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Abstract

Cortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of

bursts, suggesting that these events play a special role in cortical information processing. In

vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state

increases the amount of information they convey. However, because burst activity relies on

a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network

models, network states in which bursts occur rarely are therefore typically not robust, but

require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory

plasticity rule in dendrite-targeting interneurons that is consistent with experimental data.

The suggested learning rule can be combined with other forms of inhibitory plasticity to self-

organize a network state in which both spikes and bursts occur asynchronously and irregu-

larly at low rate. Finally, we show that this network state creates the network conditions for a

recently suggested multiplexed code and thereby indeed increases the amount of informa-

tion encoded in bursts.

Author summary

The language of the brain consists of sequences of action potentials. These sequences

often contain bursts, short “words” consisting of a few action potentials in rapid succes-

sion. Bursts appear to play a special role in the brain. They indicate whether a stimulus

was perceived or missed, and they are very effective drivers of synaptic plasticity, the neu-

ral substrate of learning. Bursts occur rarely, but consistently, a condition that is thought

to maximize the amount of information they can communicate. In our article, we argue

that this condition is far from self-evident, but requires very special circumstances. We

show that these circumstances can be reached by homeostatic inhibitory plasticity in cer-

tain inhibitory neuron types. This may sound complicated, but basically works just like a

thermostat. When bursts occur too often, inhibition goes up and suppresses them. When

they are too rare, inhibition goes down and thereby increases their number. In computer

simulations, we show that this simple mechanism can create circumstances akin to those

in the brain, and indeed allows bursts to convey information effectively. Whether this
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mechanism is indeed used by the brain now remains to be tested by our experimental

colleagues.

Introduction

Cortical activity consists of irregular sequences of spikes [1], interspersed with bursts of several

action potentials in quick succession [2, 3]. Many cells in the nervous system have specialized

cellular mechanisms for the generation of bursts [4–6], suggesting that they play a special role

in cortical information processing. Burst activity has been associated with a variety of compu-

tational and cognitive functions, including the conscious detection of stimuli [7], the reliable

transmission of information [8] and the induction of synaptic plasticity [9].

Most burst generating mechanisms rely on nonlinear membrane dynamics and are trig-

gered by specific input conditions [4–6]. In pyramidal cells, bursts can be generated by a coin-

cidence of back-propagating actions potentials and synaptic input to the apical dendrite [4].

This associative mechanism could underlie the integration of external sensory signals—reach-

ing the peri-somatic domain—and internally generated signals [10] such as predictions [11,

12] or errors [13–16], which reach the apical dendrite in superficial cortical layers. Based on

the observation that different information streams target different compartments that in turn

generate distinct spike patterns, it was recently suggested that both information streams could

be conveyed simultaneously by means of a multiplexed neural code [17]. Such a multiplexing

could be exploited, e.g., to route feedforward and feedback information in hierarchical net-

works [13, 17, 18].

For bursts to convey information effectively, they need to occur rarely, but consistently

[17]. Neural recordings suggest that this is indeed the case [2, 3, 7]. However, such a condition

is not easily established [1], because bursts are often triggered by nonlinear, threshold-like pro-

cesses. For example, in PCs, bursts can be generated by dendritic calcium spikes, which in turn

arise from the activation of voltage-gated calcium channels [19]. These channels activate a pos-

itive feedback loop upon sufficient dendritic depolarization, effectively introducing a thresh-

old-like condition for the generation of bursts. If dendritic input is too low, bursts will be

absent entirely. If it is too high, bursts will be the predominant form of activity. Both condi-

tions limit the amount of information bursts can transfer. This suggests that neurons should

homeostatically regulate the amount of bursts they emit, by controlling dendritic excitability

or the amount of dendritic input they receive.

A potential candidate for such a homeostatic control of burst activity is dendritic inhibition.

Apical dendrites of cortical PCs receive inhibition from distinct inhibitory interneuron classes

[20, 21], including somatostatin-expressing (SOM) Martinotti cells [22]. SOM interneurons

could be highly effective homeostatic controllers of burst activity, because the dendritic plateau

potentials that underlie burst generation in PCs are very sensitive to inhibition [4, 23, 24]. Yet,

this high sensitivity asks for dendritic inhibition that is finely tuned to the level of dendritic

excitation, i.e., dendritic inhibition should be adaptive. Such a mechanism of preserving a suit-

able level of dendritic inhibition has been theorized to be essential for dendrites to participate

in the coordination of synaptic plasticity [13].

Here, we use a computational network model to show that such a homeostatic control

could be achieved by a simple form of dendritic inhibitory plasticity. We show that this plastic-

ity can be readily combined with other forms of inhibitory plasticity that control cellular activ-

ity levels overall [25]. In recurrent spiking networks, the combination of these two forms of

inhibitory plasticity can establish a doubly irregular state, in which both spikes and bursts
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occur irregularly at a consistent, but low rate. Finally, we show that inhibitory plasticity can

self-organize dendritic input levels such that a multiplexing of feedforward and feedback input

[17] is more robustly preserved.

Results

In PCs, bursts occur at a low, but consistent rate [2, 3, 7] and are thought to originate from

active dendritic processes [4]. We hypothesized that this is the result of a homeostatic control

of burst firing, mediated by plasticity of inhibitory synapses onto apical dendrites. But which

inhibitory plasticity rules could achieve such a control and what would be the consequences at

the network level? To address these questions, we used a current-based spiking network model

consisting of excitatory PCs and inhibitory interneurons. To model the burst mechanism of

PCs, PCs were described by a simplified two-compartmental model [17, 26]. In short, the PC

model contains a somatic compartment and a dendritic compartment that describes the distal

apical dendrite. Both are each modelled by a set of differential equations of the adaptive inte-

grate-and-fire type, with a nonlinearity in the dendritic compartment that allows an active

generation of dendritic spikes. The two compartments receive bottom-up and top-down

input, respectively (Fig 1A) and communicate by passive and active propagation. This model

faithfully predicts spike timing of PCs in response to electrical stimulation [26] and reproduces

the qualitative features of burst activity when PCs are injected with somatic and dendritic

input Fig 1B [4, 17, 26]. Inhibitory interneurons were described by an integrate-and-fire

model.

For clarity, we gradually increase the complexity of the network from an uncoupled popula-

tion of PCs to a feedforward network with inhibition and, finally, a recurrent network with

two interneuron classes, representing dendrite-targeting SOM interneurons and soma-target-

ing parvalbumin-positive (PV) interneurons. The parameters of the interneuron model were

adjusted to reflect the properties of these cell classes, specifically the presence and absence of

spike-frequency adaptation in SOM and PV neurons, respectively (see Methods).

Controlling the burst activity of L5 pyramidal cells requires fine-tuning of

the excitatory input and noise levels

The computational role of PCs as bursting units depends on how dendritic and somatic inputs

are translated into a spike and burst response. Due to the non-linear nature of the burst gener-

ation mechanism, we expected that the dynamic range of burst activity is limited when bursts

are driven by dendritic excitation alone [1]. The difference between no burst activity and a sit-

uation where every somatic spike is dendritically amplified to a burst [4] should be brought

about by small differences in dendritic input. We checked this intuition in a population of

model PCs by injecting current into both the soma and the dendrite. Spikes were generated by

a noisy background input to the somatic compartment, with firing rates that mimic sensory

driven activity [7]. The conversion of somatic spikes into bursts was driven by noisy excitatory

current to the dendritic compartment, for which we systematically varied the mean and the

noise level.

We found that in the absence of noise on the dendritic input, an increase of the mean input

to the dendrite leads to a rapid transition from an absence of bursts to a saturated level of burst

activity (Fig 1C, light blue trace). The average population burst rate as a function of the den-

dritic input currents shows a step-like transition, at around 175 pA for our parameter settings.

