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Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat

posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying sponta-

neous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments

overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here,

we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas rein-
hardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold

variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately

eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence

motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little

evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We

generated a predictive model of the mutability of sites based on their genomic properties, including local GC content,

gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural

levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least

mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and

across the genome.

[Supplemental material is available for this article.]

Understanding the processes that generate new genetic variation
from mutation is a key goal of genetics research. In humans, for
example, new mutations cause Mendelian genetic disorders, play
a direct role in polygenic disease (e.g., Veltman and Brunner
2012), and are a major factor in cancers (e.g., Alexandrov et al.
2013a). New mutations also play a central role in evolutionary
biology, since the variation that fuels adaptive evolution is ulti-
mately derived from advantageousmutations. It is widely believed
that themajority of newmutations that affect functional elements
of the genome are deleterious, and the input of these mutations is
pivotal in explaining the evolution of recombination and sex (for
review, see Otto 2009).

When new mutations are harmful, theory predicts that the
mutation rate should evolve toward zero, because individuals
with higher mutations rates will suffer a greater mutational load.
The mutation rate is always greater than zero in nature, however,
ranging over seven orders of magnitude (for review, see Drake
2006), and two main explanations have been proposed for this.
One explanation is that there is a limit to the accuracy of DNA re-
pair, due to a trade-off between the benefit of further reducing the
mutation rate and the costs of increased fidelity (Kimura 1967).
Alternatively, a “selection-drift” barrier may constrain progress
toward a lower mutation rate when the selective advantage of
further improvement becomes so small that new mutations de-

creasing the mutation rate are effectively neutral (Lynch 2010).
Evidence for a selection-drift barrier comes from the negative cor-
relation between the mutation rate per generation and effective
population size (Ne) (Sung et al. 2012). However, when mutation
rate is expressed per cell division, there is much less variation be-
tween species and little relationship with Ne, consistent with
the constraint on the fidelity of replication hypothesis. It is cur-
rently difficult to fully evaluate the support for these hypotheses,
however, because studies ofmutation are restricted to a small num-
ber of taxa, few genotypes per species, and a limitednumber ofmu-
tation events.

Although there is clear evidence for variation between spe-
cies, we know relatively little about the extent of mutation rate
variation within species. Individuals with an unusually high mu-
tation rate have been isolated from natural populations of pro-
karyotes (Matic et al. 1997; Sundin and Weigand 2007), but to
our knowledge no natural mutators have been found in eukary-
otes. This discrepancy likely stems from the fact that prokaryotes
are asexual whereas eukaryotes are predominantly sexual.
Theory predicts that in an asexual population, a mutator allele
can hitchhike to high frequency if it generates a beneficial allele
on the same genetic background (Johnson 1999). In contrast, re-
combination in sexual populations uncouples a mutator from a
linked beneficial allele, so the mutator allele is then expected to
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be selected against because of its association with linked deleteri-
ous mutations (for review, see Drake et al. 1998). Although a
smaller amount of mutation rate variation is expected in sexual
than asexual species, mutations that alter the mutation rate are,
nevertheless, expected to occur and potentially provide the basis
for mutation rate evolution. Mutation rate variation within a spe-
ciesmay also reflectmutation-selection balance, whereby new del-
eterious alleles that alter the mutation rate continually arise and
are purged by selection. In this scenario, intra-specific mutation
rate variation will reflect the distribution of phenotypic effects
of mutations that alter DNA repair and stability and the effective-
ness of selection against them. In the largest study of spontaneous
mutation in humans, there was little evidence for mutation rate
variation among individuals after accounting for parental age
(Kong et al. 2012). Father’s age was also an important factor ex-
plaining mutation rate variation in chimpanzees (Venn et al.
2014). Similarly, there was no evidence of mutation rate varia-
tion between two strains in both Caenorhabditis elegans and
Caenorhabditis briggsae (Denver et al. 2012). There is evidence
from Drosophila that individuals in poor condition have elevated
mutation rates (Sharp and Agrawal 2012), and a separate study
comparing two inbred lines revealed a 2.4-fold difference in the
rate of mutation (Schrider et al. 2013). Moreover, two indepen-
dent experiments in Chlamydomonas reinhardtii suggested that
there is a fivefold difference in the mutation rate between two nat-
ural strains (Ness et al. 2012; Sung et al. 2012).

In addition to mutation rate variation within and between
species, there is also evidence that the mutation rate varies across
the genome. Suchheterogeneity is expected to alter the rate of evo-
lution across the genome and to create variation in the susceptibil-
ity of genes or sites to deleterious or beneficial mutations. There is
clear evidence for the existence of fine-scale variation in the rate of
mutation. At the scale of individual sites, G:C positions tend to
mutate at higher rates than A:T positions, and transitions from
G:C→A:T are themost common change in a broad range of species,
including bacteria (Hershberg and Petrov 2010), animals (Kong
et al. 2012; Schrider et al. 2013), fungi (Zhu et al. 2014), and plants
(Ness et al. 2012). Similarly, the bases surrounding a mutated
site have a strong effect on mutability. The high frequency of G:
C→A:T transitions in mammals, for example, is driven by the
deamination of methylated CpG sites (Ehrlich and Wang 1981).
In general, the bases flanking a particular site, referred to as the “se-
quence context,” are one of the best predictors of mutation rate
(Michaelson et al. 2012; Neale et al. 2012; Samocha et al. 2014;
Zhu et al. 2014). However, investigations concerning the underly-
ing mechanisms and the consistency of sequence context effects
on mutability are only now emerging.

At a broader genomic scale, evidence for mutation rate het-
erogeneity is weaker. Sequencing of mutation accumulation
(MA) lines in Saccharomyces cerevisiae (Zhu et al. 2014) and
Drosophila melanogaster (Schrider et al. 2013) found no evidence
of mutation rate variation between chromosomes. Although there
is evidence that mutation rate increases as a function of replica-
tion timing (Stamatoyannopoulos et al. 2009; Lang and Murray
2011), this finding has not been supported by direct estimates of
the mutation rate (Samocha et al. 2014; Zhu et al. 2014). A variety
of other genomic properties have been linked to increased suscept-
ibility to mutation, including transcription level, nucleosome oc-
cupancy, DNase hypersensitivity, and recombination rate (e.g.,
Michaelson et al. 2012). If these factors strongly influence muta-
tion and generate variation between sites or large scale patterns
of mutation rate variation, it is important to quantify their effects

in order to facilitate better predictive models of DNA sequence
evolution.

