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Purpose: Segmentation of clinical target volumes (CTV) on medical images can be time-consuming and is prone to interobserver
variation (IOV). This is a problem for online adaptive radiation therapy, where CTV segmentation must be performed every treatment
fraction, leading to longer treatment times and logistic challenges. Deep learning (DL)-based auto-contouring has the potential to
speed up CTV contouring, but its current clinical use is limited. One reason for this is that it can be time-consuming to verify the
accuracy of CTV contours produced using auto-contouring, and there is a risk of bias being introduced. To be accepted by clinicians,
auto-contouring must be trustworthy. Therefore, there is a need for a comprehensive commissioning framework when introducing
DL-based auto-contouring in clinical practice. We present such a framework and apply it to an in-house developed DL model for auto-
contouring of the CTV in rectal cancer patients treated with MRI-guided online adaptive radiation therapy.
Methods and Materials: The framework for evaluating DL-based auto-contouring consisted of 3 steps: (1) Quantitative evaluation of
the model’s performance and comparison with IOV; (2) Expert observations and corrections; and (3) Evaluation of the impact on
expected volumetric target coverage. These steps were performed on independent data sets. The framework was applied to an in-house
trained nnU-Net model, using the data of 44 rectal cancer patients treated at our institution.
Results: The framework established that the model’s performance after expert corrections was comparable to IOV, and although the
model introduced a bias, this had no relevant impact on clinical practice. Additionally, we found a substantial time gain without
reducing quality as determined by volumetric target coverage.
Conclusions: Our framework provides a comprehensive evaluation of the performance and clinical usability of target auto-contouring
models. Based on the results, we conclude that the model is eligible for clinical use.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Radiation therapy is crucial in the multidisciplinary
treatment of rectal cancer, focusing on reducing local recur-
rence rates and downstaging tumors before surgery.1,2
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Magnetic resonance imaging-guided online adaptive radia-
tion therapy (MRIgOART) allows for daily adaptation to
anatomic changes through the use of high-resolution, high
contrast images,3,4 significantly reducing required margins
for intrafraction target motion resulting in approximately
30% reduction of the high-dose volume,3,5 which poten-
tially lowers treatment-related toxicities.6,7

A crucial step in MRIgOART is the recontouring of
clinical target volumes (CTVs). However, manual con-
touring of the target and organs at risk (OARs) for radia-
tion therapy is a labor-intensive and time-consuming
process that is prone to variability among clinicians. As a
result, it is often considered the weakest link in the radia-
tion therapy treatment chain.8-11 MRIgOART presents
additional challenges for CTV contouring. First, it intro-
duces time pressure on the contouring process, as pro-
longed contouring may result in organ and patient
motion, which can compromise treatment accuracy.12

Second, it requires the presence of a physician or highly
skilled technician during treatment, which affects staff
efficiency and treatment costs. Third, CTV contouring
must be performed for every treatment session, adding to
clinical staff workload. Therefore, the development of
accurate and efficient CTV contouring methods is essen-
tial for the widespread clinical adoption of MRIgOART.

Recent advancements in artificial intelligence, particu-
larly deep learning (DL) with convolutional neural net-
works, show promise for automated medical image
contouring.13,14 DL models can enhance contouring con-
sistency and speed.15,16 Although automated contouring
of OARs is becoming more common in radiation
therapy,17,18 automated target contouring is less fre-
quently studied.19 In particular for rectal cancer, although
a few studies have focused on segmenting the primary
tumor from multimodal MRI,20-22 CTV segmentation
remains less explored.23,24

Despite DL-based auto-contouring’s potential, its clin-
ical use is limited.25 One of the reasons is that it can be
difficult to assess the quality of the auto-contours. In par-
ticular, for CTV auto-contouring, validation of the DL
model requires careful consideration before clinical
introduction. To be eligible for clinical use, a DL model
for contouring must produce robust and accurate delin-
eations that are suitable for treatment. However, often
used geometric segmentation metrics such as the Dice
coefficient or mean surface distance fail to answer this
question for at least 2 reasons. First, because of known
interobserver variability (IOV), a certain amount of mis-
match is expected.26 Second, a CTV is typically not irra-
diated as such, but instead a planning target volume
(PTV) margin is applied. Therefore, the question
becomes whether any residual errors in the auto-con-
tours require an increase of the PTV margin to ensure
target coverage. This is especially relevant because the
auto-contouring model might introduce a (small) sys-
tematic bias, even after manual correction. The potential
clinical impact of this bias should be assessed. Addition-
ally, geometric segmentation metrics have been shown to
not correlate well with clinical time-gain after the intro-
duction of automated contouring.27 These factors make the
assessment of the clinical eligibility of the auto-contouring
model for clinicians highly complex, whereas for a model to
be accepted by clinicians, auto-contouring must be trust-
worthy. Therefore, there is a need for a comprehensive
commissioning framework when introducing DL-based
auto-contouring in clinical practice.