The majority of spikes appear as single spikes (singlets) below this threshold (Fig 1D, no noise

condition). Above, all spikes are converted to bursts. The saturation level for bursting activity

is determined by the amount of somatic input and potential refractory effects in the dendrite,

PLOS COMPUTATIONAL BIOLOGY Self-organization of a doubly asynchronous irregular network state

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009478 November 8, 2021 3 / 25

https://doi.org/10.1371/journal.pcbi.1009478


which are mediated by a slow adaptation current that hyperpolarizes the dendrite after the sus-

tained depolarization of a dendritic spike (see Methods). Hence, in the absence of noise in the

dendrite, the non-linear dendritic threshold mechanism indeed limits the dynamic range of

PCs as bursting units. Under this conditions, the low, consistent burst rate observed in vivo [2,

3, 7] would require a fine-tuning of the input levels.

Noise can broaden the dynamic range of neural information transmission [27]. We there-

fore stimulated the dendrite with coloured noise with varying mean and variance (see Meth-

ods). Indeed, increasing dendritic noise changes the input-output relation between dendritic

input and burst rate from all-or-none to a gradual transition (Fig 1C). Dendritic noise hence

Fig 1. Control of the burst rate by homeostatic inhibitory plasticity. (A) Anatomy of layer 5 pyramidal neurons (PCs). Sensory bottom-up inputs innervate

the perisomatic region (black) while long range top-down connections target the distal dendrites (red). (B) Simulated dendritic voltage in a two-compartmental

model of PCs. A single somatic spike back-propagates into the distal dendrites. The coincidence of a back-propagating action potential (BAP) with sufficient

synaptic input leads to sustained depolarization of the dendrites (calcium spike) and burst activity in the soma [4, 17, 26]. (C) PCs are stimulated with varying

degrees of dendritic input, characterised by an Ornstein-Uhlenbeck (OU) process. This enables precise control of the mean input (graded red triangle) and noise

levels (inset) (See Methods). (D) Raster plots illustrating a sharp transition from single spike to burst spikes with increasing dendritic inputs without noise. Noise

leads to a more graded transition. Bursts are color coded in red. (E) Network configuration with distal dendrites of PCs under control of inhibitory synaptic

inputs from SOMs (blue circle). Bursts are activated by weak (pink, Idi ¼ 250 pA) or strong (red, Idi ¼ 650 pA) dendritic input with moderate noise levels (σd =

100 pA). The somatic input is the same for both dendritic inputs (Isi ¼ 500 pA, σs = 100 pA). The strength of the inhibitory connections wSOM!dend is plastic

(arrow) and modified according to our homeostatic plasticity rule (Eq 1). The burst target rate (dashed line) was set to 1 Hz. (F) The burst rate after learning the

inhibitory weights for different target burst rates. (G) Representative raster plots of the burst activity for weak and strong inputs, before and after learning. Each

dot is a burst. (H) The distribution of the inter-burst intervals (IBI) before and after learning for weak (pink) and strong (red) dendritic inputs.

https://doi.org/10.1371/journal.pcbi.1009478.g001
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allows for a wider dynamic range for the possible burst rates and reduces the need to fine-tune

input levels to achieve sparse bursting. A homeostatic control at low burst rates would there-

fore benefit from large fluctuations on the dendritic input currents. Large input fluctuations

arise, e.g., in balanced networks, in which strong excitatory currents are on average cancelled

by strong inhibitory currents [28, 29]. Therefore, we next investigated if dendritic inhibition

can mediate a control of burst activity and generate the fluctuations characteristic of a den-

dritic balanced state.

Homeostatic inhibitory plasticity controls the burst rate of PCs

Neocortical SOM interneurons specifically target the distal tuft of pyramidal neurons [30] and

exert a profound influence on dendritic calcium activity and bursting [4, 23]. To investigate if

SOM interneurons can control the burst activity of pyramidal cells, we simulated a postsynap-

tic population of PCs receiving inhibitory input from SOM interneurons to the dendritic com-

partment (Fig 1E). Spikes in the SOM and PC population were generated by independent

background noise, with firing rates that mimic sensory activity [31, 32].

We considered a burst timing-dependent homeostatic plasticity rule to regulate the strength

of inhibitory synapses. In effect, synaptic efficacy is potentiated for near-coincident postsynap-

tic bursts and presynaptic spikes, while every presynaptic spike leads to synaptic depression.

This burst-dependent rule is motivated by a previously proposed homeostatic plasticity rule

designed to control postsynaptic firing rates [25], but integrates post-synaptic bursts as salient

plasticity-inducing events [9, 13]. The learning rule can be summarised as

Dw ¼ Z� pre� ðbursts � r0Þ; ð1Þ

where η is the learning rate, pre is presynaptic activity, bursts is a postsynaptic trace reflecting

recent burst activity, and ρ0 is a target rate for burst activity (see Methods for details). This rule

is supported by experimental data insofar as inhibitory synapses from SOM interneurons onto

CA1 pyramidal cells undergo potentiation when presynaptic activity is paired with postsynap-

tic bursts [33].

We find that this learning rule robustly controls the burst rate of the postsynaptic neuron,

both for high and for low excitatory input (Fig 1E, middle), by adjusting the synaptic weights

of the inhibitory synapses onto the dendrite (Fig 1E, right). Homeostatic control is robust over

a range of target rates covering both low burst rates and bursts rates near saturation (Fig 1F).

The learning rule also controlled the temporal patterns of bursting. Before learning, burst

activity is dense and sparse for strong and weak dendritic inputs, respectively. After learning,

the PCs show similar burst raster plots (Fig 1G) and inter-burst interval (IBI) distributions

(Fig 1H) for both initial conditions.

Because somatic burst activity may not be easy to sense for inhibitory synaptic connections

on the apical dendrite, we wondered whether inhibitory synaptic plasticity in the dendrite

could also be controlled by a postsynaptic signal local to the dendrites. Dendritic calcium

spikes generate a long-lasting dendritic plateau potential (S1A Fig, red), which drives somatic

bursting during BAC firing. Therefore, a thresholded version of the dendritic membrane

potential provides a local estimate of the occurrence of a burst. Using this proxy for burst activ-

ity in the homeostatic inhibitory learning rule also leads to robust control of the burst rate (S1

Fig), suggesting that homeostatic burst control could be achieved by a simple, biologically

plausible mechanism. In the following, however, we will continue to use the burst-based

implementation of the plasticity rule Eq 1, because it allows for the interpretation of the target

rate ρ0 as a burst rate.
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Note that the dependence of the learning rule on presynaptic activity allows a stimulus-spe-

cific form of homeostatic control if the inhibitory interneurons differ in their stimulus tuning

[25, 34, 35]. Because the interneurons form a homogenous population in the settings studied

here, the presynaptic dependence in the associative term of the learning rule (pre × bursts) is

not essential and can be dropped (as, e.g., in [36]) without a qualitative change of the results

(S2 Fig).

Simultaneous control of somatic and dendritic activity

Homeostatic inhibitory control of spiking activity has previously been demonstrated in sim-

pler point neuron models without an explicit bursting mechanism [25, 36]. Given the nonlin-

ear interactions between soma and dendrite, we next wondered whether a simultaneous

control of bursting activity and overall spiking activity could be achieved by somatic and den-

dritic inhibition. To this end, we extended the network model by a second class of inhibitory

interneurons whose synapses target the somatic compartment of the PCs, akin to PV interneu-

rons [37]. Both PV and SOM populations are modeled as single compartment neurons, driven

by external noisy inputs and provide inhibition to the PCs through current-based synapses

(see Methods).

To control both somatic and dendritic activity, we have distinct rules for the two inhibitory

connections. SOM!dendrite connections are subject to the plasticity rule in Eq 1, while a dif-

ferent spike timing-dependent inhibitory plasticity rule [25] in the PV!somatic connection

controls the overall level of activity (Fig 2A). The two learning rules have separate target rates

(e.g., a burst rate of 1 Hz and an overall firing rate of 10 Hz) and different learning rates (see

Methods for further details).