Detailed investigations of the process of spontaneous muta-
tion and the extent of mutation rate variation have been limited
by the rarity of spontaneous mutations, which has constrained di-
rect observation of sufficient numbers of mutations to infer the
underlying biology. Sequencing of parents and their offspring is
an increasingly common method for directly identifying de
novo mutations (e.g., Keightley et al. 2014a,b). Although this ap-
proach has advantages, it is currently very expensive to sequence
sufficient offspring to observe large numbers of mutations and
has therefore only been applied on a large scale in humans
(Kong et al. 2012). Another approach is to maintain experimental
populations for many generations under minimal natural selec-
tion to allow mutations to accumulate regardless of their fitness
consequences. Increasing the strength of genetic drift by bottle-
necking the population in each generation allows random, unbi-
ased accumulation of all but the strongest deleterious mutations.
These mutation accumulation experiments have been used in a
variety of species to investigate the phenotypic effects of newmu-
tations (for review, see Halligan and Keightley 2009) and are now
being paired with whole genome sequencing to identify individ-
ual mutations. MA studies have generally been limited to se-
quencing a small number of genomes, and only two studies
have tested for heterogeneity in mutation rate across the genome
(Schrider et al. 2013; Zhu et al. 2014), and no study has included
more than two ancestral genotypes from a single species. In this
study, we sequenced the genomes of 85 MA lines derived from
six genetically diverse strains of the model green alga C. reinhard-
tii.We identified 6843 mutations, sevenfold more than any previ-
ous MA study, and integrate these data with detailed annotation
of genomic properties to investigate the process of spontaneous
mutation with unprecedented detail. Specifically, we address the
following questions: (1) What is the relative frequency of different
kinds of mutation, including the base spectrum and rate of inser-
tion and deletion mutations? (2) What is the extent of mutation
rate variation between individuals within a species? (3) Is there ev-
idence of mutation rate heterogeneity across the genome and
what genomic properties predict the rate of mutation at individu-
al sites?

Results

We conducted a mutation accumulation experiment in six genet-
ically diverse strains of C. reinhardtii that were chosen to broadly
cover the geographic range of known C. reinhardtii samples in
North America (Table 1). Fifteen replicate MA lines from each
of the six ancestral strains were initiated for a total of 90 MA lines.
Eighty-five of the initial 90 MA lines survived to the end of the
experiment. The mean number of generations undergone by
each MA line was estimated to be 940 (range 403–1130). We
used Illumina whole genome sequencing to identify de novo mu-
tations in an average of 75.4 Mbp per line (72.5% of genome,
range 58.5–84.9 Mbp) (see Methods for details on mutation call-
ing). In total, we identified 6843 mutations, including 5716 sin-
gle nucleotide mutations (SNMs) and 1127 short indels. To
confirm our mutation calls, we Sanger-sequenced a random sam-
ple of 138 mutations. One hundred fifteen of 117 SNMs and 19 of
21 indels were confirmed, implying a detection rate of 98.3% and
90.5% for SNMs and indels, respectively. A complete list of all
mutations and their annotations can be found in Supplemental
Table S1.
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Mutation rate variation among genotypes

The mutation rate across all MA lines was µ = 11.5 × 10−10 per site
per generation. The SNM and indel mutation rates were µSNM =
9.63 × 10−10 and µINDEL = 1.90 × 10−10, respectively. Mutation
rate varied considerably among theMA replicates and between an-
cestral strains. Mutation rates of the individual MA lines ranged
over nearly two orders of magnitude from MA replicate 4 from
CC-1952 (µCC-1952-MA4 = 0.57 × 10−10) to MA replicate 1 from
CC-2344 (µCC-2344-MA1 = 49.4 × 10−10). There was significant varia-
tion in the mean mutation rate among the ancestral strains (F(1,5)
= 30.96, P < 0.0001) (see Fig. 1). Post-hoc Tukey tests showed that
strain CC-1373 had an average mutation rate significantly higher
than all of the other strains (µ = 28.1 × 10−10, P = 0.01 to <0.001).
Its rate was nearly sevenfold higher than strain CC-1952 (µ =
4.05 × 10−10), which had the lowest mutation rate, and was sig-
nificantly lower than strain CC-1373 (P < 0.001), CC-2931 (µ =
15.6 × 10−10, P < 0.001), and CC-2342 (µ = 11.1 × 10−10, P < 0.01).
Within strains CC-2344 and CC-2931, there were individual MA
lines with unusually high mutation rates, 3.5× and 8.0× above
their respective strain means, i.e., µ estimates for µCC-2344-MA1 =
56.9 × 10−10, CC-2344 (confidence interval [CI] = 2.6–12.0 ×
10−10), and µCC-2931-MA5 = 36.2 × 10−10 (CC-2931 CI = 7.2–20.0 ×
10−10) are outside the 99.99% CI of their ancestral strain mutation
rates. We also found that one MA line, CC-1952-MA4, had an un-
usually lowmutation rate of µCC-2931-MA5 = 36.2 × 10−10 compared
to its strainmean andmay be a hypomutator, although further in-
vestigation would be needed to distinguish this possibility from
the alternate, which is that with 85 MA lines, one accumulated
an unusually low number of mutations by chance.

Indel mutations

Short deletions (613) were significantly more common than inser-
tions (514) (χ2 = 8.7, P < 0.005), and these deletions also tended to
be larger (mean lengths =−7.9 and +5.9, respectively, Mann–
Whitney U test, W = 112,604.5, P < 2.2 × 10−16). MA lines of strain
CC-2931 had an unusually high number of indels (408) due to an
abundance of 9-bp deletions, i.e., 120 of 408 indels in CC-2931
were 9-bp deletions compared to a mean of five 9-bp deletions in
each of the other strains. These deletions did not appear to have
any shared sequence motif nor were they associated with coding
exons, repetitive sequence, or any genomic property that we could
identify. After adjusting for the excess of 9-bp deletions in
CC-2931 by setting it to themean number of 9-bp deletions found
in the other strains, there were similar numbers of insertions
and deletions, but deletions were still significantly longer
(W = 100,759.5, P = 3.3 × 10−9).

Spatial heterogeneity

Mutation rate measured in 200-kbp sliding windows ranged from
0.0 to 23.5 × 10−10 (variance, σ2 = 1.3 × 10−19). By comparing the
distribution of mutation rates for each window with a simulated
distribution, much of this variation could be accounted for as
noise around the genome average (simulated variance, σ2 = 1.2 ×
10−19, Kolmogorov–Smirnov [KS] test D = 0.038, P = 0.43). In
1000 simulations where mutation positions were randomized,
the 95% confidence interval of simulated mutation rates was µ =
5.3–18.3 × 10−10 compared to a 95% CI of µ = 4.8–19.4 × 10−10 in
the observed data. Only 8% of 200-kbp windows were above the
95th percentile of simulatedmutation rates, suggesting a slight ex-
cess of windows with a high mutation rate.

