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Abstract

The aim of this study was to determine whether calcium potentiates acute carbon tetrachlo-

ride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment

with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to

induce hypercalcemia in human and animal models. As seen previously, mice injected with

CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotrans-

ferase, and creatinine; transient body weight loss; and increased lipid peroxidation along

with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of

these animals with V.D3 caused further elevation of the values of these liver functional

markers without altering kidney functional markers; continued weight loss; a lower lethal

threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant

power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kid-

ney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of

V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct

injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hyper-

calcemia transiently (within 3 h of injection), our results suggest that calcium enhances the

CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress.

Introduction

Carbon tetrachloride (CCl4) is widely used in experimental animal models of liver failure that

mimic human hepatic toxicity. The mechanism of CCl4 hepatotoxicity has been thoroughly

studied since 1967, including the use of in vivo models of acute and chronic CCl4 poisoning, ex
vivo perfusion of livers, and the use of isolated or cultured hepatocytes [1, 2]. CCl4-induced

toxicity is a multifactorial process involving the generation of CCl4-derived free radicals [2–5].

The first step is metabolic activation of CCl4 by CYP2E1, whereby CCl4 is converted to free
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radicals (trichloromethyl and trichloromethyl peroxy radicals). The second step is binding of

these radicals to antioxidant enzymes, including the sulfhydryl (protein thiol) groups of gluta-

thione (GSH). In the third step, these overproduced free radicals increase membrane lipid per-

oxidation, bind covalently to macromolecules, deplete ATP, and interfere with calcium

homeostasis [6–8]. Since sulfhydryl groups are essential elements of the molecular arrange-

ments responsible for the Ca2+ transport across cellular membranes, loss of function of these

proteins is expected to impair the capacity of microsomes and mitochondria to regulate cellu-

lar calcium levels.

Recently, we found that cadmium (Cd) -induced cell cytotoxicity is attenuated by calcium-

free medium in vitro (unpublished data). These data suggest that calcium is directly involved

in Cd-induced toxicity. Because Cd-related toxicity is mediated by GSH depletion, lipid perox-

idation, and mitochondrial dysfunction [9–11] (that is, by processes similar to those of CCl4-

induced toxicity), we hypothesized that calcium might also exacerbate CCl4 toxicity.

It is well known that some drugs (e.g., thiazide diuretics) cause hypercalcemia [12, 13].

Treatment with vitamin D commonly has been used to investigate hypercalcemia in animal

models [14–16]. In calcium homeostasis, vitamin D3 (V.D3) is a potent serum calcium-raising

agent that regulates both calcitonin (CT) and parathyroid hormone (PTH) gene expression

[17–19]. Serum calcium is the major secretagogue for CT, a hormone product whose biosyn-

thesis is the main biological activity of thyroid C-cells. Taking advantage of this regulatory

mechanism, vitamin D3-induced hypercalcemia has been extensively used.

Therefore, in the current study, we investigated whether hypercalcemic mice exhibited

increased CCl4-induced toxicity. To examine the effect of calcium on acute CCl4 toxicity, we

pre-treated animals with V.D3, before determining plasma biochemical markers, hepatic lipid

peroxidation, and hepatic calcium levels.

Material and methods

Animal treatment

Male ddY mice were purchased from Japan SLC (Hamamatsu, Japan) and were maintained

under standard conditions of controlled temperature (24 ± 1˚C), humidity (55 ± 5%), and

light (12:12 h light/dark cycles) with free access to water and food. Experimental treatments

were performed using eight-week-old animals. Following the experiment, any surviving mice

were sacrificed using pentobarbital. All experiments were approved by the Institutional Ani-

mal Care and Experiment Committee of Kinjo Gakuin University (No. 110).