Our work aims to develop a framework to bridge the
gap between a CTV auto-contouring model that performs
well on geometric metrics and a model that is eligible for
clinical use. We have proposed and applied a comprehen-
sive commissioning framework for DL-based CTV auto-
contouring, addressing 3 critical questions:

1. How do the differences between (corrected) auto-con-
tours and a predefined reference contour compare
with IOV?

2. How do experts evaluate auto-contours, and what
time savings do they offer?

3. How do (corrected) auto-contours affect PTV mar-
gins and target coverage?

This framework provides a clinically relevant analysis
of CTV auto-contouring quality, facilitating its safe imple-
mentation. As a case study, we have applied this frame-
work to our in-house mesorectum CTV auto-contouring
model for MRIgOART in rectal cancer treatments.
Methods and Materials
Imaging data

In this study we retrospectively included 44 patients
with intermediate risk or locally advanced rectal cancer
treated who were treated in our institution on the Unity
MR-Linac (Elekta AB, Stockholm). Thirty-six patients
were treated with 5 £ 5 Gy, and 8 patients were treated
with 25 £ 2 Gy; 33 patients (32 short course, 1 long
course) were treated with an adapt to shape (ATS) proce-
dure,28 and the remaining patients (4 short course, 7 long
course) were treated using an adapt to position (ATP) with
a library of plans approach.29 All patients in the study were
enrolled in the Momentum prospective registration study
(NCT04075305)30 and as such gave written informed con-
sent for the retrospective use of their data.

For the ATS treatments, 4 3D T2 weighted MRI acquisi-
tions were acquired for each treatment fraction: an MRI
used for adaptation (MRIadapt), an MRI for verification
made just before treatment (MRIver), an MRI post treat-
ment (MRIpost), and an MRI during treatment (MRIduring).
All acquisitions had a Field of View of 400 £ 448 £ 249
mm3, repetition time (TR) of 1300 ms, and echo time (TE)



Advances in Radiation Oncology: June 2024 Evaluation of deep learning auto-contouring 3
of 128 ms. Voxel size was (1.2 mm)3 for MRIadapt and
1.2 £ 1.2 £ 2.4 mm3 for MRIver, MRIduring, and MRIpost,
resulting in acquisition times of approximately 6 and 3
minutes respectively. For the ATP patients, MRIduring was
not acquired. For the long course treatments, only the first
fraction of each week was included.

For each patient a planning CT (MRI based pseudo-
CT31) acquired a week before treatment was also available.
Contouring data

Figure 1a and b provide a graphical overview of the
different contours we distinguished in this work. On the
planning CT the target volumes and OARs were con-
toured according to national guidelines.32 In the ATS
workflow in clinical practice, a deformable or rigid regis-
tration from the planning CT to daily acquired MRIadapt
was performed, and the structures were propagated
accordingly to MRIadapt. Subsequently, the contours were
manually verified and corrected before treatment. These
contours we designate as the clinical standard.

The clinical standard data were acquired under time
pressure by a variety of clinicians during real patient treat-
ment. To obtain a highly self-consistent data set, the mes-
orectum CTV was also contoured retrospectively by 2
experienced radiation technology therapists (RTT). For
each fraction, the clinical contours on MRIadapt were
checked and carefully adjusted. Subsequently, the cor-
rected contours were rigidly copied to the MRIver, MRIpost
and, if present, MRIduring, and manually adjusted. All
scans of one patient were contoured by the same RTT.
Contours were verified and, if needed, corrected by a
Figure 1 Overview of how the contours used in this study hav
dard contours. Panel b shows the prediction and correction con
radiation oncologist with over 10 years of experience.
These contours we designate as the gold standard.