We detected a significant deviation in the distribution of
minimum inter-mutation distance compared to that expected un-
der simulation (KS test: D = 0.048, P = 4.5 × 10−14) (Fig. 2). This
was caused by the presence of an excess of mutations clustered
very near to one another (<100 bp apart), and most of the clusters
were mutations at adjacent sites. By chance, we expected no
adjacent mutations, but we observed 55 mutations where two
adjacent sites were mutated. Each of these was visually inspected
in the Integrative Genomics Viewer (IGV) (Thorvaldsdóttir
et al. 2012) and appeared to be genuine and not the result of

Table 1. Ancestral strains of Chlamydomonas reinhardtii used for mutation accumulation

Ancestral strain Collection location/year Mating type MA lines Mutations (SNMs/short indels) Mean callable sites (Mbp)

CC-1373 Massachusetts/1945 + 12 1696/222 78.8
CC-1952 Minnesota/1986 − 14 366/66 74.4
CC-2342 Pennsylvania/1989 − 11 824/73 72.0
CC-2344 Pennsylvania/1989 + 15 946/181 75.3
CC-2931 North Carolina/1991 − 14 1215/405 72.5
CC-2937 Quebec/1993 + 15 508/149 78.6

Each of the six strains was used to generate between 11 and 15 replicate MA lines. The original sampling location, date, and mating type (+/−) are in-
dicated. The total number of single nucleotide mutations (SNMs) and short indels (<50 bp) identified across all replicates of each strain are reported,
along with the mean number of high quality (“callable”) genomic sites sequenced in each strain.
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Figure 1. Variation in mutation rate between strains. Mutation rate (µ =
mutations/[sites × generations]) for each of the MA lines, categorized
based on their ancestral strain. The boxes outline the first to third quartile
of the mutation rate in lines from a given ancestral strain, the horizontal
lines within the boxes indicate the medianmutation rate, and the whiskers
extend to the last data point that is within 1.5× the inter-quartile range;
points outside the whiskers are filled black.
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alignment or sequencing errors. Twenty-seven of these clustered
mutations occurred at CpC sites, and 25 of 27 mutated to ApA/
ApT/TpA/TpT. We also found a number of indels where a short
sequence was replaced by an unrelated stretch of sequence.
Clusters of mutations were only ever found together in the
same MA line. When we limited our analysis to test for the
presence of mutations occurring at nearby sites in different
lines, there was no evidence for an excess of clustering (KS test:
D = 0.02, P = 0.13).

Base composition

Treating the strands symmetrically, we found a significantly non-
random distribution of the six possible SNMs (χ2 = 1630.3, P <
0.0001) (Fig. 3). Mutations occurring at C:G sites were 4.2× more
frequent than mutations at A:T sites, after correcting for genomic
base composition, and this pattern was consistent across all
MA lines and ancestral strains. Transitions from C:G→T:A were
overrepresented nearly twofold compared to what would be ex-
pected if mutations occurred at all sites with equal probability.
Although transitions from A:T→G:C were more common than
the other mutations possible at A:T sites, they were still less com-
mon than any mutation type at C:G sites. Transversions from
A:T→C:G or T:A were the least common type of mutation and
were found 2.4× less frequently than expected.

To assess the effect of the local sequence context onmutation
rate, we measured the frequency of the bases surrounding random
A:T and C:G sites in the genome and compared this to the base fre-
quencies in the window surrounding SNMs (Fig. 4). We found
nonrandom patterns surrounding all six kinds of mutation, but
the extent of the deviation was strongest for mutations at C:G
sites. The deviation was particularly strong in the 2–4 bp upstream
of mutations at C:G sites and, to a lesser extent, 1 bp downstream
from all mutation types. Specifically, the composition of the two
nucleotides immediately upstream of mutated C:G sites was

strongly biased. In the case of the CTC trinucleotide, for example,
where the final C was mutated, that mutation rate was 4.5× the
background rate.

Mutability

We used logistic regression to identify the genomic properties that
best differentiated mutated from nonmutated sites. We generated
a training set of all 6843 mutations and a random set of 100,000
nonmutated sites. In the regressionmodel, the genomic properties
of these 106,843 sites (see Supplemental Table S2) were used as
predictors and the presence or absence of mutations at a site as
the response. With this model, we then calculated the probability
of mutation, or “mutability,” for every site in the genome (see
Methods for details). To assess the accuracy of the model, we
binned sites in the genome based on their mutability (range 0.0–
1.0) and calculated the observed mutation rate in each bin (bin
width = 0.01). The predicted mutability of sites was strongly corre-
lated with the observed mutation rate (R2 = 0.953, weighted by
number of site-generations per bin) (Fig. 5). To ensure that the
fit was not due to using the samemutations to generate the model
and assess its fit, we also trained a model using a random subset
of 1000 mutations and excluded these sites when assessing the
fit. As with the full data set, predicted and observed mutability
were highly correlated (R2 = 0.88). The fit was slightly poorer, pre-
sumably because using fewermutations to calculatemutation rates
led to more noise. Although mutability ranged from nearly 0 to
1.0, we found that 99.9% of the genome hadmutability values be-
tween 0.01 and 0.30, corresponding to a range of mutation rates
from 0.25 to 55.9 × 10−10. The top 25% of the genome bymutabil-
ity accounts for 57% of all mutations. Mutability was highest for
sites in 3′ and 5′ UTRs (predicted µ = 1.37 × 10−9) and lowest for
zero- and fourfold degenerate sites (predicted µ = 7.92 × 10−10). If
selection was acting in our MA experiment, despite recurrent bot-
tlenecks, the lower mutability at zerofold sites might be caused by
selective constraint. Assuming equal mutation rate across annota-
tion categories, and controlling for the number of high-quality

0

500

1000

1500

2000

2500

100 101 102 103 104 105

Intermutation distance (bp)

N
um

be
r o

f m
ut

at
io

ns

Expected
Observed

Figure 2. Expected and observed distributions of inter-mutation dis-
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tributions of the distance between mutations. In this plot, inter-mutation
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line or strain it occurred in. The expected distribution was generated by
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the inter-mutation distances. The simulation was repeated 1000 times,
and the average of those iterations is shown here.

0.0

0.5

1.0

1.5

2.0

A → C A → G A → T C → A C → G C → T

O
bs

/E
xp

Figure 3. Mutation base spectrum of single nucleotide mutations. Base
mutation spectrum of 5716 single nucleotidemutations (SNMs). The devi-
ation of the mutation rate for each of the six possible SNMs relative to its
expectation based on equal mutation rates was calculated as the observed
number of mutations of each kind divided by the number of mutations ex-
pected if mutations occurred randomly with respect to base. Background
base composition was calculated only from sites that have high-quality ge-
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sites, we foundonly a slight deficit in zero- and fourfold degenerate
mutated sites, consistent with the mutability model. We believe
that the deficit is unlikely to be driven by selection, because the
two categories are similarly underrepresented (zerofold Obs/Exp
= 1292/1426 = 0.85, and fourfold Obs/Exp = 429/464 = 0.88), and
selection on synonymous SNMs is not expected to overcome drift
in our MA experiment. Furthermore, we found a slight overrepre-
sentation of mutations at twofold degenerate sites (twofold Obs/
Exp = 328/306 = 1.017), which are expected to be subject to stron-
ger constraint than fourfold degenerate sites. These results suggest
that the most likely explanation for lower mutability at zero- and
fourfold degenerate sites is that other genomic properties are re-
ducing their mutability relative to other sites in the genome.

