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Abstract 

The emergence of Coronavirus disease 2019 (Covid-19) is a global problem nowadays, 

causing health difficulty with increasing mortality rates, which doesn't have a verified 

treatment. SARS-CoV-2 infection has various pathological and epidemiological 

characteristics, one of them is increased amounts of cytokine production, which in order 

activate an abnormal unrestricted response called “cytokine storm”. This event contributes to 

severe acute respiratory distress syndrome (ARDS), which results in respiratory failure and 

pneumonia and is the great cause of death associated with Covid-19. Endotoxemia and the 

release of bacterial lipopolysaccharides (endotoxins) from the lumen into the bloodstream 

enhance proinflammatory cytokines. SARS-CoV-2 can straightly interplay with endotoxins 

via its S protein, leading to the extremely elevating release of cytokines and consequently 

increase the harshness of Covid-19. In this review, we will discuss the possible role of viral-

bacterial interaction that occurs through the transfer of bacterial products such as 

lipopolysaccharide (LPS) from the intestine into the bloodstream, exacerbating the severity of 

Covid-19 and cytokine storms. 
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1. Introduction 

Covid-19 disease that is caused by the highly pathogenic SARS-CoV-2 virus, first appeared 

on December 31, 2019, in Wuhan, China (1). It is a highly pathogenic human coronavirus 

(HCoV) that has become a major threat to public health and current global health concerns 

(2). 

The SARS-CoV-2 infection has various epidemiologic and pathologic characteristics, one of 

them is an increase in cytokine release, which triggers an uncontrollable reaction called 

"cytokine storm". This phenomenon contributes to ARDS, which leads to pneumonia and 

respiratory failure, which is a major cause of death from Covid-19 (3-5). Coronaviruses 

attach to their target by Angiotensin-converting enzyme 2 (ACE2). Coronavirus enters the 

cells by viral spike (S) proteins, and host cell proteases is vital for priming of S protein (6). 

The ACE2 is coherently expressed by the epithelial cells of the lung, intestine, kidney and 

blood vessels and is present at the end of the ileum and colon in the highest concentrations in 

the body(7). Recent reports of Covid-19 showed that until 25 January 2022 there were up to 

359 million infections and deaths worldwide. In order to improve the prevention and manage 

the disease, we should understand why so few people show severe forms of Covid-19. While 

comorbidities including obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), 

patients' age and race are considered as important factors in worsening disease outcomes(8). 

Important common factors that straightly interplay with SARS-CoV-2 acute respiratory 

syndrome are still debated(9). Apparently, the correlations seem strange, because these 

comorbidities are not only unrelated to a specific disorder but also disassociated with Covid-

19 and most of which have been recognized for other viral infections, such as the Middle East 

respiratory syndrome (MERS) and H1N1 (swine flu)(10, 11)  elevated plasma levels of LPS 
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and LPS-binding protein (LBP) are present in obesity and diabetes, and intestinal dysbiosis 

has a role in the pathogenesis of insulin resistance. Low inflammation as result of the 

systemic distribution of bacterial products contributes to vascular disorders. Circulating LPS 

levels are significantly altered in CVD(12). In fact, all of these comorbidities have a common 

feature and viral-bacterial interactions, which occur through the transfer of bacterial products 

such as LPS from the gut to the bloodstream (8). As healthcare systems became 

overburdened, biochemical indicators such as lactate dehydrogenase, ferritin, and C-reactive 

protein were employed to triage patients and allocate hospital resources (sodium, calcium, 

potassium, magnesium, chloride, and phosphate)(13-18). In patients with COVID-19, 

electrolyte imbalances are common and are linked to more serious illness, according to recent 

investigations(19, 20).Their correlations with COVID-19 results, however, are irregular and 

have no known clinical significance. According to Song et al. poor COVID-19 clinical 

outcome is correlated with hypo- and hypernatremia. Addressing these imbalances helps to 

ameliorate clinical result and for these purpose more research is needed(21). 