Evaluation of the effect of vitamin D3 on CCl4 toxicity

Mice were divided into two groups (olive oil + CCl4 and V.D3 + CCl4) of twelve mice each. On

Days -4 to -1 (i.e., each of the four days prior to CCl4 injection), animals were administered

once daily (at 24-h intervals) by oral gavage (per os; p.o.) with cholecalciferol (vitamin D3;

V.D3; Tokyo Chemical Industry, Tokyo, Japan; formulated in olive oil (Nacalai Tesque, Kyoto,

Japan)) at 5 mg/kg, or with an equivalent volume of olive oil vehicle alone. On the nominal

Day 0 (i.e., twenty-four hours after the final gavage), each mouse was injected intraperitoneally

(i.p.) with CCl4 (Wako Chemical, Osaka, Japan) at 2 g/kg (5 mL/kg). Before the CCl4 injection,

we collected pre-dose blood samples from each mouse; these specimens were used to confirm

the effects of V.D3 on plasma Ca concentrations. At 24 h after the CCl4 injection, three ran-

domly selected mice from each group were euthanized; livers were harvested from each of these

animals and flash frozen for storage at -80˚C. The remaining mice (nine per group) were main-

tained on study through Day 7. Once daily following CCl4 injection, animals were checked for

mortality and body weight was recorded. Additionally, on Days 1, 3, and 7, remaining animals
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were subjected to blood sampling for determination of blood functional markers. Following the

Day-7 procedures, any surviving mice were sacrificed using pentobarbital. Experimental proce-

dure is described in Fig 1.

Evaluation of role of calcium in CCl4 toxicity

Mice were divided into three groups (Ca + olive oil, saline + CCl4, and Ca + CCl4) of six mice

each. Animals were administered i.p. with calcium chloride (CaCl2: Wako Chemical; formu-

lated in physiological saline) at 150 mg/kg or with an equivalent volume of saline vehicle. Ten

minutes later, animals were administered i.p. with CCl4 at 2 g/kg or with an equivalent volume

of olive oil. Whole blood was collected at 10 and 30 min and at 1, 3, 6, 12, and 24 h (the last by

terminal bleed) after CaCl2 injection. At each time point, whole blood specimens were centri-

fuged (3000× g, 10 min), and the plasma supernatants were frozen and stored at -80˚C pending

use for determination of plasma calcium concentrations (all time points) or hepatic injury

markers (terminal samples). Following the terminal bleeds (at 24 h after i.p. injections), mice

of each group were euthanized and livers were harvested. Liver specimens were flash-frozen

and stored at -80˚C pending use for determination of hepatic calcium levels.

Plasma biochemical analysis

Plasma calcium levels were measured using the calcium-E test (Wako Chemical) according to

the manufacturer’s instructions. Plasma sample (2.5 μL) was mixed with substrate buffer

(100 μL) and coloring reagent (50 μL). The absorbance of the reaction mixture was measured

at 610 nm.

Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities

were measured using the Transaminase CII Test Wako (Wako Chemical) according to the

manufacturer’s instructions and as previously described [20, 21]. Concentrations of plasma

creatinine and blood urea nitrogen (BUN) were measured using Creatinine Liquid Reagents

Assay (DIAZYME, Poway, CA) and BUN Wako Test (Wako Chemical), respectively, accord-

ing to the manufacturer’s instructions and as previously described [22, 23]. For relative quanti-

fication, calibration curves were prepared using standard solutions.

Isolation of total RNA and qRT-PCR assay

Total RNA was extracted from 0.1 g liver sections using the ISOGEN II kit (Nippon Gene,

Tokyo, Japan). qRT-PCR was performed with One Step SYBR PrimeScript PLUS RT-PCR kit

Fig 1. Schematic experimental design of pre-treatment with V.D3 and CCl4 injection.

https://doi.org/10.1371/journal.pone.0176524.g001
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(Perfect Real Time) (Takara Bio, Shiga, Japan) using an Applied Biosystems 7300 system

(Applied Biosystems, Foster City, CA). PCR conditions were as previously described [24].