We find that both the spike rate and the burst rate reach their respective targets (Fig 2B and

2C), but not necessarily in a monotonic fashion. For example, we observed a transient over-

shoot of burst activity when both firing rate and burst rate were initially too low (Fig 2B, top

right). The underlying reason is that firing rate and burst rate are not independent. A decrease

in somatic inhibition not only increases the firing rate, but also the burst rate. Hence, a homeo-

static control of firing rate can transiently generate an overshoot in burst rate, which is only

later corrected by an increase in dendritic inhibition (Fig 2B, top left). The character of this

transient effect is likely determined by the relative time scales of plasticity in the two synapse

types, which in turn depend on the respective learning rates and the activity in the network.

Homeostatic control is achieved over a range of target values for the firing rate and and the

bursts rate (Fig 2C). Conflicts between the two learning rules only arise when the target for the

firing rate is too low compared to the target for the burst rate (S3 Fig). This is not surprising,

because the firing rate introduces an upper limit for the burst rate. A firing rate of 10 Hz does

not allow a burst rate higher than 5 Hz because bursts must by definition contain at least two

spikes. A simultaneous control of firing rate and burst rate can also be achieved in a recurrent

microcircuit, in which the PV and SOM interneurons receive excitatory input exclusively from

PCs (see Fig 3 of the next section). Thus, self-organised inhibition with local learning rules

allows a precise control of somatic and dendritic activity in cortical microcircuits, by balancing

somatic and dendritic excitation by suitable levels of inhibition.

A doubly asynchronous irregular state for both spikes and bursts

Asynchronous irregular (AI) activity is a hallmark of recurrent networks in which excitation is

balanced by inhibition, and can persist even in the absence of external noise sources [28, 38].

Earlier work has shown that homeostatic inhibitory plasticity can establish such a fluctuation-

driven AI state [25]. We therefore hypothesised that the combination of rate and burst
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homeostasis can self-organize a recurrent neural network into a doubly asynchronous irregu-

lar state for both spikes and bursts. We tested this hypothesis in a recurrent microcircuit in

which all neurons in the circuit are driven by constant, noise-free external excitatory input

(Fig 3A). We varied the strength of the input for the somatic and dendritic compartments of

the PCs. In addition to plasticity of the inhibitory connections onto the PCs, we applied the

homeostatic inhibitory plasticity rule to the inhibitory recurrent connections within the PV

population to desynchronise the PV interneurons.

When we initialize the network with small inhibitory weights, the network initially syn-

chronizes strongly at high firing rates (Fig 3B). At this point the absence of inhibition keeps

the dendrites of the neurons in a persistently depolarised state, and an identification of bursts

is pointless. Over the course of learning, inhibitory plasticity reduces both the firing rate and

the burst rate to their respective targets, and the network develops asynchronous irregular

activity patterns (Fig 3C). To assess the degree of irregularity of the activity without confounds

from the presence of bursts, we studied the statistics not of individual spikes, but of events [17]

(see S4B Fig for a comparison of inter-spike interval and inter-event interval statistics). As

events, we define individual spikes and the first spike within a burst (Fig 3C, black). Additional

spikes within the burst are ignored. We find that both inter-event intervals and the inter-burst

intervals are highly variable after learning (Fig 3D; mean CV of the inter-event interval distri-

bution: 1.24; mean CV of inter-burst interval distribution: 0.77) indicating a doubly irregular

state.

One hallmark of the fluctuation-driven, inhibition-dominated regime that underlies the AI

state in balanced networks is that the mean input current within the population decreases with

increasing external drive, while firing rates increase due to an increase in input variance.

When we systematically varied the external drive to both the soma and the dendrites of PCs,

we find that this is also the case for both compartments (Fig 3E and 3F) in our network model.

Note that the external inputs are noise-free, i.e., the variance in the inputs is generated

Fig 2. Simultaneous control of somatic and dendritic activity. (A) The somatic and dendritic activity of PCs is under

control of plastic inhibitory connections from PV (dark blue) and SOM (light blue) interneuron populations. The

somatic compartment receives either weak (grey arrow, Isi ¼ 700 pA) or strong (black arrow, Isi ¼ 1100 pA) external

inputs. The external input to the dendritic compartment is fixed (red arrow, Idi ¼ 650 pA). The variability of the noisy

background input on the external inputs to the PCs is moderate (σs = σd = 100 pA). (B) Evolution of the inhibitory

weights, the firing and burst rates of PCs during the learning process for strong (black/dark red) and weak (grey/light

red) external somatic input. The target burst and firing rate are respectively 1 and 10 Hz. (C) The burst rate (top) and

firing rate (bottom) after learning for different target rates for strong somatic (Isi ¼ 1100 pA) and dendritic input

(Idi ¼ 650 pA). For all conditions, the target firing rate is 10 times larger than the target burst rate.

https://doi.org/10.1371/journal.pcbi.1009478.g002
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Fig 3. A doubly asynchronous irregular state for both spikes and bursts. (A) Schema of the recurrent circuit structure.

All inhibitory connections are plastic (target firing rates = 10 Hz, target burst rate = 1 Hz). For all panels, the external

input to soma, dendrites and PVs (IPVi ¼ 200 pA) is noise-free (σs = σd = σPV = 0 pA). SOM interneurons do not receive

external input. (B) Left: Spiking pattern of PCs before learning of the inhibitory weights and time-varying population

rate. Strong constant somatic (Isi ¼ 1500 pA) and dendritic (Idi ¼ 500 pA) external input causes PCs to fire

synchronously at high rates. No clearly separated bursts are detectable. Right: Regular firing indicated by the distribution

of the coefficient of variation (CV) of the inter-spike interval. (C) Raster plots and population rates after learning the

inhibitory weights. Events (black) and bursts (red) are isolated from all spikes (dark yellow) to illustrate activity

associated with somatic (events) and dendritic (bursts) inputs (see Methods). (D) The firing and burst pattern is irregular

as indicated by the distribution of the coefficient of variation (CV) of the inter-burst (red) and inter-event (black)

intervals. (E) Net (exc + inh) input current to the soma (black traces) and dendrites (red traces). Weak (Isi ¼ 700 pA,

Idi ¼ 300 pA) and strong (Isi ¼ 1500 pA, Idi ¼ 500 pA) external input leads to small and large input fluctuations on the

net input current, respectively. (F) Standard deviation (left) and mean (right) net input currents for soma (black) and

dendrites (red) when increasing the external somatic (black X-axis) and dendritic (red X-axis) inputs simultaneously.

(G) Left: Microcircuit and stimulation paradigm. During the learning phase, the inhibitory weights change until the

somatic (10 Hz) and dendritic target (1.5 Hz) is reached for constant dendritic inputs ranging from weak to strong (blue

Idi = 250-350-450-650 pA). Right: Burst rate in response to a transient input stimulus (red) after learning, as a function of

the strength of the stimulus (red triangle). Somatic input (black arrow, Isi ¼ 1000 pA) is the same for all dendritic input

conditions.

https://doi.org/10.1371/journal.pcbi.1009478.g003
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intrinsically by the balance of excitation and inhibition, as for networks with simpler neuron

models [28]. Functionally, this internally generated noise has the effect of smoothing out the

input-output function of the dendrites, such that transient dendritic inputs are represented in

the burst rate in a graded rather than an all-or-none fashion (Fig 3G, cf. Fig 1B). In summary,

homeostatic inhibitory plasticity in somatic, dendritic and inter-interneuron connections can

establish a doubly asynchronous irregular state in the network, in which both spikes and bursts

occur irregularly, by means of internally generated noise.