2. Host-pathogen interaction 

The number of bacteria carried by humans is estimated at more than 100 trillion, which is 

more than the total number of human cells(12). Most of them interact with each other and are 

involved in innate and adaptive immunity. One of the most exciting scientific advances in 

recent years is that common microorganisms (our microbiome) play key roles in our 

physiology, including protection against infection, drug metabolism, vitamin synthesis, 

nutrition as well as response to disease. A surprising finding is that disruption of microbiota 

homeostasis, known as "dysbiosis", maybe as vital as host genetics in causing a wide range of 

diseases, such as inflammatory bowel disease, obesity, diabetes (pathogenesis of insulin 

resistance) and cardiovascular disease(8, 9, 22). Dysbiosis is associated with ACE2 

expression: ACE2 modulation can dramatically alter microbiota composition by affecting 

amino acid transport and the production of antimicrobial peptides(23). Loss of intestinal 

integrity and increased permeability cause LPS transfer from the intestinal lumen to the 

circulation, leading to metabolic endotoxemia. Bacteria(24-26), bacterial DNA, and bacterial 

products like LPS are also detected in the bloodstream of obese people and T2D(12, 27, 28). 

This shows that patients with these diseases suffer from the spread of bacteria throughout the 

system. The physiological significance of metabolic endotoxemia- the transmission of 

bacterial LPS to the bloodstream- in obesity and T2D, as well as in cardiovascular and 

pulmonary disease, is an important issue that should be investigated(29, 30). Severe 

endotoxemia has also been observed in the elderly: Plasma levels of LPS and its binding 

protein (LBP) doubled in the elderly (mean age above 70 years) compared to their younger 

counterparts (mean age around 25 years) and this effect was shown even in healthy and lean 

people(8). Plasma LPS levels also show ethnic and gender variations. The increase in age-

related endotoxin in women is significantly lower than in men and varies sufficiently across 

various ethnic groups, which is the highest in South Asia(8). This could explain that the 

observed increase in the severity of Covid-19 is higher in men in the UK and USA as well as 

in India compared to women. It has been declared that the gut dysbiosis may be the cause of 

COVID-19-related death in older people, diabetics and hypertensive patients since these 
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people exhibit an alteration in their gut microbiota profile followed by low-grade 

inflammation, especially when there are high amounts of IL-6 in their blood (26). 

Altogether, all of the major diseases caused by severe Covid-19 are predetermined by 

"intestinal leakage" and significant endotoxemia, which could be the common cause we are 

looking for. We now need to explain how endotoxemia can affect viral infection and in 

particular, how it can cause dramatic hypercytokinemia ("cytokine storm"), which is a sign of 

severe Covid-19(31). (Fig1) 

3. The effect of bacteria on the virus  

Factors such as the presence of enzymatic secretions and mucus may interfere with the 

infectivity and replication of viruses. In addition, high microbial loads in niches such as the 

gastrointestinal tract and their competition for binding to the target site may reduce the 

likelihood of multiplication of pathogenic bacteria and viruses and, thereby affect their 

binding to the target cell. Instead of competing for attachment to the target cell, some viruses 

use bacterial ligands to strengthen the attachment to the target cell, resulting in infection(32, 

33). Exciting studies have been done on bacterial and viral interactions and the effect of 

bacterial component on the promotion of a viral infection cycle is determined(34) (Table 1). 

Viruses can attach to gram-negative bacteria via LPS or straightly to unbound LPS, which 

increases the binding of the virus to its receptor at the surface of the host cells and can 

dangerously increase viral infection and cause the development of hypercytokinemia(35, 36). 

Official data suggest that SARS-CoV-2 can communicate straightly with LPS via its S 

protein and the production of high molecular weight spikes. The authors assessed that the 

LPS affinity for the S protein was similar to the LPS binding affinity for the human CD14 

receptor, which is the major receptor for LPS interaction with cells. In addition, while the use 

of S protein or LPS alone does not activate NF-κB, the combination of S protein, even with 

low LPS levels, causes a sharp increase in NF-κB and subsequent cytokine response in 

monocyte cells in dose–dependent manner in vitro(36). This event follows the hypothesis that 

direct interaction between SARS-CoV-2 and bacterial products causes synergistic effects and 

is likely to be involve in the rat model due to infection with the influenza virus (PH1N1) as 

well as in the porcine respiratory coronavirus (PRCV)(35, 37) . In both models, the 

combination of the virus with LPS causes severe SARS, disproportionate hypercytokinemia 

(up to 60-fold) in the lungs and widespread death of infected animals, although viral infection 

or LPS alone at similar doses does not show such consequences. Importantly, SARS-CoV-2 

is not the first viral infection whose severity is related to circulating LPS levels in humans.  

