-
lated drug-response prediction as a recommender system prob-
lem and then adopted a neighbor-based collaborative filtering
with global effect removal (NCFGER) method to estimate
anti-cancer drug responses of cell lines by integrating cell-
line similarity networks and drug similarity networks based
on the fact that similar cell lines and similar drugs exhibit
similar responses. Specifically, we removed the global effect
in the available responses and shrunk the similarity score for
each cell line pair as well as each drug pair. We then used the
K most similar neighbors (hybrid of cell-line-oriented and
drug-oriented) in the available responses to predict the un-
known ones. Through 10-fold cross-validation, this approach
was shown to reach accurate and reproducible outcomes of
drug sensitivity. We also discussed the biological outcomes
based on the newly predicted response values.

INTRODUCTION
Cancer subtypes differ in chemotherapeutic response and thus may
require different medical treatment. The relationships between mo-
lecular features and clinical drug responses lay the foundation for
optimizing drug therapies based on a patient’s genomic context.1

Therefore, it has been a major challenge to accurately predict the
anti-cancer drug response based on the patient’s molecular and
clinical profiles in the era of precision medicine. On the one
hand, it is crucial for clinicians to make decisions in the choice of
most effective and least toxic therapeutic regimen. On the other
hand, the identification of a drug-sensitive biomarker is essential
for cancer medicine. The emerging of high-throughput drug-
screening technologies has enabled many studies to conduct
large-scale experiments on cultured human cell line panels, which
greatly improved systematical elucidation of the response mecha-
nism of anti-cancer drugs. Several attempts to construct predictive
models for drug response have made use of some datasets. For
instance, NCI-60 was a panel of human cell lines originally derived
from human cancers spanning nine different tissues of origin.2 The
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other two recent consortiums, GDSC (Genomics of Drug Sensitivity
in Cancer)3 and CCLE (Cancer Cell Line Encyclopedia)4 have
analyzed around 1,500 cancer cell lines and their genomic profiles
against 280 drugs, providing the concentration required for 50%
of cellular growth inhibition (IC50) or activity area as drug-response
measurement. All studies provide genome-wide profiling of multi-
ple cancer cell lines and drug-sensitivity data based on established
anti-cancer drugs against the cell lines. However, the sensitivity
levels for most cell line-drug pairs are still unknown, and it needs
to be achieved by a time- and cost-effective way for potential
personalized medicine.5

Currently, most commonly used methods for drug response predic-
tion are multivariate linear regression (least absolute shrinkage and
selection operator [LASSO] and elastic net regularizations) and
nonlinear regression (e.g., neural networks and some kernel-based
methods).3,4,6–9 Daemen et al.10 identified response-associated mo-
lecular features, such as measurements of copy number aberrations,
mutations, gene and isoform expression, promoter methylation, as
well as protein expression in breast cancer by least-squares-support
vector machines and random forest algorithms. Staunton et al.11

first developed a weighted voting classification model on NCI-60
basal gene expression data to predict anti-cancer drug sensitivity.
Gene signatures of 232 drugs from 6,817 genes were created to pre-
dict a binary (sensitive or resistant) response. Riddick et al.12 built
an ensemble regression model using random forest to predict
in vitro drug response from a signature of basal-gene expression.
The random forest regression model for each drug was built
between gene-expression signatures for the cell lines and the
corresponding IC50 values for the exact drug for unknown response
prediction. Cortes-Ciriano et al.13 proposed a simultaneous ma-
chine-learning modeling of chemical and cell-line information for
response prediction. Ammad-ud-din et al.14 adopted a kernelized
Bayesian matrix factorization (KBMF) method to predict the drug
py: Nucleic Acids Vol. 13 December 2018 ª 2018 The Authors. 303
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Table 1. Comparisons of Both Methods Obtained under 10-Fold Cross-

Validation on GDSC Dataset

Methods
Drug-Averaged
PCC_S/R

Drug-Averaged
RMSE_S/R

Drug-
Averaged
PCC

Drug-
Averaged
RMSE

NCFGER

Hybrid 0.81 (±0.11) 1.42 (±0.29) 0.73 (±0.13) 1.18 (±0.24)