Primer pairs are shown in Table 1. Relative expression of each mRNA was determined using

the standard curve method. The amount of each target mRNA quantified was normalized

against that of GAPDH-encoding mRNA.

Histopathological findings

For histological analysis, a portion of the left liver lobe from each animal were perfused with

15% phosphate-buffered neutral formalin (pH 7.2), dehydrated, and embedded in paraffin.

Embedded tissues were sectioned at 4 μm and stained with hematoxylin and eosin (H&E),

Masson trichrome (MT), or von Kossa. MT stain kit and von Kossa stain were purchased from

ScyTek Laboratories, Inc. (Logan, UT, USA) and conducted accordance with manufacture’s

instructions. Histopathological features were observed using a light microscope.

Measurement of malondialdehyde levels in the liver

The total malondialdehyde (MDA) levels and total antioxidant power in the liver were exam-

ined by colorimetric microplate assay (Oxford Biochemical Research, Oxford, MI) according

to the manufacturer’s protocol and as previously described [22, 23].

Determination of glutathione (GSH) levels in the liver

Hepatic GSH levels were measured using GSSG/GSH quantification kit (Dojindo Laboratories,

Kumamoto, Japan) according to the manufacturer’s instructions and as previously described

[25].

Measurement of ATP and NADPH levels in the liver

Hepatic ATP and NADPH levels were measured using ATP Colorimetric / Fluorometric

Assay kit (BioVision, Inc., Mountain View, CA, USA) and NADH/NADPH Assay kit (BioAs-

say Systems, Hayward, CA, USA), respectively. These tests were conducted accordance with

manufacture’s instructions.

Determination of liver calcium concentrations

Individual liver specimens (0.2–0.3 g each) were digested in 0.5 mL of concentrated nitric acid

in glass test tubes. The temperature was held at 80˚C for 1 h, then gradually increased (at 10˚C

per h) to 130˚C. When the acid-digested specimens became transparent, volumes of the digests

Table 1. Oligonucleotide primer sequences and PCR conditions for real-time RT-PCR.

Gene Primer sequences PCR Product

(Accession No.) Sequence (5’ to 3’) length (bp)

CYP2E1 Forward CAT TCC TGT GTT CCA GGA GTA CAA G 91

(NM_021282) Reverse GAT ACT TAG GGA AAA CCT CCG CAC

GCLC Forward TAC CAC GCA GTC AAG GAC C 132

(NM_010295) Reverse AGT CTC AAG AAC ATC GCC TCC

GCLM Forward CGG GAA CCT GCT CAA CTG G 117

(NM_008129) Reverse TCG GGG CTG ATT TGG GAA CTC

GAPDH Forward TGG TGA AGG TCG GTG TGA AC 98

(NM_008084) Reverse GTC GTT GAT GGC AAC AAT CTC C

https://doi.org/10.1371/journal.pone.0176524.t001
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were raised to 5 mL with distilled water, and calcium concentrations were determined by

atomic absorption using a Z-2300 (Hitachi, Tokyo, Japan).

Statistical analysis

All data from the control and treatment groups were obtained from the same numbers of repli-

cated experiments. All experiments were performed independently at least two times. Two-

group comparisons were made using Student’s t-test or Welch’s t-test; multiple comparisons

were analyzed using One-Way ANOVA with post-hoc Tukey-Kramer’s test. Tests were two-

tailed. The results of the survival tests were analyzed by means of χ2 analysis. All statistical

analyses were performed using SPSS 19.0J software (Chicago, IL). Values of P< 0.05 were con-

sidered statistically significant.

Results

Effect of pre-treatment with V.D3 on CCl4 acute toxicity, as assessed by

body weight and mortality

To determine the effects of V.D3 pre-treatment, we performed analysis of plasma biochemical

markers. Four-time, once-daily pre-treatment with V.D3 significantly increased plasma Ca

concentrations to 13.0 mg/dL compared to the control value of 7.7 mg/dL (Table 2); these ele-

vated levels would be classified as severe hypercalcemia. In contrast, plasma levels of ALT and

AST (markers of hepatic injury; Fig 2) and of creatinine and BUN (markers of kidney injury;

Fig 3) were comparable between V.D3- and olive oil-treated groups.