Previously, circulating LPS was actively associated with immune system activation in human 

immunodeficiency virus (HIV) infections(38). Overall, these findings put forth that increased 

transmission of gastrointestinal microbial products straightly contributes to the activation of 

the immune system in the chronic phase of HIV infection and may finally determine the rate 

of development to acquired immunodeficiency syndrome (AIDS). Relatively slow 

corresponds to the chronic phase of HIV infection, which is determined by the rate of 

activation of the immune system, compared to the rapidly destructive events on the mucosal 

surfaces in the acute phase(39). Pathogenic events may not be limited to primary degradation 
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of primary mucosal CD4 T-cells(40-42) and enteropathy(43, 44), but appears to be 

responsible for the adhesion to the mucosal barrier. 

This association is true for dengue virus, which causes 50 to 100 million infections annually 

in tropical and subtropical regions, plasma levels of soluble LPS, LBP, and CD14 are 

significantly higher in infected people than in healthy individuals(45), and absolute plasma 

LPS levels are correlated strongly with severe disease. Baseline LPS levels in individuals 

without viral infection but with typical comorbidities of severe Covid-19 were dramatically 

lower than the circulating LPS levels in severe Covid-19 patients (46, 47). 

In mice treated with antibiotics after infection with the poliovirus, the mortality rate was 

reported to be half of the group without antibiotic use and viral titers in this group were 

significantly reduced. The experiment was repeated with HeLa cells which showed that 

exposure of poliovirus with bacteria or bacterial components increase the binding of the virus 

to HeLa cells. Bacterial components, lipopolysaccharides (LPS), peptidoglycans and other N-

acetylglucosamine-containing polysaccharides were thought to enhance viral receptor binding 

and elevate virus excretion(48). 

Similar reports were obtained for norovirus in mice after antibiotic treatment and viral titers 

decreased. Blood group antigens (HBGA) are known to be potential receptors for human 

norovirus and HBGA-like groups have been reported at the level of some intestinal bacteria 

(e.g. Enterobacter cloacae). The data show that bacterial HBGAs in Enterobacter cloacae 

increase norovirus attachment to the target cells and increase viral infection(49).  

In addition to the role of bacterial ligands in enhancing viral binding, bacterial enzymes can 

also stimulate viral infection. A good example of viruses in this case is the influenza virus, 

which converts hemagglutinin (HA0) to HA1 and HA2 fragments under proteolytic cleavage 

in order to become infectious. The proteases produced by Staphylococcus aureus and 

Aerococcus viridans have been shown to have synergistic effects on viral pathogenesis(50, 

51). The binding of MMTV to intestinal bacterial LPS activates the Toll-lik4 receptor and 

then IL-10 and IL-6. In fact, this connection covers the virus and causes to escape from the 

immune system(52, 53).  

4. The effect of the virus on bacteria 

The presence of a viral infection often provides the basis for the pathogenicity of 

opportunistic bacteria through indirect interactions between the bacterium and the virus. The 

main mechanisms of these interactions include: (I) Increasing the concentration of bacterial 

cell receptors caused by the virus, (II) virus damage to the underlying epithelial cells; (III) 

transmission of the commensal bacterial virus; and (IV) suppression of the host immune 

system virus(54). Influenza virus through damage to the host epithelium as well as possible 

mechanisms such as the breakdown of sialic acid neuraminidase from host cells, 

rearrangement of bacterial host receptors and rebuilding of common bacterial host receptors 

including fibrin and fibrinogen provide the right conditions for bacteria such as Haemophilus 

influenza, Streptococcus pneumoniae and staphylococcus aureus(55-57). Another type of 

virus-bacterium interaction occurs when the virus inhibits the host response by infecting and 
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replicating within cells prepared for defense (lymphocyte, monocyte and macrophage)(34, 