Cell-line based 0.76 (±0.14) 1.49 (±0.24) 0.67 (±0.15) 1.29 (±0.21)

Drug-based 0.75 (±0.12) 1.60 (±0.43) 0.66 (±0.14) 1.32 (±0.34)

SRMF

0.71 (±0.15) 1.73 (±0.46) 0.62 (±0.16) 1.43 (±0.36)
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responses by integrating genomic and chemical properties in addi-
tion to drug target information. Zhang et al.15 proposed a dual-layer
cell-line drug network (DLN) model, which integrated both cell-
line similarity network data and drug similarity network data, to
predict the missing drug response of a given cell line. Kim et al.16

developed a network-based classifier method for predicting sensi-
tivity of cell lines to anti-cancer drugs from transcriptome data.
Wang et al.17 proposed a similarity-regularized matrix factorization
(SRMF) method for drug-response prediction, which incorporates
similarities of drugs and of cell lines simultaneously. Stanfield
et al.18 proposed a heterogeneous network-based method to predict
the interaction between cell line-drug pairs. They classified the
interaction between each cell line-drug pairs into sensitive and
resistant and thus turned the prediction problem into classification.
Suphavilai et al. have proposed a matrix factorization based recom-
mender system (CaDRReS) method, which considers essential
genes for drug-response prediction.19

Regarding the fact that similar cell lines and similar drugs exhibit
similar drug responses,15 the prediction of unknown drug response
can be considered as a typical recommender system (RS).20 Typically,
in a RS, there is a set of users and a set of items. Each user u rates a set
of items by some values. The RS attempts to profile user preferences
and tries to model the interaction between users and items, which is
exactly analog for drug-response prediction. The cell lines correspond
to users while drugs correspond to items. Thus, we proposed an RS
technique, neighborhood-based collaborative filtering with global ef-
fects removal (NCFGER), for drug-response prediction, which incor-
porates similarities of drugs and of cell lines in additional to the
known drug response simultaneously. To demonstrate its effective-
ness, we compared NCFGER with SRMF, which has been proved to
show higher performance than typical similarity-based methods
KBMF and DLN. The evaluation metrics are also averaged Pearson
correlation coefficient (PCC) and averaged root-mean-square error
(RMSE) over all drugs. The results on GDSC and CCLE drug-
response datasets by 10-fold cross validation showed that NCFGER
performed dramatically better than SRMF in terms of drug-averaged
PCC and RMSE. NCFGER has also been applied to impute unknown
response values in the GDSC dataset for detailed biological meaning-
ful presentation.
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RESULTS
Measurements of Prediction Performance

The prediction performance of our method was evaluated using PCC
and RMSE between predicted and observed drug responses for each
drug. A higher PCC and lower RMSE indicate a better prediction
performance of a method. For comparison, PCC and RMSE of the
sensitive and resistant cell lines of each individual drug, which were
denoted as PCC_S/R (PCC between predicted and observed re-
sponses of sensitive and resistant cell lines) and RMSE_S/R (RMSE
between predicted and observed responses of sensitive and resistant
cell lines) were also evaluated, respectively. For each drug, the logIC50

values were split into quantiles, with cell lines in the first and fourth
representing drug-sensitive (-resistant) and -resistant (-sensitive) cell
lines, respectively, which followed the same definition inWang et al.17

Therefore, we evaluated four measures, drug-averaged PCC, drug-
averaged RMSE, drug-averaged PCC_S/R, as well as drug-averaged
RMSE_S/R over all drugs, respectively.
Similarity in Response Helps Improve the Prediction

Performance

We first conducted 10-fold cross-validation to evaluate the prediction
performance in the GDSC (https://www.cancerrxgene.org/) and
CCLE (https://www.broadinstitute.org/ccle) datasets to evaluate
different similarity definition. For each dataset, the drug-response en-
tries were divided into 10 folds randomly with almost the same size.
Each time, 1 fold was used as the test set, while the remaining 9 folds
were used as the training sets. The prediction was repeated 10 times
such that each fold acted as a test set once. The whole cross-validation
was run 100 times for each dataset, and the prediction performance
was compared with the best state-of-the-art method, SRMF.