In neutrally evolving haploid DNA, the level of nucleotide
diversity (θπ) is expected to be twice the product of mutation rate
and the effective population size (2Neµ). We binned silent sites
(intergenic, intronic, and fourfold degenerate sites) into 100
uniformly spaced mutability categories from 0.0 to 1.0 and calcu-
lated θπ for each bin using natural variation in the six ancestral
strains used to initiate the MA lines. We found that, as predicted,
sites with higher mutability have higher neutral genetic diversity
(Fig. 6).

Factors influencing mutability

Based on the estimated parameters of the model of mutability, we
extracted the relative contribution of different genomic properties
to mutation. To allow comparison among the genomic properties,
we scaled continuous predictors so that a change from 0 to 1 was a
change of one standard deviation. We found that GC content of
the surrounding genome strongly influenced the mutability at a

site. Increasing the GC content of the
10 bp surrounding a site increased itsmu-
tability (GC% 10 bp, odds ratio = 1.38),
but at larger scales GC content was nega-
tively related to mutability (GC% 1000
bp, odds ratio = 0.12). The negative rela-
tionship between GC content and muta-
tion rate was supported by a highly
significant correlation between the ob-
served mutation rate and GC content
across the genome (R2 = 0.831, P <
0.001) (see Supplemental Fig. S1).
Reflecting similar patterns of sequence
context described above, the trinucleo-
tide sequence in which a mutation oc-
curred also had a strong effect on
mutability. The most mutable trinucleo-
tides were CTC and CAC, where the final
C was the mutant position (odds ratio =
3.54 and 2.02, respectively), and the least
mutablewere GTT and AGA (odds ratio =
0.57 and 0.58, respectively). It was not
possible to combine the triplets into a
single predictor, but the maximum dif-
ference in mutability between triplets
indicated a strong effect of sequence con-
text on mutability. A number of other
genomic properties increasedmutability,
such as gene density (odds ratio = 1.17)
and whether a site was upstream of a
transcription start site (odds ratio =

1.13). Interestingly, although a change of one standard deviation
in transcription level had little effect on mutability (odds ratio =
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position were detected with tests and indicated as (∗) P < 0.05 or (∗∗∗) P < 0.001 (α-values were adjusted
for multiple tests using a Bonferroni correction).
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Figure 5. Linear fit between observed mutation rate and predicted mu-
tability. Mutability was estimated using a logistic regression, where the
presence or absence of a mutation was the response variable, and a variety
of genomic properties were used as predictors (see Supplemental Table
S2). Each point represents multiple genomic sites placed in discrete bins
(width = 0.01) based on each site’s mutability score. The size of each point
is proportional to the number of sites in the genome with a given mutabil-
ity. Observed mutation rates for each point were calculated as the number
of observed mutations divided by the total number of callable sites-gener-
ations in that bin. The linear regression was weighted by the number of
sites in each bin, and the shaded gray area around the line represents
the 95% confidence region.
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1.02), the most highly transcribed sites in the genome were 3.7×
more mutable than untranscribed sites.

Discussion

In total, we detected 6843 mutations, the largest set of character-
ized spontaneous mutations to date. The rate of mutation across
all MA lines was µ = 11.5 × 10−10/site/generation, and the muta-
tion rates for SNMs and small indels were 9.63 × 10−10 and
1.90 × 10−10, respectively. There are, therefore, five SNMs for
each small indel, consistent with previous results in C. reinhardtii
(Ness et al. 2012) and similar to Arabidopsis thaliana (5:1)
(Ossowski et al. 2010) but substantially lower than the ratios re-
cently reported from MA studies in S. cerevisiae (33:1) (Zhu et al.
2014) and D. melanogaster (12:1) (Schrider et al. 2013). Our large
set of mutations, and the inclusion of multiple natural genotypes,
allowed detailed examination of mutation rate variation between
individuals within a species and mutation rate heterogeneity
across the genome.

Within-species mutation rate variation

Our estimate of mutation rate in C. reinhardtii is 14.2- and 4.6-fold
higher than estimates of Sung et al. (2012) and Ness et al. (2012),
respectively. Our new estimate is partly increased by the higher
rate in MA lines derived from ancestor CC-1373, but even after ex-
cluding this strain, the mutation rate is still substantially higher
than the two previous estimates. The two MA lines (CC-2937-
MA1, CC-2937-MA2) that were used in the study of Ness et al.
(2012) continued to accumulate mutations in the present experi-
ment for an average of ∼611 generations, and the final mutation
rate estimates for each of these two lines are within the confidence
intervals of their earlier estimates. Our experiment did not include
strain CC-124 used in Sung et al. (2012), so we cannot directly
compare the estimated mutation rate to this study. Only a single
MA line (CC-1952-MA4) had a mutation rate as low as Sung
et al. (2012), but the mean of all MA lines derived from that ances-

tor was nine times higher. Whether the low estimate of Sung et al.
(2012) is the result of methodological differences or biological var-
iation between strain CC-124 and the six strains included in our
study remains to be determined.

We observed substantial within-species variation in the mu-
tation rate (Fig. 1). MA lines derived from strain CC-1373 had an
average rate more than three times higher than the mean of the
other strains. MA experiments in diploid species generally start
with inbred lines, and it is possible that the mutation rate could
be affected by recessive mutation rate modifiers that are not ex-
pressed in nature. However, C. reinhardtii is haploid, so the elevat-
ed rate in CC-1373 is presumably caused by a mutation modifier
that arose since collection or by natural variation expressed in na-
ture. In bacteria, there is evidence that mutator lines can evolve
during adaptation to a new environment (Sniegowski et al.
1997). However, CC-1373 is the slowest growing of the ancestral
strains, indicating that it is not well adapted to laboratory condi-
tions. AMA experiment inDrosophila provided evidence that indi-
viduals in poor condition have a higher mutation rate (Sharp and
Agrawal 2012), so it is possible that the higher mutation rate in
CC-1373 also reflects its poor condition. At the other end of the
spectrum, CC-1952 had the lowestmutation rate, nearly sevenfold
lower than that of CC-1373. The extent of intra-specific mutation
rate variation we found implies that measuring the mutation rate
for a species from a single genotype may not adequately reflect
the species as a whole, and inter-specific differences in mutation
rate may actually reflect limited sampling within species.