58) . Interestingly, the influenza virus disrupts the clearance of Streptococcus pneumoniae by 

draining the alveolar macrophage(59, 60). In addition, the virus by changing the path of Toll-

like receptors, reduces the uptake of neutrophils and increases the binding of bacteria to the 

host epithelium(61). Influenza virus also reduces the production of IL-17, making the host 

more susceptible to bacterial infection(62). Targeting of helper T lymphocytes,macrophages 

and dendritic cells by HIV is an example of the systemic effects of viral infection on the 

immune system and the development of complex multimicrobial interactions, which change 

the host microbiome and increase bacterial colonization(63, 64). High levels of LPS detected 

in patients with severe Covid-19 compared to asymptomatic patients suggest a role for 

SARS-CoV-2 in induction and increase of endotoxemia in patients with comorbidities and 

the challenge is whether SARS-CoV-2 is effective in increasing barrier permeability for 

bacterial products (induced endotoxemia). Endocytosis occurs after the binding of SARS2 to 

ACE2, which leads to the internalization of the virus/ACE2 complex and regulates ACE2 in 

the cell surface(65). Since ACE2 is involved in facilitating the transport of amino acids(66), 

its deficiency disrupts processes controlled by amino acids. ACE2 deficiency also leads to a 

decrease in neutral amino acids and a severe decrease in the expression of antimicrobial 

peptides in the small intestine. ACE2 also binds to and stabilizes the amino acid transporter 

neutralizer. This binding is essential for the expression of this transporter at the luminal 

surface of intestinal epithelial cells and extremely increases its activity. Since amino acids 

greatly contribute to regulating the function of the intestinal epithelial barrier, decreased 

ACE2 content due to the interaction of these receptors with SARS-CoV-2 disrupts intestinal 

barrier integrity(66).  

5. Cytokine storm and Covid-19  

Although the theory of an uncontrolled, cytokine-mediated response was applied to explain 

malaria and sepsis(67, 68) in the 1980s and then, used for pancreatitis(69), variola virus(70) 

and influenza virus H5N1(71) in the 2000s, the first phenomenon of the term ‘cytokine 

storm’ (CS) was described in 1993 considering graft-versus-host disease (GVHD)(72, 73) . 

Some studies proposed that Covid-19 related death is significantly connected to increased 

level of cytokines and cytokine release is involved in hyper-inflammation related to the virus, 

called “cytokine storm”(74-76) .  

The cytokine storm results in apoptosis of epithelial cells, endothelial cells and vascular 

leakage, and finally leads to ARDS or another syndrome and may cause death(77).  

The cytokine storm has formerly been expressed for a number of infections, including 

H1N1(78-80), H5N1(81), influenza, MERS-CoV(77) and SARS-CoV(82). 

According to earlier findings, in diseases such as Covid-19, the gut microbiota is crucial for 

appropriate immune responses in order to inhibit a series of immoderate inflammatory 

reactions that may be harmful. This balance is essential since immune responses can cause 

various clinical consequences(83).  
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A previous increase in intestinal permeability, dysbiosis, and low-grade inactive systemic 

inflammation can facilitate activation of the inflammatory-cytokine storm in Covid-19 via the 

systemic production of damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs), LPS and TLR activation, which consequently causes 

a damaged cycle of systemic inflammation and tissue injury. 

SARS-CoV-2 has an interrelation with LPS via S protein, making a high molecular weight 

combination(36). The researchers expressed that an attraction of LPS to S protein is like the 

attraction of LPS to the human CD14 receptor, which is the main receptor for LPS 

interrelation with cells.  

CD14 is a pattern-recognition receptor, which is exhibited by monocytes, macrophages and 

somewhat by neutrophils(84). 

Furthermore, S protein or LPS separately do not contribute to activate nuclear factor-kappa B 

(NFk-B), while the aggregation of S protein- LPS significantly enhanced NF-kB activation 

and cytokine response in monocytic cells in a dose-dependent manner in vitro (36). 