These pre-treated animals were administered i.p. with CCl4 at 2 g/kg. Animals pre-treated

with olive oil (instead of V.D3) and then injected with CCl4 exhibited a transient loss of

approximately 10% body weight on the first day and subsequent recovery from Day 2 (Fig 4A).

Table 2. Effect of pre-treatment with V.D3 on plasma calcium concentrations.

plasma calcium (mg/dL)

olive oil 7.77 ± 0.70

vitamin D3 13.0 ± 0.97**

Mice were injected p.o. with 5 mg/kg V.D3 four times per 24 h. 24 h after final pre-treatment, plasma calcium

concentration was determined. Data indicate mean ± S.D. of nine mice.

**, significantly different from compared values (**P < 0.01).

https://doi.org/10.1371/journal.pone.0176524.t002

Fig 2. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by plasma ALT and AST levels.

Mice were pre-treated with olive oil (vehicle) or with V.D3 (at 5 mg/kg) administered as four once-daily p.o.

doses. At 24 h after the final pre-treatment, mice of both groups were injected i.p. with CCl4 (at 2 g/kg).

Plasma ALT (A) and AST (B) activities were determined at 0, 1, 3, and 7 days after CCl4 injection. Data are

presented as mean ± S.D. of 4–9 mice. # P < 0.05, ## P < 0.01 versus CCl4 group on the respective day.

https://doi.org/10.1371/journal.pone.0176524.g002
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In contrast, weight loss in the hypercalcemic mice (pre-treated with V.D3) continued in the

days following CCl4 injection, achieving approximately 30% loss of weight by Day 7 (compared

to baseline), a change that was significant compared to that in the control group. In addition,

mortality was significantly elevated in the V.D3 + CCl4 treatment group compared to the con-

trol animals (Fig 4B). Notably, none of the mice died following CCl4 injection, while 55.6% (5

of 9; 4 on Day 2 and 1 on Day 7) of the hypercalcemic mice were found dead in the week fol-

lowing CCl4 injection.

Changes in hepatic and renal injury markers in CCl4-exposed mice pre-

treated with V.D3

To reveal the target organ of CCl4-induced toxicity under hypercalcemic conditions, we next

examined hepatic injury markers in the CCl4-treated mice. As shown in Fig 2, pre-treatment

with V.D3 significantly potentiated the increase in plasma ALT and AST levels seen following

CCl4 injection; these parameters recovered by the 7th day after CCl4 injection.

In parallel with the measurement of ALT and AST, we evaluated plasma creatinine and

BUN levels, which are markers of renal injury. As shown in Fig 3A, CCl4 exposure yielded sig-

nificant increases (in both groups) in creatinine levels at Days 1 and 3 (compared to respective

baseline values), but these effects did not differ significantly between groups (i.e., for animals

pre-treated with V.D3 rather than olive oil). On the other hand, although CCl4 exposure

yielded an increase (compared to baseline) in Day-1 BUN in animals pre-treated with V.D3,

this effect was not significant (at any of the time points) compared to the values obtained with

animals pre-treated with olive oil (Fig 3B).

Fig 3. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by creatinine and BUN levels.

Mice were treated as described in legend for Fig 2. Plasma creatinine (A) and BUN (B) levels were determined

at 0, 1, 3, and 7 days after CCl4 injection. Data are presented as mean ± S.D. of 4–9 mice.

https://doi.org/10.1371/journal.pone.0176524.g003

Fig 4. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by body weight change and

mortality. Mice were treated as described in legend for Fig 2. Body weights (normalized to baseline) (A) and

mortality (B) were recorded every 24 h through the 7th day after CCl4 injection. Data are presented as

mean ± S.D. of 4–9 mice. ## P < 0.01 versus CCl4 group on the respective day.