As is shown in Tables S1 and S2, the performance of hybrid NCFGER
with RPCC and MRPCC were better than that of COEF similarity,
which indicates that the similarity exhibited in drug-response values
can better improve the drug-response prediction performance. It was
consistent with the result concluded in L.Z (unpublished data). Thus,
we used MRPCC similarity in the following study.
10-Fold Cross-Validation Test on GDSC and CCLE Drug-

Response Datasets

We also conducted 10-fold cross-validation on GDSC and CCLE
drug-response datasets to investigate the performance of cell-line-
based NCFGER, drug-based NCFGER, and hybrid NCFGER.

Tables 1 and S3 showed the comparison results obtained by four
methods, hybrid NCFGER, cell-line-based NCFGER, drug-based
NCFGER, and SRMF in the GDSC and CCLE datasets. As shown
in Table 1, all NCFGER methods outperformed SRMF in all metrics
in the GDSC dataset, while hybrid NCFGER attains the best perfor-
mance. The drug-averaged PCC_S/R obtained by our method is
0.81, which is 14.42% higher than that of SRMF. The drug-averaged
RMSE_S/R obtained by our method is 1.42, which is 17.92% lower
than that obtained by SRMF.

https://www.cancerrxgene.org/
https://www.broadinstitute.org/ccle


Figure 1. Boxplots of PCC and RMSE Based on

SRMF and NCFGER
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As shown in Table S3, all NCFGER methods also outperform SRMF
in all metrics in the CCLE dataset, and hybrid NCFGER still attains
the best performance. The drug-averaged PCC_S/R obtained by our
method is 0.89, which is 14.40% higher than SRMF. The drug-aver-
aged RMSE_S/R obtained by our method is 0.47, which is 36.08%
lower than that obtained by SRMF.

Considering the results drawn in above, we focused on hybrid
NCFGER for further analysis if there was no additional explanation.
The cell-line-based NCFGER method depended on the most similar
K drugs that had responses in the same cell line, which means the
drug structure contributed to the prediction performance improve-
ment from the respect of RS. Since neither cell-line-based nor
drug-based NCFGER could outperform the hybrid method, both
cell-line gene expression profile and drug structure contributed to
the prediction performance improvement. If we only use one part
of them, we will miss some information that helps to predict the
drug responses.

Figures 1 and S1 also show the boxplots of both methods with respect
to PCC and RMSE for each drug in the CCLE and GDSC datasets,
respectively. Either PCC or RMSE averaged for each drug over the
100 times of cross-validation from hybrid NCFGER is better than
that of SRMF.

Furthermore, we also investigated the prediction performance of drug
target genes in specific pathways. As is known, phosphatidylinositol
3-kinase (PI3K) and extracellular signal-related kinase (ERK)
signaling pathways have been identified as promising therapeutic tar-
gets for cancer therapy, which makes it meaningful to consider the
prediction performance of drug responses for their targeting genes
in these pathways21 (Figures 2 and S2). From the perspective of
PCC and RMSE, NCFGER performs better than SRMF in both
PI3K and ERK pathways.
Molecular Therap
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on Predicted Responses in GDSC Dataset