LPS levels in severe and fatal lung injury cases were high which means that LPS is definitely 

involved in the pathogenesis of the Covid-19 cytokine storm and Covid-19 related micro 

vascular complications which must be understood(85). 

Gut microbiota dysbiosis in some Covid-19 patients could be involved in the transfer of LPS 

into the portal circulation, which will subsequently stimulate the Kupffer cells present in the 

periportal region of the liver, leading to the activation of NF-kB pathway and release of TNF-

α and IFN-β(86). This involvement can cause hepatic inflammation and also systemic 

inflammation particularly when LPS gets to the systemic circulation(87, 88). 

Although subclinical endotoxemia i.e. a low level of LPS cannot cause hepatitis, but low 

level inflammation, is able to intensify the effect of cytokine storm and microvascular 

complications related to Covid-19 patients. The liver damage illustrated in SARS-CoV-2 and 

the negative clinical importance of liver function test variations shows that clearance capacity 

of the liver filter decreases in comparison with bacterial degradation products and other 

toxins such as PAMPs and DAMPs during SARS-CoV-2 (89). In addition, proinflammatory 

effect (IL-8, Monocyte chemoattractant protein-1 (MCP-1) of low level LPS on endothelial 

cells, high sensitivity of vascular smooth muscle cells to the stimulatory action of LPS, the 

relationship between endotoxemia and atherosclerosis and LPS induced insulin resistance 

effect are noteworthy aspects which could act as fertile soil for the onset of Covid-19 

cytokine storm and microvascular damage in the patients(90-92). 

The chemokine C-X-C motif chemokine ligand 10 (CXCL-10) has a significant role in 

serving inflammatory cells to the site of inflammation and its contribution in Covid-19 

induced cytokine storm has been demonstrated in both experimental model and in 

patients(93). 

Studies have shown that levels of CXCL-10 are enhanced in Covid-19 patients compared to 

healthy people. Moreover, the CXCL-10 level in Covid-19 patients admitted into intensive 

care unit is higher than patients with less severe disease(74). This finding shows the role of 
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LPS in the severity of Covid-19. Studies have also revealed that elevated levels of CXCL-10, 

IL-1B, IFN-γ and chemokine (C-C motif) ligand 2 (CCL2) are the result of Th1 

responses(94). 

It has been reported that a set of proinflammatory cytokines and chemokines including IL-6, 

IFN-α, IFN-γ, IL-1b, IL-12, IL-7, IL-8, IL-9, IL-10, FGF, granulocyte colony-stimulating 

factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IP-10, 

monocyte chemoattractant protein-1 (MCP-1/CCL2), MIP-1A, MIP1-B, platelet-derived 

growth factor (PDGF), IL-18, IL-33, TGF-b, vascular endothelial growth factor (VEGF), 

CXCL-8, CXCL-9, CCL-2, CCL-3 and CCL-5 are expressed abnormally among severe cases 

of Covid-19 patients(95, 96). 

Studies have also documented that LPS-binding protein, a sign of inflammation is enhanced 

significantly among severe Covid-19 patients. These findings are markers of the relationship 

between severe Covid-19 and gut permeability and thereby microbial dislocation(97). 

There are several concepts about the activator factor of the cytokine storm including the 

expression of CXCL-10 due to LPS, direct viral effect on the immune system and low level 

LPS circulating in the plasma of Covid-19 patients with gut dysbiosis and subclinical 

endotoxemia contributes as a cofactorfor the Covid-19 cytokine storm(98). 

Generally, SARS‐CoV‐2 enters the host cells through binding of S proteins to the cellular 

receptor called ACE2. A transmembrane protease serine 2 (TMPRSS2) which is a serine 

protease on the host membrane, prepares S protein to enter the cell (99, 100). After entering 

respiratory epithelial cells, SARS‐CoV‐2 stimulates the immune system by inflammatory 

cytokine release associated with IFN. Membrane bound immune receptors and downstream 

signaling pathways intermediate Th1 cells proinflammatory immune responses and CD14+ 

and CD16+ monocytes. After evoking the immune system, macrophages and neutrophils 

infiltrate into the lung tissue, which leads to a cytokine storm(101). 