https://doi.org/10.1371/journal.pone.0176524.g004
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Effect of pre-treatment with V.D3 on CCl4 acute toxicity, as assessed by

hepatic CYP2E1 levels

In addition to plasma injury markers, we measured hepatic CYP2E1 mRNA levels since CYP2E1

is a major CYP contribution to CCl4 activation [26]. As shown in Fig 5, CCl4 exposure indicated

significant decreases (in both groups) at Days 1 and 3. On the other hand, although CCl4 treated

group at Day 7 was recovered in CYP2E1, V.D3 + CCl4 group was maintained at low level. More-

over, control and VD.3 group at all days were no significant change in CYP2E1 levels.

Effect of pre-treatment with V.D3 on CCl4 acute toxicity, as assessed by

MT stain

Next, we conducted Masson Trichrome stain since CCl4 is well known to induce liver fibrosis

[27, 28]. However, hepatic fibrosis was not observed in all groups (Fig 6), suggests generation

of hepatic fibrosis need to inject multiple times.

Changes in morphology, MDA, total antioxidant levels, ATP, and

NADPH levels in CCl4-exposed mice pre-treated with V.D3

To further investigate V.D3-induced exacerbation of liver damage, we randomly selected mice

from each group, harvested livers from these animals at 24 h after CCl4 treatment, and conducted

histopathological studies. H&E-stained liver sections from the control and V.D3 groups showed a

normal cell morphology and well-preserved cytoplasm, in addition to a clear, plump nucleus (Fig

7A and 7B). In contrast, we observed necrosis in the mice treated with CCl4 (Fig 7C). In addition,

Pretreatment with V.D3 become exacerbated some, but not all, liver cell necrosis (Fig 7D).

In parallel with histopathological studies, we measured liver MDA levels as a marker of

lipid peroxidation. CCl4 treatment significantly increased hepatic MDA levels, both in animals

pre-treated with olive oil and in those pre-treated with V.D3 (Fig 8A). Pre-treatment with V.

D3 further potentiated the CCl4-induced increase in MDA levels (CCl4 vs. V.D3 + CCl4).

Fig 5. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by hepatic CYP2E1 mRNA level.

Mice were treated as described in legend for Fig 2. Hepatic CYP2E1 mRNA levels were determined at 0, 1, 3,

and 7 days after CCl4 injection. Data are presented as mean ± S.D. of 4–9 mice.

https://doi.org/10.1371/journal.pone.0176524.g005
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Many studies have suggested that total antioxidant power, ATP, and NADPH can be used

as an indicator of oxidative stress. As shown in Fig 8B, CCl4-treatment markedly decreased

the total antioxidant power, and pre-treatment with V.D3 potentiated the CCl4-induced

decrease in antioxidant power. Notably, for both hepatic MDA and total oxidant power, values

did not differ significantly between animals pre-treated with vehicle and with V.D3. This

observation demonstrated that hypercalcemia itself does not induce either of these parameters.

In addition, hepatic ATP and NAPDH levels were consistent with total antioxidant power (Fig

8C and 8D).

Moreover, we determined hepatic GSH levels, that is well known to deplete on CCl4

administration [29–32]. As shown in Fig 9A, CCl4 treatment significantly decreased hepatic

GSH levels, both in animals pre-treated with olive oil and in those pre-treated with V.D3.

Pre-treatment with V.D3 further potentiated the CCl4-induced decrease in GSH levels (CCl4

vs. V.D3 + CCl4). Moreover, we determined glutamate cysteine ligase catalytic subunit

(GCLC) and glutamate cysteine ligase modifier subunit (GCLM) by qRT-PCR assay (Fig 9B

and 9C). Although GCLC was same tendency compared with GSH, GCLM was no significant

change in all groups in the present study.