In general, theory predicts that selection is expected to drive
the mutation rate toward zero, because alleles that increase the
mutation rate will generate deleterious alleles and thereby reduce
fitness (for review, see Sniegowski and Raynes 2013). However,
mutation rates are always above zero in nature, which is usually ex-
plained by the cost of increased fidelity or by the “selection-drift
barrier” imposed when selection for increasingly small improve-
ments becomes too weak to counteract genetic drift. Under both
hypotheses, the extent of intra-specific mutation rate variation
may reflect mutation-selection balance in genes that affect DNA
repair, replication fidelity, or the susceptibility to DNA damage.
In our experiment, we detected at least two MA lines with muta-
tion rates significantly higher than their strain means (i.e., CC-
2344-MA1 and CC-2931-MA5 had mutation rates 8.0× and 3.5×
above their respective strain means) (Fig. 1). It is likely that these
two lines acquiredmutations that damagedDNA repair or stability,
concordant with the presence of twomutations in DNA repair pro-
teins in CC-2344-MA1 (one nonsynonymous, one 5′ UTR) and
four such mutations in CC-2931-MA5 (all nonsynonymous) (see
Supplemental Table S3 for detailed annotations of these muta-
tions). However, 26 of 85 MA lines also acquired one or more mu-
tations that affect known DNA repair-associated proteins (seven
nonsynonymous) but did not have elevated mutation rates. It is
possible that many of these mutations did not substantially alter
themutation rate or that themutations arose too late in the exper-
iment to cause a detectable elevation of mutation rate. The in-
crease in mutation rate in line CC-2344-MA1 was greater than
the extent of natural variation among ancestral strains, suggesting
that mutations that strongly alter mutation rate are common and
may segregate in natural populations until purged by selection.
Therefore, the high mutation rate of CC-1373 may be caused by
a naturally occurring mutator allele. Alternatively, if C. reinhardtii
is primarily asexual in nature, theory predicts that, if a mutator al-
lele results in a linked beneficial allele, the mutator will hitchhike
to high frequency. A key parameter determiningwhether selection
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will favor higher mutation rates is the rate of recombination, but
the frequency of sex and recombination in natural populations
of C. reinhardtii is currently unknown.

Spatial heterogeneity in mutation rate

By examining the spectrum of mutations and the local sequence
context inwhich they occur, we found clear evidence for heteroge-
neity in mutation rate at fine scales. In particular, the rate of mu-
tation at C:G sites (12.2 × 10−10) was 2.4× higher than at A:T sites
(5.19 × 10−10), and transitions from C:G→T:A occurred at twice
the rate expected if all mutations occurred at equal rates (Fig. 3).
The transition-transversion ratio (Ts:Tv) is 1.03 in the SNMs de-
tected in our experiment, in contrast to a Ts:Tv of 1.52 in the
standing variation between ancestral strains. The difference be-
tween these two ratios indicates that selection or GC-biased gene
conversion, rather than the underlyingmutational process, is driv-
ing up the Ts:Tv ratio in nature. An AT-biased mutation spectrum
is consistent with a growing body of evidence suggesting that it
might be universal in both prokaryotes (Hershberg and Petrov
2010) and eukaryotes (e.g., Zhu et al. 2014). Additionally, we
found that the sequence flanking a mutated site strongly influ-
enced the mutation rate. In mammals, methylated CpG sites are
frequently deaminated, causing C to T transitions, but in C. rein-
hardtii there is only weak evidence of CpG methylation, and our
data reveal only a small excess of CpG motifs in C to T mutations
(Fig. 4). The most mutable triplet (CTC) had a mutation rate more
than 10× higher than the least mutable triplet (GCA), and after ac-
counting for background triplet frequencies, amutation fromCTC
to CTT was 17× more likely than a mutation from AAA to AAG.
Interestingly, this CTC triplet appears to be highly mutable across
a very wide diversity of organisms, including fungi (Zhu et al.
2014), plants, and animals (Alexandrov et al. 2013b). In human tu-
mor genomes, there is a predominance of C to T and C to
G mutations in the same CTCG sequence motif, which has been
linked with the APOBEC family of cytidine deaminases
(Alexandrov et al. 2013b). Given that thismotif has been found re-
peatedly, it seems probable that the mutability of other sequence
motifs may be shared across species; however, the mechanisms
underlying this phenomenon are unknown. The fact that the mu-
tation rate can vary to this extent over very short scales has conse-
quences for the evolution of DNA and protein sequence. In the
future, incorporation of direct measurements of mutability into
models of sequence change will facilitate better predictions of dis-
ease susceptibility and molecular evolution (see Michaelson et al.
2012; Neale et al. 2012; Samocha et al. 2014).

By comparing the distribution of inter-mutation distances to
a random expectation, we found that there is an excess of muta-
tions clustered within 1–10 bp of one another (Fig. 2). The fact
that these clusters all occur withinMA lines suggests that each rep-
resents a single multinucleotide mutation (MNM) event. In total,
there were 80 pairs and two trios of MNMs within 10 bp of one
another, implying that 2.8% of SNMs arise through clustered mu-
tations. The average proportion of MNMs was similar in MA stud-
ies of S. cerevisiae,D.melanogaster,C. elegans, andA. thaliana (3.4%)
and genome sequencing studies of humans (1%–4%) (Schrider
et al. 2011; Harris and Nielsen 2014). The generation of these clus-
ters has been linked to error-prone polymerases such as Pol ζ in S.
cerevisiae (Stone et al. 2012; Northam et al. 2013). In human and S.
cerevisiae, the Pol ζ enzyme creates an excess of GpC to ApA or TpT
MNMs (Northam et al. 2013; Harris and Nielsen 2014). Although
we did not observe a similar excess of mutations at GpC sites, we

found that 27 of 55 dinucleotide MNMs occur at CpC sites and
that 25 of these resulted in ApA/ApT/TpA/TpT dinucleotides.
The fact thatMNMshave been observed in a broad array of taxa in-
dicates that such mutations are a widespread phenomenon that
potentially affects a significant proportion of variation. MNMs,
therefore, violate the assumption of independence between SNP
sites and could potentially lead to misinferences about the nature
of selection in the genome. Additionally, by altering two or more
nearby sites, MNMs have the potential to move between fitness
peaks that would otherwise require maladaptive single mutations
as intermediates.