SARS‐CoV‐2 can quickly trigger pathogenic Th1 cells in order to release proinflammatory 

cytokines, including GM‐CSF and IL‐6. GM‐CSF further triggers CD14+ ,CD16+ 

inflammatory monocytes to secrete a large amount of IL‐6, TNF‐α and other cytokines(102).  

Membrane‐bound immune receptors such as Fc and Toll‐like receptors can participate in an 

imbalanced inflammatory response and IFN‐γ induction has a significant role in increasing 

cytokine production(101). 

Neutrophil extracellular traps (NETs) include extracellular webs of DNA, histones, 

microbicidal proteins and oxidant enzymes that are produced via neutrophils to encompass 

infections. If couldn't regulate properly, NETs have the ability to trigger and disseminate 

inflammation and thrombosis (103, 104). As a matter of fact, inhibition of neutrophils and 

NETs is preservative in different models of influenza-associated ARD. The extracellular nets 

released by neutrophils, may involve in cytokine production. Overexpression of IL‐6 and 

TNF‐α is a marker of cytokine storm in Covid-19. Hirano and Murakami(105) suggested a 

potential mechanism of the cytokine storm created through the angiotensin 2 (AngII) 

pathway. SARS-CoV-2 triggers NFk-B by pattern‐recognition receptors. It uses up ACE2 
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on the cell surface, leads to low expression of ACE2, which consequently results in high 

production of AngII. In addition to inducing NFk-B, the AngII-angiotensin receptor type 1 

axis can also activate TNF‐α and the soluble form of IL-6Ra (sIL- 6Ra) through disintegrin 

and metalloprotease 17 (ADAM17)(106) . IL-6 attaches to sIL-6R via gp130 in order to 

constitutes the IL-6-sIL-6R complex, which can induce signal transducer and activator of 

transcription 3 (STAT3) in non-immune cells. The activation of NF-kB and STAT3, which 

consequently triggers the IL-6 amplifier (IL-6 Amp), results in different proinflammatory 

cytokines and chemokines, including VEGF, MCP-1, IL-8, and IL-6(107). IL-6 attaches to 

sIL-6R to associate with cis‐signaling as well as attaches to the membrane-bound IL‐6 

receptor (mIL-6R) via gp130 that is involved in trans-signaling. The latter can result in 

pleiotropic effects on both acquired and innate immune cells, leading to cytokine 

storms(108). Taken together, the incomplete acquired immune responses and unregulated 

inflammatory innate responses to SARS-CoV-2 may give rise to cytokine storms. 

6. CONCLUSION 

As discussed previously, the interaction between immune system and gut organisms is 

balanced and bidirectional, the enhanced inflammation can result in leaky gut which cause 

bacterial toxins and metabolites to enter the systemic circulation.  

This can more intensify the infective state of Covid-19 patients. Previous studies have 

determined the relationship between enhanced intestinal permeability with sepsis and several 

organ failure(109, 110). 

Microbial dislocation due to loss of intestinal permeability causes a secondary infection and 

bacterial dislocation from the gut to lungs which can result in sepsis and acute respiratory 

distress syndrome(70). 

Studies have showed the connection between the gut and the respiratory tract and their 

coordinated modulation of immune responses and dysbiosis in gut microbiota influence the 

respiratory tract(111). 

Similarly, by the gut-lung axis, viral agent of respiratory infections in lungs moves to other 

organs through systemic circulation. This corresponds to the hypothesis of an imbalanced gut 

microbiota setting stage for disturbed immune homeostasis resulting in intensification of 

cytokine storm in Covid-19 patients. 

By considering the participation of earlier endotoxemia in intensification of Covid-19 , we 

assume that standard measurements of LPS and LBP in plasma, following positive COVID-

19test, is significant diagnostic assistance for identifying patients at risk of severe 

consequence. 

This showed that pathophysiology can lead us to suitable choices to interfere with this 

process, especially toward approaches that refer to attached and free endotoxins of the 

bloodstream. 
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These could be high-density lipoprotein (HDL) infusions and/or use of the inhibitor of 

peroxisome proliferator-activated receptor gamma (thiazolidinediones) that are more used in 

antidiabetic therapy, compounds that can significantly decrease LPS in plasma and 

effectively reduce endotoxin- induced cytokines(112, 113). 