Fig 6. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by live fibrosis. Animals were

treated as described in legend for Fig 2, and livers were harvested at 24 h, 72 h, or 168 h after CCl4
injection. Liver specimens were fixed and stained with MT. Micrographs provide 10×magnified images of

representative MT-stained liver sections obtained from the control (A), V.D3 (B), CCl4 (C), and V.D3 + CCl4
(D) groups at Day 1, control (E), V.D3 (F), CCl4 (G), and V.D3 + CCl4 (H) groups at Day 3, control (I), V.D3 (J),

CCl4 (K), and V.D3 + CCl4 (L) groups at Day 7, respectivity.

https://doi.org/10.1371/journal.pone.0176524.g006

Fig 7. Pretreatment with V.D3 becomes worse animals from acute CCl4-induced hepatotoxicity, as

assessed by H&E staining. Mice were treated as described in legend for Fig 2. At 24 h after CCl4 injection,

animals were euthanized and livers were harvested at necropsy. Liver specimens were fixed and processed

by standard methods, and sections were stained with H&E (A–D). Micrographs provide 10×magnified images

of representative H&E-stained liver sections obtained from the control (A), V.D3 (B), CCl4 (C), and V.D3

+ CCl4 (D) groups. Black arrows indicate area of necrosis.

https://doi.org/10.1371/journal.pone.0176524.g007
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Influence of V.D3 on CCl4 acute toxicity as assessed by hepatic calcium

levels and calcium stain

As we showed above, pre-treatment with V.D3 yielded increased plasma Ca levels. We next

examined whether V.D3 pre-treatment, with or without CCl4 exposure, also altered hepatic

calcium levels at 24 h post CCl4 injection, which we assessed by atomic absorption spectrome-

try (Fig 10A). In animals pre-treated with olive oil, CCl4 injection yielded a significant, 60-fold

Fig 8. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by Day-1 MDA levels, antioxidant

power, hepatic ATP levels, and NADPH levels. Mice were treated as described in legend for Fig 2. At 24 h

after CCl4 injection, animals were euthanized and livers were collected for determination of MDA levels (A),

total antioxidant power (B), hepatic ATP levels (C), and hepatic NADPH levels (D). Data are presented as

mean ± S.D. of 6 mice. * P < 0.05 and ** P < 0.01 versus control, # P < 0.05 and ## P < 0.01 versus CCl4 group.

https://doi.org/10.1371/journal.pone.0176524.g008

Fig 9. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by Day-1 hepatic GSH levels,

GCLC, and GCLM levels. Mice were treated as described in legend for Fig 2. At 24 h after CCl4 injection,

animals were euthanized and livers were collected for determination of GSH levels (A), GCLC mRNA (B), and

GCLM mRNA (C). Data are presented as mean ± S.D. of 6 mice. * P < 0.05 and ** P < 0.01 versus control,
# P < 0.05 and ## P < 0.01 versus CCl4 group.

https://doi.org/10.1371/journal.pone.0176524.g009
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increase in liver Ca levels. Injection of CCl4 in mice pre-treated with V.D3 yielded a further

>3-fold elevation in hepatic Ca levels. Notably, pre-treatment with V.D3 yielded a small

(1.8-fold) and non-significant increase in hepatic Ca levels compared to pre-treatment with

olive oil (in the absence of CCl4 injection). This observation demonstrated that V.D3 alone

does not induce appreciable hypercalcemia of the liver. In further to investigate Ca involve-

ment, we stained hepatic Ca by von Kossa method. In control and V.D3 groups, Ca deposition

was not observed (Fig 10B and 10C). In contrast, Injection of CCl4 in mice was slightly con-

firmed von Kossa positive staining in the area necrosis is not observed (Fig 10D). Moreover,

maximum von Kossa staining was confirmed in V.D3 + CCl4 group (Fig 10E).