Inhibitory plasticity enables a multiplexed spike-burst code

While dendritic inputs to PCs are usually interpreted as “gain modulators” of PC responses

[39–41], spikes and bursts could also be used in a multiplexed ensemble code that allows to

decode both the somatic and the dendritic input to a neuronal population [17]. According to

this hypothesis, somatic input to the PCs is represented in the event rate of a population of

PCs, while dendritic inputs are represented by the fraction of events that are bursts (burst frac-

tion, BF; Fig 4A). Indeed, the two time-varying input signals to somata and dendrites are accu-

rately decoded from the event rate and burst fraction of a population of uncoupled PCs (Fig

4B). However, this code is not robust to changes in input conditions. For the encoding of

graded signals, the multiplexed code relies on noise in the input signals that smoothens out the

neuronal input-output function and effectively decorrelates the responses of different neurons

in the population. In other words, the population is artificially maintained in a fluctuation-

driven regime by the addition of external noise. In line with this intuition, the decoding accu-

racy for both the somatic and dendritic input degrades when we add a constant baseline input

to the dendrites (Fig 4C–4E), shifting the neurons away from the fluctuation-driven and

towards a mean-driven regime.

Given that the two forms of plasticity tend to establish a fluctuation-driven regime, we

hypothesised that they could provide a basis for a self-organization of a multiplexed event-

burst code. We first tested in an uncoupled PC population, if somatic and dendritic homeo-

static plasticity can compensate for the input level-dependent disruption of the multiplexed

code. Indeed, the code is recovered over the course of learning for a broad range of input levels

(S5 Fig). Finally, we checked if the code can also be enabled in a fully recurrent setting without

external noise (cf. Fig 3). Again, we find that inhibitory plasticity can compensate for inappro-

priate baseline currents (Fig 4F–4I). Over the course of learning, the plasticity recovers a fluc-

tuation-driven state (Fig 4G), and the resulting irregular asynchronous activity enables the

multiplexed code (Fig 4H and 4I).

In summary, homeostatic plasticity of inhibitory synapses can put neural circuits with com-

plex PC dynamics and two different interneuron classes into a fluctuation-driven regime,

which not only establishes a doubly balanced state, but also stabilizes a multiplexed neural

code for bottom-up and top-down signals.

Discussion

The question of how pyramidal neurons integrate bottom-up and top-down information

streams has received keen interest over the past decades. Here, we addressed the question how

a network can self-organize into a dynamical state in which this integration is likely to be most

effective. We have shown i) that a simple form of inhibitory plasticity can homeostatically con-

trol the burst rate, ii) that it can be readily combined with a homeostasic control of firing rate,

iii) that this form of homeostasis can establish a doubly irregular network state for spikes and

bursts, and iv) that this state indeed improves the ability of bursts to convey information in a

multiplexed neural code [17].
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Functional benefits of homeostatic burst control

Given the broad range of potential dendritic computations [42], a homeostatic control of den-

dritic and/or burst activity could serve a variety of functions. Sparse bursting maximizes infor-

mation in multiplexed neural codes. Such multiplexed codes could in turn allow a bi-

directional propagation of signals in cortical hierarchies [17], e.g., a backpropagation of inter-

nal predictions [11, 12, 43] or error signals [13, 18] to lower layers in the hierarchy. In line

Fig 4. Inhibitory plasticity self-organises a multiplexed burst code. (A) Example illustrating a multiplexed burst code in PCs in which somatic and

dendritic inputs are represented in the event rate and the burst fraction, respectively [17]. Events are either a burst or single spike, while the burst fraction

(BF) is the fraction of events that are bursts. (B) Alternating and opposite pulse inputs (dashed lines) are delivered to the somatic and dendritic

compartment (Is;highi ¼ 800 pA, Is;lowi ¼ 500 pA, Id;highi ¼ 105 pA, Id;lowi ¼ � 480 pA, ssi ¼ s
d
i ¼ 450 pA). The pulse inputs can be decoded from the

event rate (solid black) and BF (solid red) respectively (see Methods). (C) Stimulation paradigm with an increase in background excitation (300, 600 and

900 pA; red triangle = dendrite, black triangle = soma) on which pulse inputs are superimposed. (D) Comparison of somatic input/event rate (left) and

dendritic input/burst probability (right). Event rate and BF were rescaled using a linear decoder. Dashed lines represent the true inputs. The multiplexed

code deteriorates when dendritic and somatic background currents are increased relative to Fig 4B. The values on the y-axis are external input strengths in

pA. (E) Quality of the multiplexed burst code for increased background excitation, measured by the Pearson correlation coefficient between the two input

currents and event rate (black) and burst fraction (red), respectively (see Methods). (F) Inhibitory plasticity restores the multiplexed burst code in a

biological microcircuit without the need for fine-tuning the background input or noise levels. The microcircuit is similar to Fig 3, with constant external

inputs, recurrent connections and plasticity on all inhibitory connections. Background excitation to both somatic and dendritic compartments was

increased with 900 pA, where event rate (BF) is not informative of somatic (dendritic) input pulses. (G) The learning process increases the standard

deviation of the net dendritic (red) and somatic (black) input currents. (H) Decoded inputs from the event rate (black) and BF (red) before and after

learning, as in D. (I) Pearson correlation between actual and decoded inputs to quantify the quality of the multiplexed burst code over the course of

learning (see Methods).

https://doi.org/10.1371/journal.pcbi.1009478.g004
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with the notion that bursts could represent error signals, they are very effective drivers of syn-

aptic plasticity [9], suggesting that learning can be regulated or at least influenced by inputs to

the upper cortical layers. Notably, error-driven learning is substantially more effective when

the error signals are graded rather than all-or-none. Therefore, the suggested homeostatic con-

trol of burst activity with the accompanying response linearization may be beneficial to create

suitable conditions for graded learning signals [13]. Finally, if plasticity is primarily triggered

by bursts, a homeostatic control of burst activity could be interpreted as a form of “meta-plas-

ticity” that controls how often plasticity is triggered in a given neuron or circuit. A similar

argument can be made for the idea of coincidence detection by somato-dendritic integration

[10]. Homeostatic inhibitory plasticity in the dendrite could serve to set a (potentially soft)

threshold above which dendritic input is deemed sufficiently high to trigger the coincidence

detection machinery.

A different argument for homeostatic inhibitory plasticity is the establishment of a balanced

state [44, 45], in which excitation and inhibition cancel out on average [28, 38]. While the

energy expenditure of balanced states is a frequent target of mockery (but see [46]), the under-

lying idea of inhibitory negative feedback loops has the advantage of smoothing out threshold-

like processes and thereby broadening the dynamic range for information transmission (Fig 1,

[27]). In line with this idea of response linearization, responses to dendritic stimulation are

more graded in vivo than in vitro [23].

Specificity of homeostatic control

A frequent question for excitation-inhibition (E/I) balance is that of its spatiotemporal preci-

sion, i.e., the question along which dimensions excitation and inhibition are correlated and

how tight this correlation is [44]. Originally suggested as a balance on the network level and

merely present on average across time and neurons [28], the E/I balance can also be specific in

time [29, 47], in stimulus space [48, 49], across neurons [50] or across neuronal compartments

[51, 52]. Each of these dimensions of specificity has its correspondence in potential inhibitory

learning rules that could establish the respective form of E/I balance. Specificity across neurons

requires a dependence of inhibitory plasticity on postsynaptic signals [25, 36]. Specificity in

time and stimulus requires a dependence on presynaptic activity [45, 53]. A specificity across

compartments—as studied here—requires a dependence on compartment-specific signals. In

our simulations, we used bursts as a proxy for dendritic activity of L5 pyramidal neurons, but

dendritic membrane potential or currents (S1 Fig; [54]), or local chemical signals could be

equally suitable. Earlier models of dendritic (inhibitory) plasticity also exploited local dendritic

signals, e.g., to learn dendritic predictions of somatic inputs by comparing compartmental

membrane potentials [54, 55]. We included a dependence on presynaptic activity in the den-

dritic learning rule to leave open the possibility of both a compartment- and input-specific E/I

balance in further studies. However, in the situations studied here, the presynaptic interneuron

populations are homogeneous, so the presynaptic dependence does not have an impact on the

results (Fig 1 versus S2 Fig).