At large genomic scales, we found little evidence for heteroge-
neity of the mutation rate. For example, the mutation rate varia-
tion among 200-kbp windows could be largely accounted for by
random fluctuations. Although we found clear evidence of fine-
scale variation inmutation rate, the variation appears to be evenly
spread along the chromosome. This effect can be seen in our pre-
dictive model of mutation, where the mutability of sites in 200-
kbp windows averages out, so that the standard deviation among
windows equates to ∼7.5% of the mean (i.e., mean mutability =
0.069, SD = 0.005). Our findings are consistent with direct mea-
surements of mutation rate in D. melanogaster (Schrider et al.
2013), S. cerevisiae (Zhu et al. 2014), and humans (Kong et al.
2012), where no evidence of large-scale variation in the mutation
rate was detected. Although, comparative evidence suggests that
substitution rate varies at the scale of megabases in mammals,
this may be driven by selection or GC-biased gene conversion dur-
ing recombination. From our observations and direct estimates of
mutation rate variation in other species, we conclude that the
causes of mutational heterogeneity do not appear to operate at
the scale of tens of kilobases, and if heterogeneity exists at this
scale, it will require even more precise measurements of the muta-
tion rate.

Factors that predict mutability

Our model of mutability identified a number of other genomic
properties that predict the rate of spontaneous mutation and cre-
ate heterogeneity between sites. For example, the %GC of the
10 bp around a mutated site was positively correlated with muta-
bility (odds ratio = 1.38, SD = 16.3%), probably because G:C bases
andGC-rich triplets weremoremutable. However, the GC content
of the 1000 bp surrounding a sitewas negatively associatedwith its
mutability (e.g., %GC of 1000-bp window, odds ratio = 0.12, SD =
5.4%). A negative correlation between mutability and GC content
in humans has been attributed to higher melting temperatures of
GC-rich DNA (Fryxell and Moon 2005). Because cytosine deami-
nation is one of the most common sources of mutation and only
occurs while DNA is single-stranded, mutation is less common in
regions with high melting temperature (Frederico et al. 1993).
An alternate explanation for our observations is that sites with a
high mutation rate, for an unknown reason, evolve low GC con-
tent because mutation is AT-biased.

Our model of mutability also revealed an effect of gene ex-
pression when comparing untranscribed DNA to the most highly
transcribed genes (odds ratio = 3.71). However, because most re-
gions are untranscribed and the variance of transcription in ex-
pressed genes is relatively low, transcription level overall had
little effect on mutability (odds ratio = 1.02, SD = 108.3 FPKM). It
is commonly reported that highly expressed genes are the most
evolutionarily conserved; therefore, an elevated mutation rate
would predict that more deleterious mutations should occur in
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high expression genes, and therefore, more purifying selection
would be required to conserve these sequences. Themeanmutabil-
ity score varied across sites with different annotations. The 5′ and
3′ UTRs had the highest mutability (predicted µ = 1.5 × 10−9),
which is consistent with the observation in humans, where these
regulatory regions are often found in accessible chromatin (DNase
hypersensitive sites), to allow binding of transcription factors, and
could lead to DNA damage (Michaelson et al. 2012). Consistent
with an increased mutation rate and AT-biased mutation, UTRs
have the lowest GC content of any broad category of sites
(56.7%). Although the model predicted a higher rate in UTRs, we
did not observe an elevation in observed mutation rate, possibly
because, even with nearly 7000 mutations, there was still insuffi-
cient power to detect such subtle variation. Overall, the model ac-
curately predicted the observed mutation rate, demonstrating that
average mutation rate can be predicted from key genomic proper-
ties (Fig. 5). However, variation inmutability may not be fully cap-
tured with this approach (Eyre-Walker and Eyre-Walker 2014). For
a close fit between observed and predictedmutability, only the av-
erage mutability of each bin needs to be accurately predicted.
There may still be unexplained variation around the mean within
each bin, and we should be cautious about predictions of mutabil-
ity for very small numbers of sites. However, for large groups of
sites, the model accurately predicts the average mutation rate,
and we can be confident in the genomic properties that best pre-
dict mutation rate.

The mutability model also revealed that mutation rate varia-
tion affects patterns of neutral genetic variation. We found a clear
positive relationship between mutability and nucleotide diversity
at silent sites (Fig. 6). The model identifies the genomic properties
of sites that mutated in our experiment, and we show that, using
these genomic properties, we are able to predict natural levels of
genetic diversity. Diversity is determined both by the mutation
rate and the amount of genetic drift (Ne). The strength of drift
across the genome depends on the effects of hitchhiking (selective
sweeps and background selection), which is determined by the
frequency and strength of selection and the rate of recombination.
Therefore, our measure of mutability may not have correlated well
with diversity. However, by binning sites by mutability, we have
removed regional heterogeneity in the strength of drift and can
see that mutation rate heterogeneity has a clear correlation with
standing levels of genetic diversity in natural populations. It is
worth noting that our findings are correlations, and we cannot
with certainty assign a causal link between mutability and diver-
sity. However, it seems reasonable that mutation rate heterogene-
ity between sites could affect diversity, which is theoretically
determined by the product of µ and Ne. Given that mutability
varies greatly between nearby sites, local heterogeneity in muta-
tion is an important consideration when using diversity and relat-
ed statistics to infer selection or demography from population
genomic data.

This study characterized the largest set of spontaneous muta-
tions to date and demonstrated the value of combining MA with
whole-genome sequencing. We found sevenfold variation in mu-
tation rate among natural strains of C. reinhardtii. Although the
mutation rate did not vary across large genomic windows, themu-
tation rate of individual sites was strongly affected by their flank-
ing sequence, resulting in fine-scale heterogeneity of mutation
rate. Other genomic properties, such as GC content, gene density,
and expression level, also influenced mutability. Similar results
across a wide diversity of species suggests that general properties
of mutation exist and that models of sequence evolution could

be improved to reflect these properties and better detect selection
in the genome or estimate phylogenetic relationships. In the near
future, rapidly evolving sequencing technologies will facilitate
even more detailed investigation into the process of mutation
from both MA and parent-offspring sequencing. One important
avenue of future research will be a synthesis of findings from stud-
ies like ours with the underlying DNA repair and damage mecha-
nisms to provide explanations for patterns of mutational
heterogeneity between individuals and across the genome.

Methods

Mutation accumulation experiment

We conducted a mutation accumulation experiment in six
genetically diverse strains of C. reinhardtii obtained from the
Chlamydomonas Resource Center (chlamycollection.org). The
strains were isolated from the wild between 1945 and 1993 and
have not been selected for unusual phenotypes and should repre-
sent a sample of the naturally occurring variation over the geo-
graphic range of C. reinhardtii samples in North America (Table
1). To initiate theMA lines, a single colony from each of the six an-
cestral strains was streaked out, and we randomly selected 15 indi-
vidual colonies to start the replicatedMA lines (for a total of 90MA
lines). We bottlenecked the MA lines at regular intervals by select-
ing a random colony which was streaked onto a fresh agar plate.
We calculated Ne for a MA line as the harmonic mean population
size at each cell division fromone cell to 12 divisions, yieldingNe =
6.5. The timing of transfers was chosen to avoid selecting against
slow growing colonies, and we periodically checked that no addi-
tional colonies becamevisible after the transfer time.We estimated
the number of generations undergone by each MA line over the
course of the experiment by measuring the number of cells in col-
onies grown on agar plates after a period of growth equivalent to
the times between transfers in the experiment. Amore detailed de-
scription of the MA line creation and generation time estimation
can be found in Morgan et al. (2014).