Contours produced by the auto-contouring model are
designated as predicted. Contours that were manually ver-
ified and corrected are designated as corrected.
Data sets

The data were split randomly and on the patient level
into subsets. In this study we used the following data sets:

� Training data: the auto-contouring model was trained
on 20 patients (332 scans) using the gold standard
contours.

� Validation data: 5 patients (74 scans) using the gold
standard contours. During model development this
set was used to choose the most appropriate training
strategy.

� Test data: 5 patients (77 scans) using the gold stan-
dard contours.

� Commissioning data: 19 patients (including the 5 test
data patients) with in addition prediction and correc-
tion contours on MRIadapt and gold standard contours
on MRIpost (93 scans). For the patients who were
treated with an ATS procedure, there were clinical
standard contours present as well (79 scans).

� IOV data: 10 patients (all included in the training
data) were contoured on MRIadapt of the first treat-
ment fraction by 5 experts (1 resident radiation
oncologist and 4 RTTs, trained and certified by a radi-
ation oncologist to perform daily CTV contour adap-
tation in an online adaptive workflow); for each
e been acquired. Panel a shows the clinical and gold stan-
tours.
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MRIadapt there were 5 mesorectum CTV contours
present.
Model architecture and training

The nnU-Net framework33 was used to train an auto-
contouring model. nnU-Net is a state-of-the-art segmen-
tation framework that automatically configures model
parameters for the data and task at hand. The default set-
tings of the framework were used for training; the loss
function was a combination of the Dice and cross-
entropy. Stochastic gradient descent with Nesterov
momentum (m = 0.99) was used as an optimizer with a
poly learning rate schedule and an initial learning rate of
0.1. For inference we deviated from the default settings by
making use of the best performing weight configuration
instead of the resulting weights at the end of training as a
form of early stopping. The model was trained to segment
the mesorectum CTV on MRI scans. To improve model
performance, we provided the model with a patient-spe-
cific probability map as a second input channel, indicating
the prior voxelwise probability of the mesorectum being
present. This probability map was based on a population
standard deviation map, generated from mesorectum
contours on daily CBCT images from prior work.29 A
patient specific probability map was made by combining
the population map with the patient specific mesorectum
CTV as contoured on the planning CT. Using a rigid
match between the planning CT and the MRIadapt, the
probability map was subsequently matched to the MRIa-
dapt (see Fig. 1b). Because the patient specific contour
implicitly contains the physician intent for each patient,
this probability map effectively propagates the expected
physician intent to each online adaptive fraction.
Evaluation and commissioning framework

To assess the quality of CTV auto-contouring we pro-
posed the following framework:

Quantitative evaluation of model performance and
comparison with IOV

Quantitative evaluation was done using commonly
used geometric metrics: the Sørensen-Dice coefficient
(Dice), 95% Hausdorff distance (HD95), Surface Dice at
3 mm (SD3), and bidirectional mean surface distance
(MSD). These metrics were calculated using DeepMind’s
Python package (https://github.com/deepmind/surface-
distance). Model performance was quantified by compar-
ing the predicted mesorectum contour with the gold stan-
dard contour on the test data set. To understand local
variation in performance, this analysis was repeated while
taking the most cranial 20%, middle 60%, and most cau-
dal 20% of gold standard delineated slices into account.
The local analysis was done using HD95 and MSD only,
because the Dice and SD3 are correlated with volume,
which makes the interpretation of these metrics evaluated
on different volumes prone to confusion.

To benchmark the quantitative results, the same geo-
metric metrics both globally and per subregion were
determined on the IOV data set. Each metric was calcu-
lated for each observer pair and per patient the average
over all observer pairs was determined. By quantifying the
IOV in this way, we explicitly chose not to compare the
different observers with a gold standard. The assumption
here was that each observer in the IOV set produced a
delineation that is of sufficient quality for clinical use and
therefore the comparison against this set provided an
indication of clinically equivalent contours.

Differences between model performance and IOV were
tested for significance using a 2-sided Mann-Whitney U
test using a = 0.05.
Expert observations and corrections
To evaluate the use of auto-contouring in practice, a

single experienced RTT corrected the predicted contour
on 93 scans (commissioning data). A subjective assess-
ment of the quality of the prediction was made using a
scale of 0 to 4 (0 = no corrections needed; 1 = small
adjustments, low impact; 2 = mix of small and large
adjustments; 3 = large, high impact adjustments needed;
4 = unusable). The categories were discussed with the
RTT beforehand. Time spent correcting was measured
manually. The time required for mesorectum CTV cor-
rection in the clinical ATS workflow was measured for 13
consecutive patients (51 fractions) not further included in
this study.