Experimental support and interaction of homeostatic mechanisms

A key prediction of the model is that inhibitory synapses from SOM interneurons onto PCs

should undergo potentiation when the postsynaptic cell bursts too often. This is supported by

slice experiments in the hippocampus [33], which showed that a theta burst stimulation proto-

col—presynaptic activity paired with regularly occurring postsynaptic bursts—induces long-

term potentiation in SOM!PC synapses. Notably, the same protocol induces long-term

depression in PV!PC synapses. Different interneurons hence display different rules of
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synaptic plasticity—also on their excitatory input synapses [56] –, which rely on distinct

molecular mechanisms [33, 57].

In our simulations, the effects of different forms of homeostatic plasticity are not necessarily

independent. Homeostatic control of the overall firing rate also influenced the rate of bursts

(Fig 2), because bursts generated via BAC firing [4] are triggered by somatic spikes and hence

depend on the firing rate. Such interactions arise when the sensors (firing rate/burst rate) or

the effects (SOM!PC/PV!PC synapses; somatic/dendritic membrane potential) of the

homeostatic control laws are correlated, and can generate non-monotonic homeostatic

dynamics (Fig 2B) (similar behavior was seen, e.g., by O’Leary et al [58]). This creates potential

challenges for an experimental investigation of dendrite-specific forms of homeostasis. The

basic prediction of our model is that an over-activation or suppression of dendritic activity

should result in specific compensatory changes in inhibitory synapses onto the dendrite. How-

ever, it may not be trivial to manipulate dendritic activity without manipulating other aspects

of network activity. Depending on the experimental manipulation (e.g., tissue-wide applica-

tion of TTX [59] vs. application of gabazine or baclofen to the superficial layers [23]) and the

observed quantities (burst rate, dendritic calcium signals or morphological features of inhibi-

tory synapses on the dendrite), the observations could differ substantially, if other homeostatic

mechanisms occur in parallel. Moreover, it is conceivable that different forms of homeostasis

interact to decorrelate their effects. For example, a neuron could react to high dendritic activity

by redistributing inhibition from the soma to the dendrite, in order to selectively reduce bursts

without affecting overall firing rate. A stimulation protocol based on postsynaptic bursts

would then simultaneously potentiate dendritic inhibition and depress somatic inhibition. The

observed opposing forms of plasticity in SOM and PV synapses for the same stimulation pro-

tocol [33, 57] could therefore be interpreted as a decorrelation of the effects of these two syn-

apse types on firing rate and burst rate.

While inhibitory plasticity is a promising candidate for network homeostasis, it operates on

a slow time scale of hours or days and is therefore likely complemented by additional negative

feedback loops that operate on faster time scales [60]. Potential mechanisms that could rapidly

stop network instabilities in their tracks could be, e.g., short-term synaptic plasticity [61, 62] or

presynaptic inhibition [63]. An inclusion of these mechanisms would be interesting, but

exceeds the scope of the present study.

Relation to in vivo bursting statistics

In vivo, bursts occur rarely, but consistently. In rat somatosensory cortex, the proportion of

spikes that occur in bursts is about 15–20% [2]. Similar values were reported by Doron et al

[3]. Sanders et al found a slightly higher, but quite variable proportion of about 40% in rat

CA1 and CA3 [64]. While firing and burst rates vary substantially across brain regions, the

proportion of bursts hence seems to be quite similar across brain regions. Note that a direct

quantitative comparison of these numbers is problematic, because not all papers use the same

formal criteria for the classification of bursts. In our simulations, we chose the target rates of

the plasticity rules such that the proportion of spikes occurring in bursts roughly aligns with

the experimental observations. For a firing rate of 10 Hz, a burst rate of 1 Hz and 2–3 spikes

per bursts, about 20–30% of the spikes are part of a burst.

What’s wrong or missing in the circuit

The primary focus here was on the self-organisation of a dynamical network state in which

bursts occur rarely. Like all models, we navigated a trade-off between model simplicity, clarity

of result and biological accuracy, and the circuit we studied is clearly simplified compared to
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cortical circuits. For simplicity, we used the same low connection probability among all neuron

classes, although the connection probability of interneurons is substantially higher than that of

excitatory neurons [65, 66]. We expect that the key results carry over denser connectivity,

despite potentially higher input correlations [29].

Several cortical interneuron classes were ignored, including interneuron types that also

inhibit the distal dendrite [21, 67]. In principle, those interneurons could provide the sug-

gested homeostatic control of dendritic activity equally well as SOM interneurons. We chose

to refer to the dendrite-targeting interneurons as SOM interneurons, because those—specifi-

cally deep layer Martinotti cells—receive excitatory drive from the surrounding PC population

[23] and are therefore good candidates for the feedback inhibition modelled in Fig 3. Neuro-

gliaform interneurons in layer 1, such as neuron-derived neurotrophic factor-expressing

(NDNF) interneurons also target apical PC dendrite, but seem to receive primarily long-range,

top-down inputs [21, 68]. Whether two distinct interneuron classes are actually required for a

compartment-specific form of feedback inhibition or whether this could be mediated by a sin-

gle cell class with heterogeneous properties was investigated elsewhere [52]. We also ignored

the well-documented connections between SOM and PV neurons [20, 69]. In the presence of

stimuli, these connections could mediate a redistribution of inhibition across the two compart-

ments [70], but in the steady-state conditions we studied here, they would likely not change

the results qualitatively. Additional interneurons that mediate—e.g., a dynamic disinhibition

of the dendritic compartment [70–74]—would also become relevant players in the presence of

time-varying inputs.

Outlook

Natural extensions of this work would be the addition of time-varying or stimulus-dependent

input, combined with a stimulus tuning of the various cell classes, to study simultaneously the

effects of stimulus-specific [25, 34, 35] and compartment-specific [52] E/I balance. To do so,

however, we would have to specify a stimulus selectivity for all neuron classes in the network

[34, 35] and the resulting rich combinatorics of conditions is beyond the scope of this work.

Methods

Network model

We gradually increase the complexity of the network from an uncoupled population of PCs to

a feedforward network with inhibition and, finally, a recurrent network with two interneuron

classes, representing dendrite-targeting SOM interneurons and soma-targeting parvalbumin-

positive (PV) interneurons. All neurons are randomly connected. Parameters are provided in

Tables 1–3.

Table 1. Parameter values for the two-compartmental PC model. Soma and dendrite indicate the somatic and dendritic compartment respectively and f(x) the sigmoid

function. Values are from [17].

soma dendrite f(x)

τs 16 ms τd 7 ms Ed -38 mV

Cs 370 pF Cd 170 pF Dm 6 mV

gs 1300 pA gd 1200 pA

bsw -200 pA cd 2600 pA

tsw 100 ms tdw 30 ms

EL -70 mV adw -13 nS

EL -70 mV

https://doi.org/10.1371/journal.pcbi.1009478.t001
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PCs. PCs are simulated as a two-compartmental model akin to the model described by

Naud et al [17]. The two compartments represent the soma and distal dendrites, and their

interaction captures dendrite-depending bursting.

The membrane potential Vs of the somatic compartment follows generalised leaky inte-

grate-and-fire dynamics with spike-triggered adaptation. The subthreshold dynamics of the ith

pyramidal neuron is described by

dVs
i

dt
¼ �
ðV s

i � ELÞ

ts
þ
gsf ðVd

i Þ þ Isi þ ws
i

Cs ; ð2Þ

dws
i

dt
¼ �

ws
i

tsw
þ bswS

s
i : ð3Þ

The dynamics of the somatic membrane potential V s
i are governed by a leak term that drives

an exponential decay to a resting membrane potential EL with membrane time constant τs.