Sequencing and alignment

To extract DNA, we grew cells on 1.5% Bold’s agar for 4 d until
there was a high density of cells, at which point the cells were col-
lected and frozen at −80°C. We disrupted the frozen cells using
glass beads and extracted DNA using a standard phenol-chloro-
form extraction. Whole-genome resequencing was conducted
using the Illumina GAII platform at BGI HongKong. The sequenc-
ing protocolwasmodified to accommodate the unusually highGC
content of theC. reinhardtii genome (meanGC= 63.9%). Variation
in GC content is known to cause uneven representation of se-
quenced fragments, especially when GC> 55% (Aird et al. 2011).
We therefore used amodified PCR step in sequencing library prep-
aration, following Aird et al. (2011) (3 min at 98°C; 10× [80 sec
at 98°C, 30 sec at 65°C, 30 sec at 72°C]; 10 min at 72°C, with 2M
betaine and slow temperature ramping 2.2°C/sec). We obtained
∼30× coverage of the genome (3 Gbp of 100-bp paired-end se-
quence) for each of the MA lines.

We aligned reads to the C. reinhardtii reference genome (ver-
sion 5.3) (Merchant et al. 2007) using BWA 0.7.4-r385 (Li and
Durbin 2009). We included the plastid genome (NCBI accession
NC_005353), the mitochondrial genome (NCBI accession
NC_001638), and the MT- locus (NCBI accession GU814015) to
avoid misalignment of reads derived from these loci onto other
parts of the nuclear genome. We tested a variety of values for the
fraction of mismatching bases allowed in alignments, but varia-
tion about the default (n = 0.04) did not improve the number of
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high-quality reads mapped or genome coverage (results not
shown). After alignment, we removed duplicate reads with the
Picard tool MarkDuplicates (v1.90). To avoid calling false variants
due to alignment errors, we used the GATK (v2.8-1) tools
RealignerTargetCreator and IndelRealigner (McKenna et al. 2010;
Depristo et al. 2011) to realign reads flanking potential insertions
and deletions. We realigned all replicate MA lines from each
starting strain together to ensure that the same alignment solu-
tions were chosen in all lines derived from that strain. The re-
aligned BAM files included all MA lines from a given ancestral
strain and were then used to jointly call genotypes using the
UnifiedGenotyper from GATK. We used the “–output_mode
EMIT_ALL_SITES” option to output all genomic positions so that
we could identify both high-quality sites regardless of whether
they had mutated. We used a “heterozygosity” parameter of
0.01, but previous testing in C. reinhardtii showed that our geno-
typing is not sensitive to this prior as long as read depth is high,
as it is in the present experiment (Ness et al. 2012). To identify
short insertions and deletions (indels), we used the GATK v
(2.8-1) tool “HaplotypeCaller,” which performs local reassembly
of reads (i.e., indels called with UnifiedGenotyper were ignored).
The six resulting Variant Call Format files (VCFs) (one per ancestral
strain) were converted to wormtable databases using the python
packageWormTable v0.1.0 (Kelleher et al. 2013) which enabled ef-
ficient exploration of quality filters for mutation identification.

Mutation identification

MA lineswithin an ancestral strainwere genetically identical at the
start of the experiment, so any unique allele carried by a replicate
within a strain was a candidate mutation. We applied a number of
filters to genotype calls to identify mutations while minimizing
false positive and false negative calls. A site was called as a muta-
tion if within that ancestral strain:

1. Themapping quality (MQ)≥ 90 and the PHREDcalled site qual-
ity (QUAL)≥ 100.

2. All MA lines were “homozygous”; C. reinhardtii is haploid;
therefore, this filter avoided mapping errors due to paralogous
loci.

3. The genotype of exactly one MA line differed from the rest of
the lines.

4. All nonmutated lines shared the same genotype.
5. At least two sequences have confident genotype calls.

Our mutation-calling algorithm also allowed us to identify
contamination that may have occurred between MA lines in our
experiment. For example, cross-contamination between MA lines
derived from different ancestors would manifest as millions of
false-positive mutations that were actually naturally occurring
SNPs. If contamination occurred between two lines from the
same ancestor, it would mean that all mutations to that point in
the experiment were not unique, which would cause unusually
low mutation rates in both lines. No evidence for contamination
of this kind was seen.

Callable sites

To calculate mutation rates and define null expectations, we need-
ed to know the total number of sites with equivalent quality to the
new mutations, hereafter referred to as “callable” sites. However,
the definitions and distributions of quality scores are often differ-
ent for variant and invariant sites. We therefore inferred a second
measure of quality for invariant sites that was comparable to that
used for mutant sites. For each mutant site, we extracted the
QUAL andMQ for themutation and the nearest invariant site, un-

der the assumption that, because most reads are shared between
adjacent sites, the quality characteristics of the sites will be similar.
We then estimated the correlation and relationship between qual-
ity scores at neighboring mutant and invariant sites using a linear
model (MQ: R2 = 0.9996, P < 0.001, QUAL: R2 = 0.38, P < 0.001).
The linear relationships between invariant and variant quality
scores were used to predict appropriate MQ and QUAL thresholds
for invariant sites (invariant MQ threshold = 90, invariant QUAL
threshold = 36.4). Analogous to the mutation calling, a site was
callable within an ancestral strain if no line was called as a hetero-
zygote, all lines with mapped reads had the same genotype call,
and at least two MA lines had genotype calls.

Sanger confirmation

We estimated the accuracy of our mutation calls using Sanger-se-
quencing.We randomly selected 192mutation calls (32 per ances-
tral strain) including both short indels and SNMs. We amplified
each locus in the putative mutant MA line and a nonmutated
MA line from the same ancestral strain. Sequences were then visu-
ally inspected in SeqTrace v0.9.0 to confirm the presence of the
mutated site.

Mutation rate calculations

We calculated the mutation rate (µ) in each replicate as, µ =muta-
tions/(callable sites ×MA generations). Whenever multiple MA
lines were combined for mutation rate calculations, the number
of callable sites and MA generations (site-generations) for each
MA line was included to accurately account for differences among
replicate lines. Similarly, all null expectations and mutation rate
estimates for particular classes of sites take into account the num-
ber of site-generations for the specific positions included. To com-
pare the average mutation rate of the six ancestral strains, we used
the GLS function in R to fit a linear model to the individual muta-
tion rate estimates of the MA lines. The model included mutation
rate as the response variable and ancestral strain as a fixed factor.
We allowed the variance to differ among ancestral lines using
the varIdent function (Zuur et al. 2009). We then used the ghlt
function to generate linear contrasts, allowing us to further explore
differences among the ancestors.