Using our proposed method mentioned in the
above sections, we trained NCFGER method
on all available response IC50 and used it to
predict the missing responses in GDSC data-
set. Following Wang et al.,17 we focused on
an epidermal growth factor receptor (EGFR)-
family inhibitor, lapatinib, where more than
half of response values (342/652) were missing
and a cyclin-dependent kinases (CDKs) 4 and
6 inhibitor PD-0332991, where nearly 10% of
response values (62/652) were missing. Based
on the definition that a mutated gene fulfills
any of these criteria following Garnett et al.7:
a coding sequence variant in the cancer gene, a total copy num-
ber = 0 (homozygous deletion) or R 8 (amplification), we grouped
the unassayed cell lines based on their EGFR mutation profiles and
found that the EGFR mutated cell lines were significantly more
sensitive to lapatinib. EGFR and ERBB2 amplification was shown
to be associated with sensitivity to lapatinib, which has been
licensed for the treatment of HER2-positive breast cancer clini-
cally22,23 (Figure 3A). This prediction happened to coincide with
that in assayed cell lines. Similar fact was observed with predicted
response of ERBB2-mutated cell lines to lapatinib (Figure 3B),
which is exactly consistent with previous literatures.24 As to PD-
0332991, it is an inhibitor of upstream cyclin-dependent kinases
(CDKs) 4 and 6, while CDKN2A-mutated cells have been known
to have enhanced requirement for signaling through the CDK4/
6-pRb signaling pathway. The predicted results show that
CDKN2A-mutated cell lines were more sensitive to PD-0332991
(Figure 3C). This prediction was not only consistent with that in
assayed cell lines, but also in agreement with previously a published
study.

The newly predicted drug responses combined with existing drug re-
sponses were able to detect novel drug-cancer gene associations as
well, which is consistent with previous literatures (Figure 4). For
example, the oncogene BRAF has been found significantly associated
with enhanced and selective sensitivity to mitogen-activated protein
kinase (MEK) inhibitor PD-0325901 (p = 3.70e-11 for available re-
sponses; p = 1.08e-12 for combination of predicted and available re-
sponses),25 which was approached with the combination of newly
predicted drug responses and known responses versus available re-
sponses themselves. Therefore, it is important to complete the un-
known observations of drug response matrix such that we can unveil
the new drug-sensitivity mechanism better. Also, based on the com-
bined newly predicted drug responses and available observations
versus available observations themselves, fibroblast growth factor
y: Nucleic Acids Vol. 13 December 2018 305
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Figure 2. Prediction Performance Comparisons of

SRMF and NCFGER for Drug-Targeting Genes in

PI3K Pathwaywith Respect to PCC asWell as RMSE

in CCLE Dataset
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receptor 2 (FGFR2)-mutated cell lines were exquisitely sensitive to
PD-173074, which has been known to prevent signaling, at nanomo-
lar levels, through FGFR2–5 (p = 0.7e-2 for available observations;
p = 0.22e-2 for combination of predicted and available observa-
tions).26–29

The association between the presence of inactivating mutations in
tumor-suppressor genes and several drugs, which in some aspect
provide insight into the interaction between tumor suppressors
and the cellular mechanism in mediating drug sensitivity, were
306 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
also remained in the predicted drug response
(Figure 5). For instance, mutation of TP53, an
important regulator of apoptosis and cell cycle
arrest in response to cellular stress, confers
resistance to Nutlin-3a (p = 3.53e-39 for known
response; p = 5.79e-39 for combination of
known and unknown response), which is an in-
hibitor of the mouse double minute 2 homolog
(MDM2) E3-ligase that negatively regulates
p53 protein levels. Just like TP53, mutation
inactivation of RB1, a key repressor of cell cycle
progression in normal cells, confers resistance
to PD-0332991 (p = 3.33e-17 for known
response; p = 5.51e-16 for combination of
known and unknown response).

We also investigated the genes that are signif-
icantly differentially expressed in sensitive and
resistant cell lines, as shown in Figure 6. The
threshold p value was set to 0.05, and the
threshold fold change was set to 1.5. Signifi-
cantly differentially expressed genes further
went through gene ontology enrichment anal-
ysis by DAVID30 (https://david.ncifcrf.gov/)
with default parameter settings. Finally,
differentially expressed genes were found to
be related to the PI3K-Akt signaling pathway
(p = 7.9e-4), ECM-receptor interaction (p =
3.3e-10), and small-cell lung cancer (p =
1.5e-4).