The corrections made were quantified using the same
metrics as in step 1, both globally and per subregion, by
comparing the predicted CTV with the corrected CTV. To
quantify the quality of the corrections, the corrected CTV
was compared with the clinical standard CTV and bench-
marked against the IOV results, similar to as in step 1.
Evaluate the impact on expected target coverage
The expected target coverage for a certain PTV margin

was determined by assuming all residual uncertainty was
intrafraction motion, similar as in Kensen et al.5 The mes-
orectum CTV delineated on MRIadapt was anisotropically
(with the anterior expansion being 1.6 times the expan-
sion in the other directions) expanded to a PTV, using a
range of margins of 0.5 to 10 mm (stepsize of 0.5 mm).
Next, the volumetric overlap of the PTV with the gold
standard CTV on MRIpost was determined. For every
patient the volumetric overlap was averaged over all treat-
ment fractions. Coverage reached by at least 90% of the
population was reported. Expected target coverage was
determined using the predicted, corrected, and clinical
standard CTV from the commissioning data set.

https://github.com/deepmind/surface-distance
https://github.com/deepmind/surface-distance


Table 1 Overview of evaluation steps and data used for each step

Note: The gray boxes show which contouring data sets are compared for each evaluation step.
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Table 1 shows an overview of which data set was used
for each evaluation step. Figure 1a and b show an over-
view of how every type of CTV contour was acquired.
Results
In the training data MRIduring was not always available.
Three patients missed MRIduring for one fraction, 2 patients
missed 2 fractions, and one patient missed 4 fractions. Also,
for one patient a single fraction was missing completely. For
one patient in both the test and commissioning data, none of
the scans were available for one single fraction. Additionally,
one patient in the commissioning data (but not included in
the test data) also only had data present for 4 fractions.
Quantitative evaluation of model
performance and comparison with IOV

The geometric comparison of the predicted contours
with the gold standard contours and the IOV is shown in
Table 2 Geometric metrics evaluating model performance an
data set (section 2.3)

Prediction vs Gold standard IOV ana

Dice 0.89 (0.87-0.90) 0.91 (0.9

SD3 0.81 (0.78-0.84) 0.86 (0.8

HD95 (mm) 11 (7-14) 10 (6-13

MSD (mm) 2 (2-2) 2 (1-2)

Abbreviations: HD95 = 95% Hausdorff distance; IOV = interobserver variation
Notes: Values are reported as median (interquartile range). P values are calcul
Table 2. Model performance was slightly worse compared
with IOV, with significant differences found for Dice,
SD3, and MSD, but not for HD95.

The local differences in performance for the cranial
20%, middle 60%, and caudal 20% of the contours is pre-
sented in Table 3. These results show that both the model
performance and the IOV was worst in the caudal region
of the contours, whereas the best performance was in the
middle region.
Expert observations and corrections

Of the 93 mesorectum CTV contours presented to the
experts, 9 needed no corrections (score 0), and 2 were
deemed unusable (score 4). The majority of contours (56
contours) required only minor corrections (score 1, see
Table 4). Average time spent verifying and correcting the
predicted mesorectum CTV contours was 3m08s, (range,
0m35s-8m35s), compared with an average correction
time of 7m34s (range, 2m40s-14m58s), in the current
d interobserver variation using the test data set and IOV

lysis P value (Predicted vs Gold standard) vs IOV

0-0.92) 0.01

5-0.91) <0.01

) 0.62

0.03

; MSD = mean surface distance; SD3 = surface dice at 3 mm.
ated using the Mann-Whitney U test.



Table 4 Qualitative scores assigned to the predicted
contours by the expert correcting them

Score Occurrence

0: no corrections needed 9

1: small adjustments, low impact 56

2: mix of small and large adjustments 26

3: large, high impact adjustments needed 0

4: unusable contour 2

Table 3 Local geometric metrics evaluating model performance and interobserver variation (IOV) using the test data set
and IOV data set (section 2.3)

Prediction vs. Gold Standard IOV analysis

Cranial 20% Middle 60% Caudal 20% Cranial 20% Middle 60% Caudal 20%

HD95 (mm) 9 (6-14) 3 (3-6) 16 (9-22) 6 (4-8) 3 (2-6) 10 (7-12)

MSD (mm) 2 (1-3) 1 (1-1) 3 (2-5) 1 (1-1) 1 (1-1) 2 (2-2)

Abbreviations: HD95 = 95% Hausdorff distance; IOV = interobserver variation; MSD = mean surface distance.
Note: Values are reported as median (interquartile range).
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clinical ATS workflow. See the supplemental material for
examples of predicted contours and their corrections.