Base composition and sequence context

Throughout our analyses of the mutation spectrum, we treated
complementary mutations (C:G and A:T) symmetrically, such
that there were six distinct SNMs (A:T→C:G, A:T→G:C, A:T→T:A,
C:G→A:T, C:G→G:C, C:G→T:A). To assess the base spectrum of
mutations, we calculated the frequency of each of the sixmutation
types relative to the expected frequency if all mutations were
equally likely, calculated from the base composition of the callable
sites. To analyze the local sequence context in which mutations
occurred, we measured base composition at each of the positions
5 bp upstream of and downstream from themutated site. To calcu-
late the null expectation for sequence context, we estimated base
composition in analogous windows surrounding 106 randomly se-
lected callable sites. Separate expectations were generated for sites
centered on A:T and C:G.

Spatial heterogeneity of mutation

To assess whether therewas spatial heterogeneity inmutation rate,
we calculated the mutation rate across the genome in sliding win-
dows. We conducted the analysis with windows of 100 kbp, 200
kbp, 500 kbp, and 1mbp, but because the results were qualitatively
similar, we report only the 200-kbp analysis. The mutation rate of
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each window was calculated as the number of mutations in that
windowdivided by the total number of callable sites × generations.
To assess how themutation rate in thesewindows varied relative to
null expectations, we simulated a random distribution of muta-
tions. For each MA line, we generated a corresponding simulated
line where the number of mutations carried by that line was dis-
tributed among the 200-kbp windows in proportion to the num-
ber of callable site-generations in each window. This procedure
was repeated 1000 times to generate an expected distribution of
mutation rates across the 200-kbp windows.

We also tested for the presence of a nonrandom spatial distri-
bution of mutations by comparing the observed distribution of in-
ter-mutation distances to a simulated distribution. This approach
differs from the analysis above because it can detect fine-scale clus-
ters of mutations. We simulated data under a model where muta-
tions occur randomly across the genome, while retaining the
same number of mutations per MA line and accounting for differ-
ences in the callable genome positions. For each MA line, we gen-
erated a corresponding simulated sample by randomly assigning
the number of mutations that occurred in that MA line to individ-
ual callable positions. This allowed us to assess whether there was
significantly more clustering within and between lines while ac-
counting for line-specific differences in callable sites. The observed
and simulated distributions of inter-mutation distances were com-
pared using the Kolmogorov–Smirnov (KS) test in R.

Mutability

To determinewhich genomic properties influenced themutability
of individual sites, we used regularized logistic regression to differ-
entiate between the identified mutations and randomly selected
callable sites. Our analysis was loosely based on the approach of
Michaelson et al. (2012). For all 6843 mutations and 105 nonmu-
tated sites, we collated a table of genomic properties and annota-
tions to use as predictors in the logistic regression. Genomic
properties included%GC, gene density, transcription level, recom-
bination rate, nucleosome occupancy, and the trinucleotide se-
quence in which the site occurs (see Supplemental Table S2 for
details). A number of genomic properties were calculated for
each site in windows of varying size from 10 bp up to 1 Mbp.
Categorical predictors were converted to multiple binary predic-
tors (0/1 for each category level) to be fitted in the same model
with numeric predictors.

With these predictors, we used the R package GLMnet
(v1.9-8) (Friedman et al. 2010) to fit a logistic regression, where
mutation class, mutant (1) or background (0), was the binary re-
sponse variable. GLMnet fits generalized linearmodels with penal-
ized maximum likelihood using ridge or lasso regression which
provides more precise model-fitting than other methods, such as
least-squares, when the predictors are inter-correlated. In ridge/las-
so regression, a penalty is imposedwhen the sumof the correlation
coefficients of the predictors is large. Therefore, when predictors
are inter-correlated the values of their combined correlation coef-
ficients are reduced either by shrinking one of the coefficients to-
ward zero (lasso regression) or by shrinking both toward some
medium value (ridge regression). The strength of the penalty
against large correlation coefficients is determined by the regular-
ization parameter (λ), which therefore determines the complexity
of the model (the number predictors with nonzero correlation co-
efficients). The value of λ was chosen using the in-built cross-vali-
dation function (we selected λ that minimizes mean cross-
validated error, “lambda.min”). The elastic net mixing parameter
(α) determines whether lasso (α = 1) or ridge regression (α = 0) is
used. The fit of the model was unchanged by the selection of α,
and all results presented here used α = 0.01, where the coefficients

of correlated predictors are shrunk together. Using the “predict”
function of GLMnet model objects, we estimated mutability at
each site in the genome as its probability of belonging to class
“mutation,” given the genomic predictors at a given site (see
Supplemental Material for R code used to fit themodel and predict
mutability).

Only the relative values of the predictedmutability are impor-
tant, because the exact probabilities returned by the model are in-
fluenced by the proportion of mutated and nonmutated sites in
the training set. In our training set, we included 6843 mutations
and 105 nonmutated sites; therefore, the mean predicted mutabil-
ity is ∼0.06 (6843/[105+6843]). We assessed the accuracy of the
predicted mutability by binning sites into 100 mutability catego-
ries from0.0 to 1.0.Within eachmutability category, we estimated
mutation rate as the number of observedmutations divided by the
total number of site-generations in that category. For example,
there were 13,948,935 sites with mutability between 0.04 and
0.05, 820 of which mutated in one of our 85 MA lines; because
these sites experienced 68,822 generations of MA, µ for this bin
is 820/(68,822 × 13,948,935) = 8.6 × 10−10. The observed mutation
rate was predicted to be positively correlated with the mid-point
mutability of the category.

To test whethermutability predicted long-term effects of mu-
tation rate variation, we also calculated the relationship between
mutability and natural levels of nucleotide diversity in the six an-
cestral strains used to start theMA lines. In neutrally evolving hap-
loid DNA, the level of nucleotide diversity (θπ) is expected to be
twice the product of the mutation rate and the effective popula-
tion size (2Neµ); we therefore predict that themutation rate should
correlate positively with mutability. For this analysis, whether a
site was variant was omitted from the model to avoid circularity
in the relationship between diversity and mutability. We binned
silent sites (intergenic, intronic, and fourfold degenerate sites)
into 100 uniformly spaced mutability categories from 0.0 to 1.0
and calculated θπ for all sites in each bin.

To assess the relative contributions of each genomic property
to mutability, we extracted the coefficients of each predictor from
the model. To compare the log(odds ratio) of each genomic prop-
erty on mutability, we scaled each predictor so that a change from
0.0 to 1.0was a change of one standard deviation. As alternate scal-
ing, we also normalized the predictors such that each ranged from
exactly zero to one.

Data access

All sequence data from this study have been submitted to the EBI
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena)
under accession number PRJEB9934.
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