DISCUSSION
In this study, we developed a collaborative
filtering-based method, NCFGER, to estimate
the response of cancer cell lines to drug treat-
ments for IC50 values as well as activity area
in GDSC and CCLE datasets, respectively.
This method is the hybrid of cell line-based
and drug-based collaborative filtering techniques, thereby incorpo-
rating similarity in responses from the perspective of cell lines and
drug structures, similarity in cell-line gene expression profile, as
well as similarity in drug chemical fingerprint. It also applies a global
effect removal to preprocess the available drug response and a
shrinkage operation on both cell-line similarity network and drug
similarity network to avoid the bias caused by unknown responses.
10-fold cross-validation showed that the drug-response similarity
can better improve the drug-response prediction performance in
comparison with the cell-line gene expression and drug chemical

https://david.ncifcrf.gov/


Figure 3. The Association of Drug Sensitivity and Cancer Gene Mutations Were Consistent for Predicted Response Data

EGFR (A) and ERBB2 (B) mutated cell lines were more sensitive to the drug lapatinib, while CDKN2A (C) mutated cell lines were more sensitive to drug PD-0332991.
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structure similarity. 10-fold cross-validation also showed that the
hybrid NCFGER algorithm consistently outperformed SRMF, sug-
gesting that the hybrid NCFGER are more predictive of anti-cancer
drug response. We also used the hybrid NCFGER to predict the un-
known drug-response values in the GDSC dataset. In combination
with the available observations, the results of gene mutation associ-
ation with drug response, inactivating mutation association in tumor
gene suppressors with drugs were all consistent with previous
findings.

Compared to the existing drug-response prediction method, our
NCFGER method is based on the relatively dependable neighbors
(both cell lines and drugs) and dependable similarity score shrinkage
technique during response prediction, so the sparsity has less influ-
ence on the prediction performance. Furthermore, the prediction
performance was not seriously affected by either similarity of cell-
line gene expression or of drug; thus, the input for NCFGER could
be quite simple.

Despite these encouraging aspects, NCFGER suffers from the
following limitations, which we hope to address in the future. First,
from the respect of the cell line, construction of NCFGER relies on
gene-expression profile data only, and we hope to integrate somatic
mutation information and epigenetic status in the future. Some
pathway-related information or other dynamic information may
also help improve the predictive performance of drug response;
thus, it might be better to integrate omics data later. The
neighbor-based collaborative filtering framework highly depends
on the selection of neighbors. We may start the incorporation of
other information, such as pathway-related information or other
dynamic information, with the integration of this information for
neighbor selection at the first step. We can also treat the drug-
response prediction as a classification problem, which would be
easier to incorporate the other available information. Second, the
measure metrics PCC and RMSE were regarded as two main mea-
sures for drug-response prediction projects. But different data may
have different magnitudes in the drug-response value for their com-
mon drugs. Therefore, we can also seek a better measure for drug-
response prediction problems.
MATERIALS AND METHODS
Problem Formulation

In this paper, we adopted a powerful collaborative filtering method to
predict anti-cancer drug responses in cell lines. The primary idea
comes from the basic hypothesis that similar cell lines are sensitive
to similar drugs.

Before discussion, we first defined the notational conventions.
Each dataset mentioned above is constructed as three matrixes.
The response matrix is about m cell lines and n drugs, arranged
in an m� n matrix: R = fruig1%u%m;1%i%n. The cell-line similarity
matrix is about the PCC of gene-expression profile between each
of the m cell lines, arranged in an m�m matrix: COEFc =
fCOEFuvg1%u%m;1%v%m. The subscript c refers to cell line. The
drug-similarity matrix is about the Jaccard similarity score of the
PubChem fingerprint between each of the n drugs, arranged in an
n� nmatrix: COEFd = fCOEFijg1%i%n;1%j%n. The subscript d refers
to drug. To distinguish between the two similarity matrixes, the
special indexing letters are reserved: for cell lines u and v, and for
drugs i, j, and k. Our goal is to predict unknown elements in R based
on the known ones, as well as similarity matrixes COEFc and COEFd .