Direct assessment of Ca effect on CCl4 acute toxicity

In order to confirm the involvement of calcium in CCl4 toxicity, we induced hypercalcemia by

direct injection of CaCl2 and monitored plasma calcium levels for the subsequent 24 h, both with

and without concomitant CCl4 exposure. As shown in Fig 11B, i.p. injection of CaCl2 induced

transient (within 3 h) hypercalcemia. When mice with this evanescent hypercalcemia were

injected with CCl4 (Ca + CCl4), the animals exhibited significantly elevated plasma ALT and

AST levels and hepatic calcium levels compared to normal-calcemic mice (CCl4) (Table 3).

Discussion

The present study demonstrated that pre-treatment with V.D3 potentiated CCl4-induced

hepatotoxicity and enhanced mouse mortality, without increasing renal toxicity and genera-

tion of liver fibrosis. Our previous investigation demonstrated that single i.p. injection of mice

with a fatal dose of CCl4 (4 g/kg) induced severe hepatotoxicity and moderate renal toxicity

[20, 22, 24]; however, the critical target organ that led to mouse death following CCl4 injection

was not defined. In the current study, V.D3 potentiation of toxicity was observed only in the

liver, as indicated by plasma levels of ALT and AST, biochemical markers of hepatic damage.

Although pre-treatment with V.D3 significantly increased renal calcium levels compared to

Fig 10. Effect of pre-treatment with V.D3 on CCl4 toxicity, as assessed by hepatic calcium levels and

calcium stain. Animals were treated as described in legend for Fig 2, and livers were harvested at 24 h after

CCl4 injection. (A): Hepatic calcium levels at 24 h were determined by atomic absorption spectrometry. Data

are presented as mean ± S.D. of 6 mice. * P < 0.05 and ** P < 0.01 versus control, ## P < 0.01 versus CCl4
group. (B–E): Liver specimens were fixed and stained with von Kossa. Micrographs provide 10×magnified

images of representative von Kossa-stained liver sections obtained from the control (B), V.D3 (C), CCl4 (D),

and V.D3 + CCl4 (E) groups.

https://doi.org/10.1371/journal.pone.0176524.g010
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those in animals pre-treated with olive oil, renal calcium content did not differ significantly

between mice treated with olive oil + CCl4 and those treated with V.D3 + CCl4 (data not shown).

Together, these data suggest that the liver is the primary target organ of acute CCl4 toxicity.

CCl4 is metabolized and activated by multiple CYPs, including CYP2E1, CYP2B1, and

CYP2B2 [2]. In particular, CYP2E1 is a major CYP contribution to CCl4 activation [26]. Sev-

eral literatures reported pre-treatment with phenobarbital, acarbose, or natural products (such

as Salvia officinalis) have been shown to potentiate the CYP2E1-mediated hepatotoxicity of

CCl4 [33–36]. Although vitamin D is known to induce the expression of CYP3A and CYP2B6

via activation of the vitamin D receptor (VDR), the pregnane X receptor (PXR), and/or the

Fig 11. Effect of intraperitoneal injection with CaCl2 on plasma calcium levels. Mice were injected i.p.

with CaCl2 at 150 mg/kg. Plasma calcium levels were determined after 10 and 30 min and at 1, 3, 6, 12, and

24 h after CaCl2 injection. (A) and (B) show the schematic experimental design of CaCl2 injection and the

results, respectively. Data are presented as mean ± S.D. of 6 mice.

https://doi.org/10.1371/journal.pone.0176524.g011

Table 3. Effect of pre-treatment with calcium on various parameters associated with CCl4-induced acute hepatotoxicity.

ALT (IU/L) AST (IU/L) hepatic Ca (μg/g liver)

Ca 8.69 ± 0.97 46.25 ±19.78 16.49 ± 4.06

CCl4 2115 ± 416** 2565 ± 534** 532 ±125**

Ca + CCl4 4153 ± 1252## 4650 ±767## 781 ± 54.0##

Mice were injected i.p. with CaCl2 (at 150 mg/kg) 10 min before i.p. injection with CCl4 (at 2 g/kg). Post 24 h after CCl4 injection, plasma ALT, AST and

hepatic Ca was measured. Data indicate mean ± S.D. of four or six mice.