When the somatic membrane potential reaches a threshold VT of -50 mV, it is reset to the

reversal potential EL after an absolute refractory period of 3 ms and a spike is added to the

spike train Ssi . The soma is subject to spike-triggered adaptation (Eq 3). Each somatic spike

increases an adaptation current ws by an amount bsw. Between spikes, the adaptation current ws

decays exponentially with time constant tsw. The soma receives external inputs Isi and a current

f ðVd
i Þ from the apical dendrite that depends nonlinearly on the dendritic membrane potential

Vd
i . The parameter gs controls the coupling strength of the dendrite to the soma. The impact of

all these currents on the somatic membrane potential is scaled by the somatic membrane

capacitance Cs.

The dendritic compartment is modeled by the following dynamics:

dVd
i

dt
¼ �
ðVd

i � ELÞ

td
þ
gdf ðVd

i Þ þ cdKðt � t̂ siÞ þ Idi þ wd
i

Cd ; ð4Þ

dwd
i

dt
¼
� wd

i þ adwðV
d
i � ELÞ

tdw
: ð5Þ

The dendritic membrane potential Vd
i decays expontentially to the resting membrane potential

EL, with a time constant τd. Dendritic calcium events are modeled as a nonlinear current

Table 3. Number of neurons in each populations for the different figures.

FIGURE 1 2 3 4

NPC 1600 1600 8000 8000

NSOM 400 400 2000 2000

NPV - 400 2000 2000

https://doi.org/10.1371/journal.pcbi.1009478.t003

Table 2. Parameters of the PV and SOM interneuron models.

PV SOM

τPV 10 ms τSOM 20 ms

CPV 100 pF CSOM 100 pF

bSOMw
-150 pA

tSOMw 100 ms

https://doi.org/10.1371/journal.pcbi.1009478.t002
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f ðVd
i Þ, which increases steeply when the dendritic membrane potential approaches a given

threshold Ed:

f ðxÞ ¼
1

1þ expð� ðx � EdÞ=DmÞ
: ð6Þ

The steepness of this threshold is controlled by the parameter Dm. The coupling from the

somatic to the dendritic compartment by backpropagating action potentials (BAPs) is mod-

elled by a pulse-shaped current in the dendrite. The strength of this current pulse is controlled

by the parameter cd and its shape by a kernel K. K is a rectangular kernel of amplitude one,

which lasts 2 ms and is delayed by 0.5 ms relative to the time t̂ si at which the somatic spike

occurred. The dendrite is subject to subthreshold adaptation, which terminates dendritic cal-

cium events unless external currents do so. The dynamics of the dendritic adaptation variable

are defined by a strength adw and time constant tdw. Again, all currents to the dendritic compart-

ment are scaled by the dendritic membrane capacitance Cd.

For Fig 3, we removed the spike-triggered somatic adaptation ws (Eq 3) to allow for short

interspike intervals (ISI) between somatic spikes. Because this prolongs dendritic calcium

spikes and bursts, we increased the value of the dendritic adaptation variable adw from -13 nS to

-28 nS to shorten the bursts to realistic numbers of spikes. The choice to remove adaptation

for Fig 3 is a classical trade-off between clarity of result and biological accuracy. The original

PC model of Naud et al [26] contains somatic adaptation, because this allows a closer fit to

neural recordings. Therefore, the biologically more accurate model choice would include

adaptation. On the other hand, adaptation suppresses short ISIs and thereby generates more

regular firing [75]. As a result, the CV of the inter-event distribution would be consistently

below the value 1 that is considered the hallmark of irregular activity. Unfortunately, this

could readily be mistaken for an indication that the network is not a fluctuation-driven state.

Therefore, we removed the adaptation to make the result on the double AI state as clean as

possible. Putting adaptation back in does not drastically change the network state, but the CV

of the inter-event distribution is consistently below 1.

PV and SOM interneurons. The dynamics of the two interneuron populations are mod-

elled by integrate-and-fire neurons. The subthreshold voltage dynamics VPV
i of the ith PV neu-

ron is described by

dVPV
i

dt
¼ �
ðVPV

i � ELÞ

tPV
þ

IPVi
CPV ; ð7Þ

with membrane time constant τPV and capacitance CPV.

In contrast to PVs, SOMs exhibit firing rate adaptation wSOM
i [20], and are therefore

described by an adaptive integrate-and-fire model,

dVSOM
i

dt
¼ �
ðVSOM

i � ELÞ

tSOM
þ
ISOMi þ wSOM

i

CSOM ; ð8Þ

dwSOM
i

dt
¼ �

wSOM
i

tSOMw

þ bSOMw SSOMi ; ð9Þ

where wSOM
i increases by bSOMw in case of a spike SSOMi and decays otherwise at a rate defined by

tSOMw . While PVs have a membrane time constant τPV of 10 ms, SOMs are modelled with a lon-

ger time constant (τSOM) of 20 ms to be consistent with in vivo measurements [76]. The param-

eters τSOM and CSOM are the membrane time constant and capacitance of SOMs, respectively.
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Connectivity

Specific network configurations were used for the different figures. The number of neurons in

the network for the main figures of the manuscript are summarized in Table 3. S1 and S2 Figs

have the same network configuration as Fig 1, while S3, S4 and S5 Figs have the same network

configuration as Figs 2, 3 and 4, respectively. Between the different neuron populations, all

neurons are fully connected in Figs 1 and 2 and S5 Fig (connection probability = 1) and with

sparse random connectivity in Figs 3 and 4 (connection probability = 0.02). The recurrent con-

nections between PC and PV neurons in Figs 3 and 4 also have sparse random connectivity

(connection probability = 0.02). The network diagram depicted in each figure specifies the

synaptic connections between the different neuron populations, with arrows indicating excit-

atory connections and straight arrow heads indicating inhibitory connections. All cells have

the same number of incoming connections (homogeneous network), while autapses were

excluded from the recurrent inhibitory PVi! PVj connections. The excitatory connections in

Figs 3 and 4 were not plastic and the synaptic weights wij are fixed for PCs
i ! SOMj, PC

s
i !

PVj and PCs
i ! PCs

j . The strengths of the synaptic weights ws!PV
ij , ws!SOM

ij and ws!s
ij are 25 pA

for Fig 3, while for Fig 4 the values are 15, 4 and 13 pA respectively. Reducing the strength of

the excitatory connection for Fig 4 minimises the mixing of dendritic and somatic input

through inhibitory populations, and hence improves a multiplexed burst code. Note that opti-

mized multiplexing to decode both input streams in a recurrent network setting would require

additional network elements, i.e. short term plasticity on the excitatory connections and addi-

tional inhibitory connections between the PV and SOM population [17]. Optimizing these

connections was beyond the scope of this project but was published in Keijser et al [52].

All inhibitory connections were plastic and evolved according to the inhibitory plasticity

rules. The inhibitory weights for Figs 1 and 2 and S1–S3 Figs were initialised at 10 pA while for

Figs 3 and 4, S4 and S5 Figs inhibitory weights were initialised at 0.1 pA.

Inhibitory plasticity

Spiking activity of PCs is regulated by an inhibitory plasticity rule described in Vogels et al

[25]. Inhibitory synapses are strengthened by coincident pre- and postsynaptic activity within

a symmetric coincidence time window of width τSTDP (= 20 ms). Additionally, every presynap-

tic spike leads to a reduction of synaptic efficacy. In order to calculate the changes to each wij, a

synaptic trace xi is assigned to each neuron and xi increases with each spike xi! xi + 1. Other-

wise it decays following

tSTDP
dxi
dt
¼ � xi: ð10Þ

The synaptic weight wij from neuron j to neuron i is updated for every pre- or postsynaptic

event such that

wij ! wij þ Zðxi � aÞ for presynaptic spikes at time t̂ j ð11aÞ

wij ! wij þ Zxj for postsynaptic spikes at time t̂ i; ð11bÞ

where η is the learning rate and α the depression factor. The depression factor αmathemati-

cally relates to the target firing ρ0 (α = 2 × ρ0 × τSTDP) as derived in Vogels et al [25].