From a clinical perspective, the idea that early infection-phase chemokine levels appear to be 

accurate predictors of patient outcomes, may be a promising approach to use various level of 

serum chemokine for making decision for the treatment(114). 

Also targeting the increased cytokines as well as other pathways that intensify the cytokines 

constant release is an appropriate approach to reduce one of the signs of Covid-19, and 

hopefully, decrease Covid-19 mortality rate. 
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Fig1. The SARS-COV2 virus commonly infects the respiratory system thoroughly. 

Inflammatory signaling, cytokines as well as chemokines have a part in causing cytokine 

storm. Additionally, macrophages, monocytes and dendritic cells operate and result in severe 

inflammation and tissue malfunction. The gut and lung have synergistic effect on each other 

so that metabolites of gut bacteria impact on the lung and inflammation of the lung via blood 

and alter the amount of gut microbiota. SARS-CoV-2 usually infects the lung. Dysbacteriosis 

of gut microbiota remove the cohesion of gut barrier which is responsible for moving of 

SARS-CoV-2 from the lung into the gut via the bloodstream and lymphatic systems. The 

virus attaches to the enterocytes by the ACE2. Moving of bacterial antigens and toxins into 
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the bloodstream as result of inflammation in the leaky gut causes sepsis in Covid-19 patients. 

Also, dysbacteriosis of gut microbiota involves in pathogenesis of respiratory distress 

syndrome. 

 

 

 

 

 

 

 

 

 

 

Table 1. Bacteria-Virus interactions 

    

Bacteria Virus Interactions Reference 

Herpesviruses Porphyromonas gingivalis 

Virally infected immune cells cause 

inflammation and have cytopathic 

effects but don't impact seriously on 

periodontal bacteria that use intact 

host cells that act as receptors. 

(115-117) 

Human norovirus Enterobacter cloacae 

Enterobacter cloacae through 

HBGAs facilitate viral replication in 

a BJAB cell culture system. 

Some commensal Escherichia coli 

strains expressing HBGA-like 

moieties may aid in resistance of 

norovirus to heat. 

(49, 118) 

Mouse mammary 

tumor virus (MMTV) 
Enteric bacteria 

MMTV binds to bacterial LPS and 

uses it to “cloak” itself from the 

immune system and to persist. 

(48, 52, 53) 

Influenza virus 
Staphylococcus aureus; 

Aerococcus viridans 

Viral neuraminidase causes bacterial 

receptors. 

Protease derived from bacteria 

cleaves the hemagglutinin (HA) into 

HA1 and HA2, making the particles 

infectious 

(50, 55-58, 

119-122) 

Human 

immunodeficiency 

virus (HIV) 

Mycobacterium tuberculosis 

HIV depletes CD4+ T cells and up-

regulates CD14, so helps to M. 

tuberculosis infection. 

M.tuberculosis through increasing 

oxidative stress enhances 

inflammation and cause proliferation 

(123-130) 
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of HIV infected immune cells and 

also by decreasing pro-inflammatory 

cytokines leads to suboptimal 

immune responses to viral infection. 

Poliovirus 

N-acetylglucosamine 

(GlcNAc) contains 

polysaccharides longer than 

six units including LPS, 

peptidoglycan (PG) and 

chitin 

Bacterial stabilization inhibits 

premature genome extrusion before 

virus attachment to the host cells. 

(48, 131) 

Rhinovirus 

Staphylococcus aureus, 

Streptococcus pneumonia, 

Haemophilus influenzae 

Rhinovirus increases expression of 

host cell adhesion molecules and 

elevates susceptibility to bacterial 

rhinosinusitis. 

(132-136) 
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1- SARS-CoV-2 infection can increased amounts of cytokine production. 

2- Interaction between viral and bacterial can be transfer bacterial products into the bloodstream. 

3- SARS-CoV-2 infection can be activated an abnormal unrestricted response called “cytokine 

storm 
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