NCFGER adopted the typical neighborhood-based CF method for
drug-response prediction. The original form, which has been shared
by virtually all earlier CF systems, is the user-oriented approach.31 Its
analogous alternative is the item-oriented approach.32 They have
been two state-of-the-art techniques for RS. However, the utilization
of a user similarity matrix or item similarity matrix only always results
in poor prediction accuracy due to the sparseness of preference data.
Thus, a hybrid collaborative filtering model is often preferred by
combining user-oriented CF and item-oriented CF together. In this
way, both user similarity and item similarity are considered for
missing value prediction. In this paper, we will focus on the user-ori-
ented approach in the methods introduction section, and simple user-
oriented CF (cell-line-based), item-oriented CF (drug-based), as well
as hybrid over user-oriented CF and item-oriented CF (hybrid) were
all implemented for comparison. The hybrid method simply takes the
average of scores predicted from both user-oriented and item-ori-
ented CF methods.
Molecular Therapy: Nucleic Acids Vol. 13 December 2018 307
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Figure 4. The New Drug-Cancer Association Was

Also Observed Based on the Combination of

Observed Responses and Newly Predicted

Responses

The new drug-cancer association was also observed

based on the combination of observed responses and

newly predicted responses. (A) BRAF is found to be more

significantly associated with PD-0325901 with a combi-

nation of newly predicted and known responses. (B)

FGFR2 is also found to be more significantly associated

with PD-173074.
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The cell-line-oriented method followed an improved neighborhood
based the collaborative filtering method to estimate the unknown
response brui, as is shown in Figure 7. First, there may be large cell
line and drug effects—i.e., systematic tendencies for some cell lines
to have higher responses than other cell lines and for some drugs to
get higher responses than others. This is exactly what we call “global
effects” in the RS area. Thus, we adopted the normalization step that
helps to remove the “global effects.”
Preprocessing by Global Effects Removal

Our strategy is to estimate one “effect” at a time, in sequence (i.e., the
overall mean of the response IC50 value, the main effect of cell line, the
main effect of drug, etc.). At each step, we used residuals from the pre-
vious step as the dependent variable for the current step. Thus, after
each step of effect removal, the rui refers to residuals, rather than orig-
inal IC50 values.

Let xui be the explanatory variable of interest corresponding to cell
line u and drug i. For cell-line and drugmain effects, the xui’s are iden-
tically 1. For other global effects, xui is centered for each cell line by
subtracting the mean of xui for the exact cell line. In each case, the
model is defined as

rui = quxui + ε: (Equation 1)

With sufficient responses for cell line u, the unbiased estimator of q is

bqu =PiruixuiP
ix

2
ui

: (Equation 2)

However, the estimator is somehow unreliable, since some values ofbqu may be based on very few known responses. To avoid this circum-
stance, each individual value of bqu is shrunk toward a common value
from a Bayesian perspective. To be more specific, the true qu is sup-
posed to follow a normal distribution. And a slightly simpler esti-
mator used to calculate qu is multiplying Equation 2 by the factor
defined as

nu
nu +a1

(Equation 3)
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where nu is the number of responses of cell line u and a1 is a constant,
which was set to 3 by cross-validation.

Similarity Definition

The similarity matrixes are required for identification of K nearest
neighbors. The original similarity of cell lines COEFcuv is drawn based
on the PCC of gene-expression profiles between cell lines u and v,
while that of drug COEFdij was drawn based on the Jaccard coefficient
of drug chemical fingerprint between drugs i and j. However, to some
extent, the similarity between cell lines u and v can also be shown
from the perspective of drug response. Thus, in this paper, we inves-
tigated the different similarity definitions for drug-response predic-
tion. To be more specific, the similarity of cell lines can be defined
based on gene expression profile’s PCC (COEFc), the correlation co-
efficient between their response IC50 value (RPCCc), as well as the
multiplication of COEFc and RPCCc, which is indicated as MRPCCc

in the following. The exact MRPCCc similarity measure is defined
in Equation 4:

MRPCCcuv =COEFcuv � RPCCcuv (Equation 4)

where RPCCcuv is calculated as the PCC between the response IC50

values of cell lines u and v.