The predicted contours were compared with their
respective corrections, and the corrected contours were
compared with the clinical standard. The results for the
global comparison are shown in Table 5. With a Dice
score of 0.98, these results showed a high degree of
Table 5 Geometric metrics evaluating manual corrections to
interobserver variation data set

Prediction vs. Correction Correction vs. Clinical

Dice 0.98 (0.95-0.99) 0.92 (0.90-0.93)

SD3 0.95 (0.91-0.98) 0.88 (0.85-0.91)

HD95 (mm) 4 (1-9) 6 (4-8)

MSD (mm) 0 (0-1) 1 (1-2)

Abbreviations: HD95 = 95% Hausdorff distance; IOV = interobserver variation
Notes: Values are reported as median (interquartile range). Results for IOV a
Whitney U test.

Table 6 Local geometric metrics evaluating manual correctio
and interobserver variation data set

Prediction vs. Correction

Cranial 20% Middle 60% Caudal 2

HD95 (mm) 3 (1-8) 1 (0-3) 3 (1-12)

MSD (mm) 0 (0-1) 0 (0-0) 0 (0-1)

Abbreviations: HD95 = 95% Hausdorff distance; MSD = mean surface distance
Notes: Values are reported as median (interquartile range).
similarity between the predicted and corrected contours.
When comparing the similarity between the corrected and
clinical standard contours with the IOV from step 1, only
a significant difference was found for the HD95, with the
IOV having the larger HD95.

The local differences between the predictions and their
corrections as well as the local differences between the cor-
rections and the clinical standard contours are shown in
Table 6. Similar to results shown in Table 3, it was found
that the best performance was in the middle region of the
contour.
Evaluate the impact on expected target
coverage

In the last stage of the evaluation framework, the volu-
metric target coverages of the predicted, corrected, and
clinical standard contours were compared (Fig. 2). After
model predictions using the commissioning data set and

IOV analysis P value (Correction vs Clinical) vs IOV

0.91 (0.90-0.92) 0.35

0.86 (0.85-0.91) 0.57

10 (6-13) 0.01

2 (1-2) 0.28

; MSD = mean surface distance.
re a repetition from Table 2. P values are calculated using the Mann-

ns to model predictions using the commissioning data set

Correction vs. Clinical

0% Cranial 20% Middle 60% Caudal 20%

5 (4-7) 3 (3-4) 5 (4-9)

1 (1-2) 1 (1-1) 1 (1-2)

.



Figure 2 Posttreatment overlap averaged over the frac-
tions reached by 90% of the population. Planning target
volume margins were anisotropic, with the anterior mar-
gin 1.6 times the reported margin. Clinically, a margin of
5 mm (8 mm anterior) is used. In blue are results for the
predicted contours; in orange, results for the corrected
contours; in green, results for the clinical standard con-
tours.
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correcting, the target coverage increased compared with
the uncorrected predictions, and the coverage for the cor-
rected contours was very similar to the coverage obtained
by the clinical standard contours. With our institution’s
clinically used PTV margin of 5 mm (8 mm anterior), a
relative volumetric coverage was obtained of 0.93, 0.96,
and 0.95 when using the predicted, corrected, and clinical
CTV respectively.
Discussion
In this work, we developed a framework to evaluate the
performance and clinical eligibility of a deep learning
(DL) contouring model for clinical target volume (CTV)
auto-contouring. The framework aimed to address 3
main questions: (1) How do the differences between (cor-
rected) auto-contours and a predefined reference contour
compare with IOV? (2) How do experts evaluate the
auto-contours, and what is the time saved by using auto-
contouring? (3) What is the impact of using the (cor-
rected) auto-contours in terms of the relation between the
PTV margins used and the expected target coverage?