The burst activity of PCs is controlled by an analogous inhibitory plasticity rule as described

above. Again, presynaptic activity j is captured by a synaptic trace that increases with each

spike. The postsynaptic activity corresponds to burst activity and requires a different imple-

mentation. We explored two different strategies, an algorithmic (Figs 1, 2 and 4, S2, S3 and S5

Figs) and a voltage-based strategy (Fig 3, S1 and S4 Figs). The algorithmic rule increases the
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postsynaptic trace i for each somatic burst (see below for our classification criteria for bursts),

and decays otherwise with the time constant τSTDP (= 20 ms), following Eq 10. The synaptic

weight wij from neuron j to neuron i is updated for every pre- or postsynaptic event as in Eq

11. Similar to the inhibitory rule described in [25], the algorithmic rule mathematically relates

a target burst rate ρ0 with the target α by α = 2 × ρ0 × τSTDP. Note that we used different targets

for the two inhibitory plasticity rules.

The algorithmic implementation permits updates of the inhibitory weights as an explicit

function of the burst rate, but requires somewhat “non-local” somatic information to update

dendritic inhibitory weights. We therefore implemented an alternative rule to demonstrate

that the burst rate can also be controlled using local dendritic signals. In this implementation,

the post-synaptic activity is represented by dendritic calcium spikes. We approximate den-

dritic calcium spikes by thresholding the voltage of the dendritic compartment using a sigmoid

function (Eq 6) with a sharp threshold at -20 mV (Ed = -20 mV and Dm = 0.01 mV). The rela-

tionship between the target α and the burst rate is determined empirically by plotting the burst

rate as a function of increasing target values (cf. S1 Fig). Target α = 0.03 and 0.045 for Fig 3C–

3E and 3G, respectively. Target α = 0.05 for S1B, S1D and S1E Fig wij is updated every time

there is a presynaptic spike or postsynaptic calcium spike.

The spike-time dependent plasticity rule controlling burst activity can be simplified further

to a spike timing-independent model (S2 Fig). In this rule, the changes to wij do not require

coincident pre- and postsynaptic activity and update such that

wij ! wij þ Zðxi � aÞ ð12aÞ

where η is the learning rate and xi is a trace representing postsynaptic burst activity. Similar as

described above, an algorithmic and a voltage-based strategy can increase the postsynaptic trace

xi, which decays otherwise with the time constant τSTDP, following Eq 10. The algorithmic rule

relates the target rate ρ0 for bursts to the depression parameter α by α = ρ0 × τSTDP and was used

in S2 Fig. The synaptic weights are updated with a fixed regular time interval of 50 ms.

The learning rate ηSOM!d is 0.1 for Fig 1, S1 and S2 Figs. For Fig 2 and S3 Fig, the learning

rates ηSOM!d and ηPV!s are 0.1 and 0.01, respectively. For S5 Fig the learning rates ηSOM!d

and ηPV!s are 1 and 0.1, respectively. For Fig 3, S4 Fig and 4 the learning rates ηSOM!d, ηPV!s

and ηPV!PV are 1, 0.1 and 0.05.

The learning rates were varied for several reasons. Firstly, in Fig 2, we chose the learning

rates such that the two forms of plasticity occur on similar time scales, for illustration purposes.

Secondly, some of the simulations are computationally costly, because they entail the simula-

tion of spiking networks over the long time scales required for plasticity. We therefore maxi-

mised the learning rate for all conditions in which we performed extensive parameter sweeps,

to reduce the required simulated time. Third, while the steady state should in principle be

independent of the learning rate, this is not necessarily true in practise. For example, the recur-

rent networks in Fig 3 are (deliberately) initialised in a high-activity, highly synchronous state,

in which the notion of bursts is useless. To make sure that this state does not generate patho-

logical weight distributions, we used a high learning rate for the soma-targeting inhibitory syn-

apses, such that the overall activity of the network is rapidly reduced.

Inputs

The input to the neurons is characterised by external constant input Iext, noisy background

input Ibgi and synaptic input Isyni :

Ii ¼ Iext þ Ibgi þ Isyni : ð13Þ
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The noisy background input Ibgi is modeled as an Ornstein-Uhlenbeck process with mean μ,

variance σ2 and correlation time τOU

d
dt

Ibgi ¼
½m � Ibgi �
tOU

þ s

ffiffiffiffiffiffiffi
2

tOU

r

xi ; ð14Þ

where ξi is Gaussian white noise with hξii = 0 and hξi(t)ξi(t0)i = δ(t − t0). For all simulations μ
and τOU were 0 pA and 2 ms respectively. The parameters of the external input Iext and the

standard deviation of the background input σ to PCs are specified in the caption of each figure.

The external and background inputs for the inhibitory SOM and PV populations in Figs 1

and 2 and S1–S3 and S5 Figs was chosen so that the firing rates were 10 Hz (Fig 1, S1 and S2

Figs: Iext,SOM = 90 pA, σSOM = 400 pA; Fig 2, S3 and S5 Figs: Iext,SOM = 90 pA, Iext,PV = -45 pA,

σSOM = σPV = 400 pA). The background input to SOM and PV populations for Fig 3, S4 Fig

and 4 was 200 pA (Iext,SOM = Iext,PV = 200 pA), but the noise was removed (σSOM = σPV = 0

pA).

A key point of the recurrent network simulations in Figs 3 and 4G was to show that the net-

work can maintain an AI state based on “internally generated noise” and thereby support a

multiplexed code. We therefore removed all external noise (σs,d,SOM,PV = 0). The amount of

external input to the PV interneurons should not be chosen too low, because it indirectly con-

trols the amount of recurrent inhibition among the PV interneurons. The recurrent inhibitory

connections among the PV interneurons aims to achieve a given target rate where higher

input leads to stronger inhibitory recurrence. However if the overall excitatory input is too

small, recurrent inhibition is removed altogether, which in turn increases the risk of PV inter-

neurons to synchronise and thereby generate network oscillations.

The amount of external input to the SOM interneurons is less critical for the behaviour of

the network as long as the relative input of recurrent inputs from the PCs is high enough. In

contrast to the PV interneurons, SOM interneurons cannot use recurrent inhibitory connec-

tions to desynchronise their activity. We omitted those connections because they are rare in

cortex [69]. A desynchronization of the SOM interneurons can therefore only be reached by

input fluctuations. Because only the internal recurrent excitation fluctuates, but not the exter-

nal inputs, the recurrence must account for a sufficiently large fraction of the SOM input to

prevent network oscillations. Note that this is a somewhat artificial constraint. In the cortex,

there would be both noise from the surrounding network activity and inhibition from other

interneurons (e.g., VIP neurons [69]).

The total synaptic input Isyni is the sum over all synaptic input currents triggered by all pre-

synaptic neurons where the f-th presynaptic spike time of neuron j is labeled t̂ ðf Þj :

IiðtÞ ¼
X

j

X

f

wij�ðt � t̂ ðf Þj Þ : ð15Þ

The time course of the synaptic input is modelled as an instantaneous jump followed by an

exponential decay with a time constant of τ = 5 ms for excitatory synapses and τ = 10 ms for

inhibitory synapses,

�ðtÞ ¼ HðtÞe� t=t ; ð16Þ

where Hð�Þ is the Heaviside step function and wij the synaptic weight.