**, significantly different from Ca + olive oil group (**P < 0.01) and
##, significantly different from saline + CCl4 group (##P < 0.01).

https://doi.org/10.1371/journal.pone.0176524.t003
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constitutive androstane receptor (CAR) [37–39], we are not aware of any reports of V.

D3-induced expression of CYP2E1, 2B1, or 2B2. In fact, hepatic CYP2E1 expression level was

not changed by pretreatment with V.D3. Taken together, these observations indicate that

CYPs are not primary mediators of the V.D3 potentiation of CCl4 toxicity.

Several studies suggest that a possible molecular mechanism involved in CCl4 hepatotoxic-

ity is the disruption of the delicate oxidant/antioxidant balance, which can lead to liver injury

via oxidative damage [2, 40]. Our results suggest that V.D3 (or a V.D3-induced factor) triggers

an enhancement of CCl4-induced toxicity. Since V.D3 has no ability to change every parame-

ters such as antioxidant power, MDA levels, ATP levels, NADPH levels, GSH levels, and GCL

subunit levels, V.D3 itself is not an oxidant. We hypothesize that calcium is likely the aggravat-

ing factor, given that pre-treatment with CaCl2 yielded potentiation of CCl4 toxicity similar to

that seen with pre-treatment with V.D3, a compound known to induce hypercalcemia. In

addition, the extracellular plasma calcium concentration is tightly controlled by a complex

homeostatic mechanism involving fluxes of calcium between the extracellular fluid and the

kidneys, bones, and hormones. It has been reported that CCl4 disrupts hepatic calcium homeo-

stasis [41, 42]. In the current study, CCl4-induced hepatic calcium levels were increased by

pre-treatment with V.D3, indicating that calcium is a candidate aggravating factor of CCl4 tox-

icity. Moreover, multiple researchers have reported that CCl4 significantly decreases the total

content of reduced GSH, and that CCl4-derived radicals can react with sulfhydryl groups of

GSH and other protein thiols [29–32]. Our data also supports these reports since GSH was

depleted by CCl4 and these depletion levels got worse by pretreatment with V.D3. In addition,

GSH is sequentially synthesize catalytic subunit d from glutamate, cysteine, and glycine, which

is mainly controlled by GCL. GCL is composed of two subunits, the GCLC and the modifier

subunit GCLM. Our study indicated that GCLC was same tendency compared with GSH. In

contrast, GCLM was no significant change in all groups in the present study. These data sug-

gests that single injection of CCl4 might attack GCLC rather than GCLM since multiple injec-

tion of CCl4 reduces both parameters [43].

Since some protein thiols are essential components of the molecular rearrangements that

are required for Ca2+ transport across cell membranes, loss of such thiols may affect the cal-

cium sequestration activity of subcellular compartments; mitochondria and microsomes

employ this sequestration to regulate cytosolic calcium levels. Hence, pre-treatment with V.D3

might induce the collapse of these cellular functions by disrupting calcium homeostasis in the

cell.

We demonstrated that both V.D3-induced hypercalcemia and direct injection of calcium

itself potentiate CCl4-induced toxicity; these results suggest that calcium potentiates hepato-

toxicity. In addition, we speculate that calcium augments the CCl4-induced toxicity within sev-

eral hours after CCl4-injection, given that transient hypercalcemia was observed at the earliest

time points following CaCl2 injection [44]. It has been reported that CCl4-induced hepatotox-

icity occurs within 3 h of exposure [45], consistent with our speculation.

In conclusion, we demonstrated that V.D3-induced hypercalcemia or pre-treatment with

CaCl2 enhances CCl4-induced hepatotoxicity, presumably via disruption of calcium homeosta-

sis. To our knowledge, this is the first evidence that calcium enhances CCl4-induced hepato-

toxicity in the early stage in mice. These findings may have relevance to the mechanism of

toxicity of other hepatotoxic compounds.
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