To address these questions, we compared the model’s
performance to a predefined ground truth and to the
IOV, both globally and locally. We also had an expert
review and correct the auto-contours and tracked the tim-
ing to establish a potential time gain in clinical practice.
We compared the corrected contours to a predefined ref-
erence and to the predicted contour and evaluated the
clinical relevance of using the different CTV contours
based on geometric target coverage. The approach
required the addition of 2 data sets to the standard used
train/test/validate data,34 namely a data set showing IOV
and a commissioning data set that included model predic-
tions, corrections, and an independent reference delinea-
tion (in our case the clinical standard contours).

Literature evaluating the performance of (auto-)con-
touring models focuses primarily on using geometric
measures. However, these metrics may not always reflect
clinical relevance, such as dosimetric parameters35 or edit-
ing time.36 Additionally, it can be challenging to evaluate
the impact of IOV and the potential bias introduced by
the model in clinical practice. To supplement these analy-
ses, various methods have been proposed in the literature
including: a Turing test,37 expert evaluations through
scoring, investigation of time saved in recontouring,36

evaluation of the dosimetric impact on treatment plan-
ning or plan evaluation,38 and IOV studies.8

These approaches aim to provide an understanding of the
performance and clinical usability of auto-contouring
models.

However, to establish clinical usability, a compre-
hensive framework, combining manual model correc-
tions, IOV, and clinical impact is advisable. Frederick
et al.38 proposed such a framework to evaluate con-
tour propagation, in which an automated treatment
plan based on propagated contours was compared
with treatment plans based on contours delineated by
multiple observers using dosimetric measures. How-
ever, this approach requires multiple observers to
delineate every scan in the evaluation data set, which
may not always be feasible and may limit the avail-
able evaluation data. Our approach separates the IOV
and commissioning data to evaluate a large data set
and include IOV data simultaneously. Additionally,
our analysis supplements this framework by also con-
sidering the corrections made to the contours (which
would be standard in clinical practice). Although
dosimetric impact is important, for CTV contouring
it is also necessary to consider PTV margins and
expected coverage to assess the clinical impact. Our
framework provides a more comprehensive evaluation
of the performance and clinical usability of the
model.

As a case study, we applied the framework to the task
of mesorectum CTV delineation for use in MRIgOART.
Our results are consistent with existing literature: in Sav-
jani et al.19 the best performing models had a Dice coeffi-
cient of 0.73-0.94, and others23,24 report a mean Dice of
0.90 for rectal cancer CTV delineation, making our per-
formance (Dice: 0.89) comparable. A median Dice of 0.93
was reported by White et al.39 for mesorectum delineation
IOV, similar to our finding of 0.91. Our finding that varia-
tion was largest in the cranial/caudal region was consis-
tent with Nijkamp et al.26

In this work, we did not consider dosimetric metrics
but evaluated expected target coverage based on geometry
only by calculating the volumetric overlap between the
mesorectum PTV on MRIadapt and the gold standard
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CTV on MRIpost. We performed this calculation for dif-
ferent PTV margins without explicitly choosing a
required coverage criterion. In rectal cancer treatment
planning, the 95% prescription isodose line is typically
tightly conformal to the PTV, which makes the calculated
volumetric overlap equivalent to the volume receiving
95% of the prescribed dose.5 However, when applying our
framework to other treatment sites, this choice should be
carefully reconsidered, and it might be necessary to evalu-
ate expected target coverage by dose accumulation on the
posttreatment image.

One notable finding was that the HD95 before correc-
tion was the only metric not significantly different com-
pared with IOV, whereas the opposite was true after
correction. The HD95 is sensitive to the largest errors, sug-
gesting each observer made different choices despite clini-
cal consensus guidelines, with an IOV upper quartile
HD95 of up to 13 mm, mainly in the caudal extent of the
CTV. This uncertainty propagates to the model predic-
tion, and we hypothesize that the large spread in the
HD95 makes the difference insignificant. However, after
corrections the HD95 between the corrected and clinical
contour improved with respect to the IOV. This suggests
that the model’s bias can be effectively corrected through
manual review.

In summary, we presented a framework for the evalua-
tion and commissioning of DL auto-contouring models
for clinical targets. We applied this framework to a DL
model for mesorectum CTV auto-contouring. The frame-
work established that the model’s performance was com-
parable to IOV, and although the model introduced a
bias, this had no relevant impact on clinical practice.
Additionally, we found a substantial time gain without
diminishing quality, determined by volumetric target cov-
erage. Based on these results, we conclude that the model
is eligible for clinical use.
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