In the same way, the similarity between drugs i and j can be defined
based on a drug chemical fingerprint’s Jaccard coefficient (COEFd),
the PCC between response IC50 values of drugs i and j (RPCCd), as
well as the multiplication of COEFd and RPCCd (MRPCCd) defined
in Equation 5:

MRPCCdij =COEFdij � RPCCdij: (Equation 5)

In order to avoid the bias caused by the different level of support
(different number of known responses) for each drug, the
similarity matrixes are further shrunk by multiplying jUði; jÞ j =
ðjUði; jÞ+a2 j Þ for some small a2, where Uði; jÞ is the set of cell lines
that have responses to both drugs i and j. The index of i and j here will
be changed to u and v for cell lines u and v. a2 was set to 1 by cross-
validation in this paper.



Figure 5. The Association between Inactivating

Mutations in Tumor-Suppressor Genes and Drugs

Were Also Obtained Based on the Combination of

Observed Responses and Newly Predicted

Responses

The association between inactivating mutations in tumor

suppressor genes and drugs were also obtained based on

the combination of observed responses and newly pre-

dicted responses. (A) TP53 is found to be significantly

resistant to Nutlin-3a based on the combination of known

and unknown response. (B) RB1 is also found to be

significantly resistant to PD-0332991.

www.moleculartherapy.org
NCFGER

After global effects removal, we can turn to predict the unknown
response IC50 value for cell line u of drug i, which is brui.
Among all drugs that have response values in cell line u, we resort to a
set ofK cell linesNðu; iÞ that tend to have themost similar response in
u and that actually have response to drug i (i.e., rvi is known for each
v˛Nðu; iÞ). K is set to 10 in our experiments. The similarity rank is
measured based on the shrunk similarity matrix MRPCCc and
MRPCCd , respectively.

Based on the selected set of K neighbors, the interpolation weights
fwij

�� j˛Nði; uÞg, which enable the best prediction of unknown
response, can be reached by

brui) X
j˛Nði;uÞ

wijruj: (Equation 6)
Figure 6. Volcano Plot of Gene Expression Profiles in Sunitinib-Sensitive

and -Resistant Cell Lines
Thus, w ˛R K . The interpolation weights can be solved by the defini-
tion of linear system:

Aw= b: (Equation 7)

It actually models the relationships between drug i and its neighbors
through a least-squares problem of

min
w

X
vsu

 
rvi �

X
j˛Nði;uÞ

wijrvj

!2

: (Equation 8)

For each pair of drugs i and j, we compute

Aij =

P
v˛Uði;jÞrvirvj
jUði; jÞ j and (Equation 9)

bj =

P
v˛Uði;jÞrvjrvi
jUði; jÞ j : (Equation 10)

Then the best estimator bA and bb for A and b are further improved
based on the fact that the averages represented in Equations 9 and
10 may differ by orders of magnitude in terms of the number of
cell lines included in the average.
Thus, the corresponding K � K matrix bA and the vector bb˛R K is
defined as

bAjk =
jUðj; kÞ jAjk +b,avg

jUðj; kÞ j + b
and (Equation 11)

bbj = jUði; jÞ j j bj + b,avg

jUði; jÞ j + b
(Equation 12)

where avg denotes a baseline value, which is defined by taking the
average of all possible Ajk values. It is obvious that b controls the
extent of the shrinkage.
Molecular Therapy: Nucleic Acids Vol. 13 December 2018 309
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Figure 7. The Workflow of NCFGER
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Thus, w’s are achieved by a non-negative quadratic optimization
method and are used to predict rui following Equation 1. The final
estimated IC50 value of brui should be recovered with those removed
global effects.

The drug-oriented method is the analog alternative to cell-line-ori-
ented method. Based on the above two methods, the hybrid method
got its prediction score based on the mean operation.
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