Data analysis

Neurometric parameters. Bursts are defined as a set of spikes where the interspike inter-

val (ISI) is smaller than 16 ms, followed by a period of quiescence before the next burst occurs.
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For Fig 3, in addition to the 16 ms ISI requirement, the presence of a dendritic calcium spike

was verified to identify bursts. This was necessary because the absence of adaptation in the

somatic compartment (Eq 3) can lead to ISIs below 16 ms in the absence of a dendritic calcium

spike. See section on the inhibitory plasticity rules (voltage based strategy) for the identifica-

tion of a dendritic spike. Events are all isolated spikes and the first spike of a burst. Burst and

event rate are calculated by summing the bursts and events across the population, respectively.

Burst probability is calculated as the ratio of the burst rate over the event rate. The time-depen-

dent rates are smoothed for display by convolving the burst and event rate with a rectangular

window. The window-length is 2.5 seconds for Figs 1 and 2, S1 and S2 Figs and 10 ms for Fig

4. The rates for Fig 3 and S4 Fig are not smoothened in order to evaluate fluctuations in the

population rate at a temporal resolution in the ms range. So population rates are computed by

dividing the total number of spikes in time-bins of 1 ms by the number of PC neurons (8000)

and the bin-size of 1 ms.

Coefficient of variation. To characterize the global state of the network we monitored the

interspike intervals of individual spike trains. A hallmark of cortical activity is irregular asyn-

chronous network activity and has a coefficient of variation of interspike intervals (ISI CVs)

near 1 [38, 77]. ISI CV values close to zero indicate regular spiking patterns, values near 1 indi-

cate irregular spiking. However burst activity confounds the interpretation of CVs since bursts

can increase the CV independent of spiking regularity. To interpret the CV independent of

burst activity we quantified the regularity of events (IEI CVs). The regularity of bursts is quan-

tified by computing the coefficient of variation of the inter-burst intervals (IBI CVs).

Multiplexing error. In the multiplexed burst code, spikes are separated in bursts and

events to recover the input streams that arrive at the somatic and dendritic compartments of

PCs (see [17] and Fig 4A]). The encoding quality of the dendritic and somatic input signals

(see Fig 4E and 4I) is measured by comparing the shape of dendritic input I(t)d with the shape

of burst fraction BF(t) and the shape of somatic input I(t)s with the shape of event rate ER(t).

We performed these comparisons by means of Pearson correlation coefficients (see Fig 4E and

4I). To visually illustrate the similarity of the two signals (Fig 4B, 4D and 4H), we shifted and

scaled event rate and burst fraction to make them comparable to the input currents, using a

linear regression. More specifically, linear regression minimized the mean squared error loss

between the somatic (dendritic) input and the event rate (BF).

Statistics. Data points with error bars show the mean over 3 experiments ± 1 standard

deviation. Solid lines and shaded regions show the mean and 95% confidence interval, respec-

tively. The network is randomly initialised for each experiment.

Simulation details

All simulations were performed using the Brian simulator version 2.2.2.1 [78]. Differential

equations were numerically integrated using the Euler integration method with a time step of

0.1 ms. Source code for inhibitory control of network activity is available on github (https://

github.com/sprekelerlab/SourceCode_Vercruysse21).

Supporting information

S1 Fig. Control of the burst rate by a voltage based homeostatic inhibitory plasticity rule.

(A) Network configuration with distal dendrites of PCs under control of inhibitory synaptic

inputs from SOMs (blue circle). The inhibitory connections are plastic (arrow) and modified

according to a homeostatic plasticity rule where post-synaptic activity is modelled by a filtered

version of the dendritic voltage (right, red trace)(Methods). (B) Bursts are activated by weak

(light red, Idi 250 pA) or strong (dark red, Idi 650 pA) dendritic input with moderate noise
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levels (σd = 100 pA). The somatic input is the same for both dendritic inputs (Isi ¼ 500 pA, σs

= 100 pA). The target value was determined empirically (see C) so that the burst rate was 1 Hz

(dashed line). (C) The burst rate after learning the inhibitory weights for different target val-

ues. (D) Representative raster plots of the burst activity for weak (light red) and strong (dark

red) dendritic inputs, before and after learning. Each dot represents a burst. (E) The distribu-

tion of the inter-burst intervals (IBI) before and after learning for weak (light red) and strong

(dark red) dendritic inputs.

(TIF)

S2 Fig. Control of the burst rate by spike-timing-independent homeostatic inhibitory plas-

ticity. (A) Network configuration with distal dendrites of PCs under control of inhibitory syn-

aptic inputs from SOMs (blue circle). Bursts are activated by weak (light red, Idi ¼ 250 pA) or

strong (dark red, Idi ¼ 650 pA) dendritic input with moderate noise levels (σd = 100 pA). The

somatic input is the same for both dendritic inputs (Isi ¼ pA, σs = 100 pA). The strength of

the inhibitory connections WSOM!dend are plastic (arrow) and modified according to a

homeostatic plasticity rule dependent on dendritic post-synaptic activity (Methods). The burst

target rate (dashed line) was set to 1 Hz. (B) The burst rate after learning the inhibitory weights

for different target burst rates. (C) Representative raster plots of the burst activity for weak

(light red) and strong (dark red) dendritic inputs, before and after learning. Each dot repre-

sents a burst. (D) The distribution of the inter-burst intervals (IBI) before and after learning

for weak (light red) and strong (dark red) dendritic inputs.

(TIF)

S3 Fig. Simultaneous control of somatic and dendritic activity without and with competi-

tion between inhibitory plasticity rules. The somatic and dendritic activity of PCs is under

control of plastic inhibitory connections from PV (dark blue) and SOM (light blue) interneu-

ron populations (see Fig 2). The somatic and dendritic compartments receive strong external

inputs with moderate noisy background input. (Idi ¼ 650 pA, Isi ¼ 1100 pA, σd = σs = 100

pA). (B, C) No competition (target firing rate = 10 times target burst rate) versus (D,E) com-

petition (target firing rate = target burst rate) between the target burst rate and target firing

rate. (B,D) The burst and firing rate for different burst and firing target rates after learning the

inhibitory weights (C,E).

(TIF)

S4 Fig. A doubly asynchronous irregular state for both spikes and bursts. The network con-

figuration and stimulus condition are the same as for Fig 3 (A) (Top) Representative raster

plots of all spikes, events and bursts of 50 neurons after learning the inhibitory weights. (Bot-

tom) Histogram of all spikes, events or bursts of the entire PC population, normalized by the

number of neurons (8000) and binsize (1 ms) to have units of rate. (B) The distribution of the

coefficient of variation of the inter-spike intervals (CV ISI, yellow), inter-event intervals (CV

IEI) and inter-burst intervals (CV IBI) after learning the inhibitory weights. (C) The distribu-

tion of the inter-spike intervals (ISI, yellow), inter-event intervals (IEI) and inter-burst inter-

vals (IBI) after learning the inhibitory weights.

(TIF)

S5 Fig. Inhibitory plasticity self-organises a multiplexed burst code. (A) Stimulation para-

digm with an increase in background excitation (triangle, red = dendrite, black = soma) on

which pulse inputs are superimposed. Similar to Fig 4, alternating and opposite pulse inputs

(dashed lines) are delivered to the somatic and dendritic compartment (Is;highi ¼ 800 pA,

Is;lowi ¼ 500 pA, Id;highi ¼ 105 pA, Id;lowi ¼ � 480 pA, ssi ¼ s
d
i ¼ 450 pA) and the dendritic and
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somatic background is increased by 300, 600 and 900 pA, respectively. Plastic inhibitory con-

nections from PV (dark blue) and SOM (light blue) interneuron populations restore the multi-

plexed burst code without the need for fine-tuning the background input. (B) Decoded input

currents from the event rate (solid red) and burst probability (solid black) before and after

learning (see Methods). Dashed lines represent the actual dendritic and somatic inputs.

(TIF)
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